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Abstract—Wireless communication between an unmanned
aerial vehicle (UAV) and the ground base station (BS) is suscep-
tible to adversarial jamming. In such situations, it is important
for the UAV to indicate a new channel to the BS. This paper
describes a method of creating spatial codes that map the chosen
channel to the motion and location of the UAVs in space, wherein
the latter physically traverses the space from a given so called
“constellation point” to another. These points create patterns
in the sky, analogous to modulation constellations in classical
wireless communications, and are detected at the BS through a
millimeter-wave (mmWave) radar sensor. A constellation point
represents a distinct n-bit field mapped to a specific channel,
allowing simultaneous frequency switching at both ends without
any RF transmissions. The main contributions of this paper are:
(i) We conduct experimental studies to demonstrate how such
constellations may be formed using COTS UAVs and mmWave
sensors, given realistic sensing errors and hovering vibrations,
(ii) We develop a theoretical framework that maps a desired
constellation design to error and band switching time, consid-
ering again practical UAV movement limitations, and (iii) We
experimentally demonstrate jamming resilient communications
and validate system goodput for links formed by UAV-mounted
software defined radios.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are utilized for military
operations, surveillance, disaster management, telecommuni-
cations, monitoring, and cargo delivery [1]. All such roles
require continuous control, navigation, communication and
autonomy [2], requiring robust links between the UAV itself
and the ground base station (BS) [3], [4] or between distributed
UAVs [5]. The degradation in wireless links caused by ad-
versarial actions, such as jamming or interference, has been
widely studied for diverse applications, such as WSN [6] or
wireless charging [7].
•Overview of the approach: Fig. 1 shows a sample scenario
where the RF link on channel X between the UAV and the
BS is severed due to a jamming attack. The UAV selects
a new channel Y for continuing the communication, but is
unable to let the BS know of its choice owing to the active
jammer. So, it uses an out-of-band control signaling method
involving relaying channel information by moving between
different spatial locations. Notice that X and Y could represent
any available transmission band that the hardware of both the
UAV and the BS could support (i.e. sub-6GHz, mmWave,
etc), making this solution applicable to broadband jammers
working in a certain band. Information conveying modulation
constellations are used in classical wireless communications,
and our approach attempts to map a similar concept into the

Fig. 1: UAV communicates with ground station on Channel X
(step 1). When jammed, it moves through physical space to
encode new channel information in a constellation, detected by
mmWave sensor (step 2), expanded for 4-physical locations.
The communication link switches to Channel Y free from
jammer (step 3).

UAV scenario. This creates a low-bandwidth control channel
that is resilient to the ongoing jamming attack. Note that this
approach would remain secure against a jammer equipped
with its own localization technology since the location-channel
mapping would be unknown on its side. Our approach relies
on accurate localization of the UAV in 2-D space (in fact, any
imprecision results in symbol error at the BS). While sensing-
aided communications system have been explored in other
works [8], for this paper we choose a single-chip Frequency-
Modulated Continuous Wave (FMCW) mmWave radar.
•Research challenges: The idea of using spatial constellations
raises many unique research challenges at the intersection
of wireless communication and robotics. Firstly, based on
an experimental study using a COTS mmWave radar TI
IWR1642, we identify the regions where the sensor accuracy
drops. This results is generating non-intuitive and irregular
shapes for the resulting constellation. For instance, in Fig.
1, a regular QPSK modulation used in classical RF would
have its points at the four vertices of a square, whereas our
approach traces arcs in the sky for the same points. We answer
the fundamental question of how these physical constellations
scale and what forms they take as the number of bits required
to represent additional information also changes.

With the available degrees of spatial freedom, we must also
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determine the separation between points, defined by ∆ρ-∆θ,
which represent the symbol spacing between any consecu-
tive constellation points along the ρ or θ polar coordinates
axis, respectively. The need of using polar coordinates is
explained later in this paper. Moreover, the problem of inter-
point spacing has many non-intuitive elements. Since the
UAV must physically move from one point to another, the
separation between the constellation points may be minimized
to reduce the travel time, and thus increase the information
capacity. This is a distinction not present in classic information
constellation designs, where the separation between symbols
is always maximized to reduce the BER. However, simply
bunching the points very close causes two problems: The
natural hovering and instability during flight can move the
UAV close to an incorrect location. It also decreases the ability
of the ground-based mmWave sensor to resolve the UAV
locations at these discrete points. Overall, designing such a
physical constellation based control signaling method involves
many unique interdisciplinary conditions at the intersection of
robotics, communication and sensing.

In summary, the main contributions in this paper are:
1) We introduce the concept of spatial modulation constel-

lation for UAVs and motivate its application as a method
for frequency band selection for jamming resilience.

2) Through experimental traces and characterization of
the mmWave sensor, we design a two-step clustering
algorithm that is able to process the positional data and
distinctly identify different UAVs with minimal impact
of noise.

3) We design a constellation scheme for N=2 points in
space, and propose generalization steps, by taking into
account mmWave sensor performance and UAV flight
limitations. The approach identifies the optimal separa-
tion distance that requires minimum movement for the
UAV, while ensuring robustness in detection.

4) We experimentally demonstrate the jamming resilience
and implement our design on DJI M600 UAVs with
Ettus B210 software defined radios for 2 constellation
points. Additional simulation results are provided for
larger constellation sizes to demonstrate scalability.
II. MMWAVE SENSING FOR UAV LOCALIZATION

We use a Texas Instruments IWR1642 evaluation module
that has 10.4x10.4mm mmWave sensor incorporating FMCW
radar technology. The sensor works in the 76-81GHz band
with up to 4GHz chirp, and feeds real time location infor-
mation to a laptop that analyzes the resulting point cloud.
Also, we use a DJI Matrice M600 Pro UAV with access to
the low level flight controller telemetry data. Furthermore,
we integrated a real-time GPS kinematic solution, called DJI
D-RTK, in the UAV for cm-level GPS accuracy, compared
to variations in the scale of ±1.5m in the horizontal plane
otherwise.

A. Static UAVs
Consider a UAV statically supported by a tripod, approx-

imately 1m from the ground, and placed at the coordinate
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Fig. 2: (a) Measured point cloud with a UAV at position [0,6]m
shows considerable noise and misclassification. However, after
setting MinPts based on our analysis in Sec. II-C, we suc-
cessfully obtain a cluster of feasible points around the UAV’s
location (enclosed in the red bounding box).

(a) (b)

Fig. 3: Histogram for θ (a) and ρ (b) for the UAV point cloud
in Fig. 2a. Both variables exhibit a peak which is leveraged
for refining position estimation.

[0,6]m with respect to the origin [0,0] in the x-y plane,
where the sensor is located. The UAV propellers are set to
rotate at low rpm, and the sensor is configured to only detect
moving objects. The sensor reports valid spatial coordinates
(see red point cloud in Fig. 2a), but also many additional
noise readings. Interestingly, the point cloud is not uniformly
distributed around the target. Using polar coordinates, we see
the sensor is more accurate in terms of distance from origin
(say, ρ) rather than angle of the target wrt to origin (say,
θ). Indeed, the histogram of the point cloud shown in Fig. 3
validates the comparatively greater uncertainty in localization
accuracy with respect to θ over ρ. This key insight is used for
spacing the constellation points in our approach, which results
in an asymmetric form of the constellation.

B. Hovering UAVs

When a UAV is set to operate a given point in 3-D space, it
shows slight displacement over time in all three dimensions.
We next determine if this unpredictable hovering motion can
potentially result in the mmWave sensor mis-detecting the
target constellation point. For the purpose of this work, we
focus on a 2-D plane. We collect measurements while flying
the UAV at coordinates with different ρ values (fixing θ at
0◦) from 2m to 12m in steps of 0.5m with staying duration
of 2 minutes per point. The same experiment is repeated



for different θ coordinates, from −32◦ to 32◦ in steps of
4◦, keeping ρ constant. The benefits of using D-RTK can
be immediately seen in Fig. 4, giving an increased accuracy
of both ρ and θ estimation, respectively, when the RTK is
active in (c) and (d), versus using classical GPS in (a) and
(b). Additionally, we leverage the fact that the distribution of
the error along both variables (ρ and θ) follow a Gaussian
distribution in Sec. III.

C. Accurate Real-time Localization

Our goal here is to accurately identify the constellation
point from the data clouds obtained by the mmWave sen-
sor. We use DBSCAN (Density Based Spatial Clustering of
Applications With Noise) [9] as the starting point. DBSCAN
groups together sets of points based on the region density,
and at the same time, is able to detect outliers with low run-
time overhead. In addition, it can be used in a wide range of
cluster shapes (i.e. linear, concave, circular, etc.). We make
two main contributions here: (i) we accurately initialize the
parameters of the DBSCAN algorithm using measurement
studies which are also seen in this section, and (ii) we reduce
uncertainty with a novel weighted histogram approach to
create Hi-DBSCAN, which increases accuracy over the stock
algorithm.
•DBSCAN tuning for UAVs: We focus on three main pa-
rameters for the proposed Hi-DBSCAN: (i) ε, a measure of
radius that defines the circular neighborhood around the true
center of the UAV. Any measurement point within this circle is
called as an ε-neighbor. (ii) MinPts, the minimum number of
neighboring points a true UAV location should have in order
to not be classified as noise. (iii) Dist, the maximum distance
at which the mmWave sensor should detect measurement data.
ε and MinPts are legacy DBSCAN parameters which would
result in undesirable performance if not properly tunned [10]. ε
can be trivially set from the dimensions of the UAV. Similarly,
we can set the UAV flight boundaries to directly compute
Dist. MinPts, on the other hand, is a function of the frame
rate of the sensor (i.e., samples produced per second), the time
over which the samples are collected tmeas), and the total
number of points obtained R, which include legitimate signal
reflections from the UAV, along with noise and radar artifacts.

For a fixed frame rate, R increases linearly over time,
as expected. Moreover, as Fig.2b shows, R is also distance
dependent. In order to characterize its dependency, we fit an
exponential function curve to our data (F = aebd, where d
is distance and a and b are the parameters to be estimated).
Fig. 2b shows the obtained fitting curves for different tmeas
values. Thus, UAVs at different distances create different
density point clouds. The lowest density areas give the lower
bound on the performance of the clustering algorithm (i.e., if
the UAV is detected accurately in low density areas, it is highly
probable that will also be detected in more dense areas.).
Thus, we define MinPts as MinPts = αF(tmeas,Dist),
where α is a scaling factor. In our experiments. We set α
to 0.5 under the assumption that at least half of the detected
points are contributed by the UAV at a given location. Fig. 2a

shows how properly tuning the MinPts parameter directly
identifies the candidate points (in the red box) while all other
extraneous points are labelled as noise, unlike the case with a
naive MinPts value, where the clustering predicts there are
3 extra UAVs.
•Weighted histogram analysis: DBSCAN outputs clusters,
each containing a cloud of candidate UAV location points.
However, our goal is to ultimately estimate a single location
for the UAV. Thus, we add a second stage, which aims to refine
the position estimation by performing a weighted histogram
analysis. For every point cloud we make the following obser-
vation: (i) Points with higher received power are more likely to
be the true location of the UAV, and (ii) Points in every cluster
are more densely distributed around the true location. Thus,
we define a weighted histogram, using the received power as
the weights:

Hi =
ni∑

n=1..N

pn × wn
(1)

ni =
∑
i∈I

pi × wi (2)

Where Hi is the weighted histogram, ni is the sum of the
weighted points at bin i, N is the number of points in the
cluster, I defines the range of bin i and wi is the weight applied
to every point pi. Consequently, the final estimated point is
d = [θe, ρe], where θe = maxθH(θ) and ρe = maxρH(ρ).
In Fig. 3 we see how both H(ρ) and H(θ) show a clear peak,
which is known to match the UAV true location.

III. CONSTELLATION LOCATION ERROR PROBABILITY

The unpredictable hovering introduces errors in the localiza-
tion process. We model the location of each UAV as a random
variable defined as p = (θ, ρ) using the polar coordinate
system. As discussed in Sec. II-B, the UAV movement along
each axis follows a Gaussian distribution. Assuming statistical
independence, we discuss the means and variances of these
variables next: Let si = (sθi , sρi) be the polar coordinates for
a given symbol i in a 2D plane. In an ideal case, the UAV
location exactly overlaps with a given symbol location, or at
least, exhibits a mean location µi equal to the constellation
point, i.e., µi = si. Furthermore, let σi = (σθi , σρi) denote
the vector of standard deviations that defines the precision with
which a given UAV hovers around certain symbol coordinates.
The lower the σi, the more stable the UAV is. Since the UAV’s
position pi on any axis is assumed to be an independent
Gaussian random variable, while transmitting symbol i, this
can be expressed as:

pi = N (si,σiI), ∀i ∈ {1, 2, ..., N} (3)

where N stands for the number of different symbols in the
constellation. There is a symbol error anytime the hovering
displaces the UAV out of its feasible symbol region. Without
loss of generality, each symbol region Ri is defined as:

Ri =

{
αli < θ < αui
βli < ρ < βui

(4)



(a) (b) (c) (d)

Fig. 4: Probability density function for ρ (a) and θ (b) using standard GPS localization. Probability density function for ρ (c)
and θ (d) using RTK localization.

where α and β define the bounds on each of the axis and the
l and u respectively stand for the lower and upper bound that
define the Ri limits. While we provide a detailed analysis for
the case of N={2} next, higher order constellation sizes are
not included due to space constraints, though they follow very
similar steps. As the constellation design is not only dependent
on N but ∆ρ and ∆θ, a general symbol error probability is
hard to derive. However, in Sec. III-B we develop a generic
framework that accounts for the number of neighbors of each
symbol in order to compute the average probability of error.

A. Analysis for N=2

The constellation can have two possible configurations,
where both symbols are placed either along the ρ or the θ
axis. In order to avoid redundancy, we derive the expression
for the θ case only, where sθ = {−∆θ

2 ,
∆θ

2 }. Here, we define
the probability of error as:

Pe =
∑

i={1,2}

P (pi /∈ Ri) =
∑

i={1,2}

P (βli > θi > βui )P (si)

(5)

=
∑

i={1,2}

P (βli > sθi + εθi > βui )P (si) (6)

We reformulate pi as the addition of a deterministic value
(si) and a random component (ε = N (0,σiI)). As the
symbols are equally probable with same error probabilities:

Pe =
1

2
2P (εθi > βui − sθi) = Q

(
βl1 − sθ1
σθ1

)
(7)

Where Q(x) =
∫∞
x

1√
2π

exp −t
2

2 is adopted to simplify the
expression. Finally, considering s as the constellation point
centered at θ = 0, then βl1 = 0, Pe = Q

(
∆θ/2
σθ1

)
.

Similarly, if both symbols were placed along the ρ axis Pe =

Q
(

∆ρ/2
σρ1

)
. This result matches with the BPSK probability of

error through an AWGN channel, as expected.

B. Generalized formulation

We derived the error probability for the constellation size
(N=2) in Sec. III-A. We next tabulate the error probability as a
function of the number of neighbors a given constellation point
has along ρ axis (nρ) and θ axis (nθ). Also, a given symbol is
considered as the neighbor of another one if it is placed at a
distance ∆ρ - ∆θ along the ρ - θ axis respectively. We define
the probability of error in terms of nρ and nθ because this
allows us to derive and expression for every single symbol in
the constellation and then compute total Pe as the average.
Table. I shows Pe(nθ, nρ) for every possible (nθ, nρ) pair.

nθ nρ Pe(nθ, nρ)

2 2 1−
{[

1− 2Q
(

∆θ/2
σθ1

)] [
1− 2Q

(
∆ρ/2

σρ1

)]}
2 1 1−

{[
1− 2Q

(
∆θ/2
σθ1

)] [
1−Q

(
∆ρ/2

σρ1

)]}
2 0 2Q

(
∆θ/2
σθ1

)
1 2 1−

{[
1−Q

(
∆θ/2
σρ1

)] [
1− 2Q

(
∆ρ/2

σθ1

)]}
1 1 1−

{[
1−Q

(
∆θ/2
σθ

)] [
1−Q

(
∆ρ/2

σρ

)]}
1 0 Q

(
∆θ/2
σθ1

)
0 2 2Q

(
∆ρ/2

σρ1

)
0 1 Q

(
∆ρ/2

σρ1

)
TABLE I: Pe expressions for different (nθ, nρ) pairs.

Given a constellation setup and the probability of error for
every symbol, the total probability of error for any constella-
tion can be expressed as:

Pe =
1

N

N∑
n=1

Pne (nθ, nρ) (8)

where Pne represents the Pe for symbol n. Notice how
every expression in Table. I depends explicitly on ∆ρ and
∆θ. This will be relevant in the following section, where the
constellation design is explained.



IV. CREATING EFFICIENT CONSTELLATIONS

In this section, we describe in detail how to design the
constellations composed of the set of N points given by p∗
(see Fig. 5). We aim to minimize the average travel time
(T ), which occurs when the inter-symbol distance is also
minimized. The parameters ∆ρ and ∆θ are selected from the
analysis in Sec. III using the generalization of error probability
obtained in Eq. 8 and Table. I. As mentioned above, the error
directly depends ∆ρ and ∆θ. Then, both of these parameters
are set so that Pe is kept below a certain threshold ξ. Thus,
the problem can be formulated as:

min
p∗

T (N,∆ρ,∆θ) (9a)

such that: Pe ≤ ξ (9b)

where p∗ are the N optimal points with spacing ∆ρ and ∆θ

that minimize T while ensuring Pe ≤ ξ are obtained.

A. Exhaustive exploration

From Sec. II-A, the mmWave sensing accuracy is not
equally distributed along both the polar coordinate axes. For
instance, considering Fig. 5, the optimal constellation for
N=8, uses 4 values in the ρ axis while only 2 along θ
axis. If we analyze this asymptotically, the optimal design
may require placing all the N points along one of the axis.
Thus, we define a grid of L=N2 elements which contains
all the possible solutions for our problem. For a given
starting point (pc = [θc, ρc]), the grid range is defined as
{[θc − ∆θ(N−1)

2 , θc + ∆θ(N−1)
2 ], [ρc, ρc + ∆ρ(N − 1)]} (see

Fig. 5). The optimal constellation (p∗) is the set of N elements
out of L for which its average distance is minimized, i.e.,
from (9a). To solve this, we propose (i) an exhaustive search
for pre-flight computationally non-restricted scenarios, and (ii)
a heuristic algorithm for in-flight constellation calculation.
Moreover, we show how our heuristics converge to a close
to optimal solution and analyze the complexities.

B. Heuristic exploration

In order to reduce the complexity of an exhaustive search
that compares the average distance for any set of N points
in a grid with L elements, we assume that the inter-symbol
distance is reduced if the set of points closer to pc are picked.
Then, we only need to compute the distance from pc to every
point and choose N out of L with the shortest distance from
it. As only one set of distances needs to be calculated, we get
linear complexity with L (O(L)). In contrast, an exhaustive
search has complexity O(L2).

V. PERFORMANCE EVALUATION

A. Simulation results

In Fig. 6, we compare the average distance for the optimal
and heuristically derived constellation points, and we see a
near-perfect agreement comparing both approaches. Fig. 7
analyzes the impact on T of ∆θ and ∆ρ, as well as the
constellation size. Whenever ∆θ or ∆ρ increases, so does T .

Fig. 5: Optimal constellation

This is expected since the UAV takes more time for traversing
longer inter-symbol distances. The travel time is computed
considering a PID controller that chooses the velocity of the
UAV based on the distance to its target. We set kp = 0.6,
kd = 0.12 and ki = 0.05, which represent for the proportional,
derivative and integral PID constants, respectively. All the
simulations are conducted in MATLAB.

B. Experimental results

We assume the problem involves selecting one of two
channels centered at 900MHz and 905MHz, and so, we set
N=2. For this experiment, we set ∆ρ and ∆θ such that Pe ≈ 0.
This is achieved by choosing ∆ρ/θ � σρ/θ. For measurements
with RTK (Sec. II-B) we find σρ ≈ 0.05m and σθ ≈ 0.9o.
Thus, we pick the quotient ∆ρ/θ

σρ/θ
to be ≈ 13dB, which results

in ∆ρ = 1m and ∆θ = 18o. The optimal constellation for
these values results in two symbols along the ρ axis. For
ρ = 5m, these points are at s1 = [0, 5] and s2 = [0, 6],
where si = [θi, ρi] represent the coordinates for symbol i.
Then, we mount one Ettus B210 on a DJI M600 that acts
as a transmitter. Another B210 and a TI IWR1642 radar is
connected to a BS running Linux, which also executes the
clustering algorithm from Sec. II-C. The UAV location is an
input for switching the center frequency of the B210 SDR.
Finally, a third B210 on the ground emulates a jammer by
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Both plots are for ρ = 5m. On the left, ∆θ is fixed to 5o. On
the right, ∆ρ is fixed to 0.8m.

transmitting at high power. Fig. 8 shows how goodput evolves
over the jamming attack, and how position-based information
relaying allows the link to recover via channel switching. Prior
to the jamming (1), the average goodput is 100% with near-
perfect data decoding. However, when the jamming attack
begins, the receiver is not able to decode the received data
(2). Then, the UAV switches the transmission to a new channel
and moves to a new constellation point (ρ = 6 → ρ = 5) in
order to communicate it to the BS. This movement is sensed
and the data transmitted in the new jamming-free channel is
decoded at the BS.

Finally, in Fig. 9 we show the experimental and theoretical
average travel time T . We see that our model is more accurate
for larger (≥ N ) constellation sizes. This is because the
theoretical model does not account for wind, which makes
the UAV take longer time to converge to its next location.
Larger constellation sizes are analyzed via simulations in the
previous subsection. (Fig. 7).

VI. CONCLUSION

In this work, we present an interdisciplinary paradigm of
position based modulation using UAVs which can convey
information by creating spacial codes. As a use case, we show
this method can be used for channel selection in jamming
situations. Our work is driven by experimental characterization
of localization error caused by hovering UAVs, and errors
introduced by COTS mmWave sensor. Finally, we experimen-
tally demonstrate how our system can be used to overcome
jamming using a DJI M600, Ettus B210 SDRs and a TI
IWR1642 mmWave sensor.
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