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Abstract—A distribution matcher (DM) encodes a binary input
data sequence into a sequence of symbols with a desired target
probability distribution. Several DMs, including shell mapping
and constant-composition distribution matcher (CCDM), have
been successfully employed for signal shaping, e.g., in optical-
fiber or 5G. The CCDM, like many other DMs, is typically
implemented by arithmetic coding (AC). In this work we im-
plement AC based DMs using finite-precision arithmetic (FPA).
An analysis of the implementation shows that FPA results in a
rate-loss that shrinks exponentially with the number of precision
bits. Moreover, a relationship between the CCDM rate and the
number of precision bits is derived.

I. INTRODUCTION

A distribution matcher (DM) reversibly maps a sequence U
of independent and uniformly distributed bits into a sequence
A of symbols to emulate a memoryless source PA, i.e., the
output of the DM approximates a sequence of independent and
identically distributed (IID) symbols, each distributed accord-
ing to PA. The accuracy of the approximation is measured by
the Kullback–Leibler (KL) divergence between the probability
distribution of the DM’s output and the probability distribution
of the IID sequence. An inverse distribution matcher (DM−1)
performs the inverse operation recovering U from A.

DMs can be used in communication systems, such as
probabilistic amplitude shaping (PAS) [1], to adjust the distri-
bution of transmitted symbols to a distribution beneficial for a
certain channel, e.g., a distribution achieving the capacity. PAS
with a constant-composition distribution matcher (CCDM) [2]
was recently used for optical-fiber communication [3] and
proposed for the 5G mobile system [4]. DMs can also be
interesting for secrecy in communications.

We refer to CCDM and other DMs implemented by arith-
metic coding (AC), e.g., the multi-composition DM [5] and the
multiset-partition DM [6], as AC based distribution matchers
(AC-DMs). AC is applied in a reverse order for distribution
matching, i.e., the AC-DM is implemented by an AC decom-
presser and the inverse AC-DM by an AC compresser. A direct
implementation of AC requires infinite-precision arithmetic
(IPA) operations. A large body of research was dedicated
to efficient finite-precision arithmetic (FPA) implementation1

of AC, see e.g. [7]–[11]. An AC-DM for CCDM was first
proposed by Ramabadran in [12] for binary inputs and outputs,
and by Schulte & Böcherer in [2] for larger output alphabets.
CCDM has good-performance and low-complexity for long

1Usually using integer operations.

output sequences, whereas other solutions, e.g., [5], [13], [14]
are usually too complex2 to be used with very long sequences.

In this work, we show how to adapt the technique from [12]
to efficiently implement non-binary AC-DMs. We show that
the FPA implementation decreases the input sequence length,
and that the decrease shrinks exponentially with the number of
precision bits. We also derive necessary conditions to ensure
that an FPA implementation of a CCDM is one-to-one. The
one-to-one property is needed for error-free decoding, but
proving it is challenging because of many rounding operations
performed by the encoding and decoding algorithms. More-
over, we show that the CCDM is not asymptotically optimal
in terms of KL divergence when implemented in FPA. This
however does not significantly affect performance in practice.

The work is organized as follows. Sec. II introduces distri-
bution matching. Sec. III and Sec. IV describe how AC-DMs
are implemented if one could use IPA, and when one uses
FPA. Sec. V shows how to guarantee that an AC-DM is one-
to-one and Sec. VI gives specific results for the CCDM. Sec.
VII applies the ideas to several DMs.

We denote random variables (RVs) by uppercase letters,
such as A, and realizations by lowercase letters, such as a.
A row vector is denoted by a bold symbol, e.g., a. The i-
th entry in the vector a is denoted by ai, and a subvector
[ai, ai+1, · · · , aj ] of a is denoted by aji . The length (dimen-
sion) of a vector is denoted by l(a), e.g., we have a = a

l(a)
1 .

A RV uniformly distributed on a set A is denoted by UA, i.e.,
S ∼ UA means that PS(s) = 1/|A| for s ∈ A.

II. DISTRIBUTION MATCHING

A one-to-one block-to-block DM is an injective function
fDM from binary input sequences u ∈ {0, 1}k to codewords c
from the codebook C:

fDM : {0, 1}k → C ⊆ An (1)

where A is the output alphabet. The ratio R = k
n is called

the matching rate. A higher matching rate for a given output
distribution results in a higher transmission rate. We assume
that the input sequence U is a random vector consisting of
k IID Bernoulli(1/2) distributed bits. The output sequence
of the DM is thus a random vector Ã = fDM(U) ∼ UC
uniformly distributed on C. The goal of the DM is to make

2The memory complexity increases at least linearly with the length of the
sequence.
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its output "look" as if it was a sequence of IID RVs, each
distributed according to a target probability distribution PA.
This is usually performed by minimizing the normalized KL
divergence between the DM’s output Ã and the IID sequence
A ∼ PnA =

∏n
i=1 PA :

1

n
D(PÃ‖PnA) =

1

n

∑
c∈C

1

|C| log2

1
|C|

PnA(c)
. (2)

Different approaches for implementing low-complexity map-
pings fDM that achieve low normalized divergence can be
found, e.g., in [2], [5], [6], [13]–[17].

III. ARITHMETIC CODING BASED DM

An AC-DM maps binary3 input sequences u of length
k to non-binary sequences (codewords) c of length n. The
sequences c are formed by symbols from the output alphabet
A = {a1, . . . , am}, i.e., c ∈ An.

Each input sequence ui, i = 1, . . . , 2k, corresponds to a
distinct point d(ui), i = 1, . . . , 2k, from the interval [0, 1).
On the other hand, each codeword c ∈ An corresponds
to a distinct subinterval I(c) (possibly of zero length) of
the interval [0, 1). The subintervals I(c) are chosen such
that they partition [0, 1), i.e., they are pairwise disjoint and⋃
c∈An I(c) = [0, 1). At the encoder an input data sequence

u is mapped to a codeword c if the point d(u) lines inside
the interval I(c). At the decoder first an interval I(c) is
determined based on the received codeword c. Then, a point
d(u) ∈ I(c) is found and decoded to the sequence u.

Definition 1 Natural m-ary code number. Consider the alpha-
bet A = {a1, . . . , am} and a sequence x ∈ An. The function
NCm(·) returns a natural m-ary code number corresponding
to the sequence x, i.e.,

NCm(x) =

n∑
j=1

(id(xj)− 1)mn−j (3)

where the function id(·) returns the alphabet index of the
symbol, i.e., id(ai) = i, ∀i.

A binary input sequence u ∈ {0, 1}k is mapped to a point
d(u) ∈ [0, 1) via

d(u) =
NC2(u)

2k
. (4)

The codeword’s intervals are ordered lexicographically in
the [0, 1) interval, with the first codeword’s symbol c1 being
the most significant symbol. We consider the lexicographical
ordering of the output alphabet symbols a1 < a2 < . . . <
am. That is, for two codewords c1 ∈ An and c2 ∈ An, if
NCm(c1) < NCm(c2), then I(c1) will be placed somewhere
below I(c2). We describe I(c) by the beginning x(c) and
the width y(c), i.e., I(c) = [x(c), x(c) + y(c)). An interval
I(c) can be computed recursively using a chosen probability
model PC on the codeword’s symbols. PC is usually specified
in terms of the conditional probabilities (also referred to as

3Extensions to larger input alphabet sizes are straightforward.

branching probabilities) of the next symbol given the previous
symbols, i.e., PCi+1|Ci

1
(·|s), where s is a sequence denoting a

prefix of the codeword. The conditional cumulative probability
of a letter c ∈ A is defined as

FCi+1|Ci
1
(c|s) =

∑
a≤c

PCi+1|Ci
1
(a|s) (5)

where a ≤ c refers to the lexicographical ordering of the alpha-
bet’s symbols. Clearly, we have FCi+1|Ci

1
(am|s) = 1 for any

s. For notational convenience we also use FCi+1|Ci
1
(a0|s) = 0

if a0 /∈ A. The computation of the codewords’ intervals can be
performed by iteratively applying equations (7) and (8) below
for i = 0, . . . , n− 1 :

x(λ) = 0, y(λ) = 1 (6)
x(saj)=x(s)+y(s)FCi+1|Ci

1
(aj−1|s), j = 1, . . . ,m (7)

y(saj) = y(s)PCi+1|Ci
1
(aj |s), j = 1, . . . ,m (8)

where λ denotes an empty sequence, and saj denotes a
concatenation of s and aj . The recursive procedure (6)–(8)
gives

x(c) =
∑

c′∈An : c′<c

PC(c′) (9)

y(c) =

n−1∏
i=0

PCi+1|Ci
1
(ci+1|ci1) = PC(c) (10)

where c′ < c refers to the lexicographical ordering of the
codewords.

A one-to-one mapping between data sequences and code-
words can be established if each point d(ui), i = 1, . . . , 2k,
belongs to an interval and if each interval I(c), c ∈ An,
contains at most one point d(u). The first condition follows
because the intervals I(c), c ∈ An, partition the unit interval.
The second condition can be guaranteed by letting the dis-
tance between two adjacent points be greater than the largest
interval, i.e.,

1

2k
≥ max
c∈An

|I(c)| = max
c∈An

|y(c)| = max
c∈An

|PC(c)|. (11)

We are interested in maximizing k and thus we often choose

k = kIPA =

⌊
− log2

(
max
c∈An

|PC(c)|
)⌋

. (12)

IV. FINITE-PRECISION ARITHMETIC IMPLEMENTATION

The above described procedure requires IPA operations in
general, which is infeasible in practice. Ramabadran in [12]
describes how to implement a binary CCDM using FPA.
We adapt this technique to implement a non-binary AC-
DM with an arbitrary model PC . Instead of using the IPA
models PCi+1|Ci

1
, FCi+1|Ci

1
, we use a finite-precision integer4

representation F̂C for the cumulative model FC from (5):

F̂Ci+1|Ci
1
(c|s) =

⌊
ΘFCi+1|Ci

1
(c|s) +

1

2

⌋
(13)

4Bounded integers can be represented using a finite number of bits.



with F̂Ci+1|Ci
1
(a0|s) = 0, since a0 /∈ A. The model P̂C is

defined as

P̂Ci+1|Ci
1
(aj |s) = F̂Ci+1|Ci

1
(aj |s)− F̂Ci+1|Ci

1
(aj−1|s). (14)

Θ is a scaling factor used for the integer representation.
It effectively converts the probability models PC , FC into
frequency-counts models P̂C , F̂C per Θ symbols. Next, we
represent the subsequent intervals appearing in (6)–(8) by
three integer numbers x̂(s), ŷ(s), and L(s). The start x(s)
and width y(s) of the interval will be represented as binary
fractions with L(s) + w bits (w is a fixed parameter that we
choose as described in (21) below)

x(s) =
x̂(s)

2L(s)+w
, y(s) =

ŷ(s)

2L(s)+w
. (15)

The recursive formulas for computing the values x̂(s), ŷ(s),
and L(s) are

x̂(λ) = 0, ŷ(λ) = 2w, L(λ) = 0 (16)

x̂(saj)=

(
x̂(s)+

⌊
ŷ(s)F̂Ci+1|Ci

1
(aj−1|s)

Θ
+

1

2

⌋)
2v (17)

ŷ(saj) =

(⌊
ŷ(s)F̂Ci+1|Ci

1
(aj |s)

Θ
+

1

2

⌋
+

−
⌊
ŷ(s)F̂Ci+1|Ci

1
(aj−1|s)

Θ
+

1

2

⌋)
2v (18)

L(saj) = L(s) + v (19)

where v is chosen such that5

2w ≤ ŷ(saj) < 2w+1. (20)

The parameter w + 1 represents the number of bits used to
represent the mantissa ŷ(saj) of the current interval width
y(saj). The scaling by 2v in (17) and (18) guarantees that
the mantissa ŷ(saj) is at least 2w. This provides sufficient
precision for further subdivisions in (17) and (18) for the next
symbols. Note that (16)–(18) round the interval boundaries
rather than the width. The interval width (18) is simply a
difference between the two boundaries. This ensures that the
original interval is partitioned during each step. Thus, the
codeword intervals I(c), c ∈ An, partition the starting unit
interval. We want to avoid having the intervals disappear due
to the rounding operations, i.e., we require

P̂Ci+1|Ci
1
(aj |s) > 0 =⇒ ŷ(saj) > 0

which will be the case if ŷ(saj)
Θ ≥ 1. This in turn can be

guaranteed by choosing

2w ≥ Θ. (21)

As in the IPA case (11), we guarantee error-free decoding by
choosing

y(c) =
ŷ(c)

2L(c)+w
≤ 1

2k
, ∀c ∈ An. (22)

5If P̂Ci+1|Ci
1
(aj |s) = 0 for certain s, aj , then we may have ŷ(saj) = 0

and a v satisfying (20) can not be found. This does not lead to problems as
the encoder will not produce codewords with the prefix saj (the codeword’s
interval has zero length), so further subdivisions are not needed.

V. BOUNDING THE DISCREPANCY

The above described FPA scheme implements a one-to-
one mapping if (22) is satisfied and the codeword intervals
partition the unit interval. The latter condition is inherently
satisfied by rounding the interval boundaries in (17)–(18)
rather than rounding the interval length. The FPA condition
(22) does not follow from the IPA condition (11). This is
because the intervals computed by the FPA implementation
are approximations of the IPA intervals. The discrepancy
is due to the model rounding (13)–(14) and the rounding
operations during the computation of (16)–(18). To assess the
FPA condition (22) we must bound the rounding error. From
(18) we have

ŷ(saj)

2v
=

⌊
ŷ(s)F̂Ci+1|Ci

1
(aj |s)

Θ
+

1

2

⌋

−
⌊
ŷ(s)F̂Ci+1|Ci

1
(aj−1|s)

Θ
+

1

2

⌋
(23)

≤
ŷ(s)P̂Ci+1|Ci

1
(aj |s)

Θ
+ 1 (24)

where the second line follows by x− 1 < bxc ≤ x and (14).
Dividing both sides by 2L(s)+w and using (15) we get

y(saj) ≤ y(s)
P̂Ci+1|Ci

1
(aj |s)

Θ
+ 2−L(s)−w (25)

≤ y(s)
(
PCi+1|Ci

1
(aj |s) + ε

)
+ 2−L(s)−w (26)

≤ y(s)PCi+1|Ci
1
(aj |s)

(
1 +

ε+ 2−w

PCi+1|Ci
1
(aj |s)

)
(27)

where in the second line we introduced ε to denote the
maximal absolute error between the IPA model PCi+1|Ci

1
and

the rounded model 1
Θ P̂Ci+1|Ci

1
, e.g., ε = 1

2Θ−1 if rounding is
used. The third line follows because y(s) ≥ 2−L(s). Finally,
the length of the interval can be bounded by applying (27) for
all codeword symbols consecutively

y(c) ≤ PC(c)

n−1∏
i=0

(
1 +

ε+ 2−w

PCi+1|Ci
1
(ci+1|ci1)

)
(28)

which results in the bound (22) on the input length becoming

kFPA≤− log2

(
max
c∈An

PC(c)

n−1∏
i=0

(
1 +

ε+ 2−w

PCi+1|Ci
1
(ci+1|ci1)

))
.

(29)
Inequality (29) connects the length kFPA obtained for the FPA
implementation and the length kIPA for the IPA implementation
from (12). Comparing (28) and (10) we observe that the
base intervals can dilate due to the model approximation and
rounding operations. This will effectively reduce the input
length. Using higher precision arithmetic, i.e., larger w and
Θ, results in a lower dilatation.

We emphasize the importance of (29), since checking di-
rectly6 if an AC-DM is one-to-one is not feasible for long

6For example by encoding and decoding all possible input sequences.



sequences. An alternative approach may involve evaluating the
right-hand-side of (29) for some randomly selected codewords
from the codebook of the AC-DM and selecting the lowest
obtained kFPA. This approach guarantees error free decoding
with high probability. Interestingly, kFPA for the CCDM has a
closed form expression. See next section.

We can get a more-restrictive upper bound on kFPA by
decomposing the maximization, i.e.,

kFPA ≤ − log2

(
max

c∈supp(PC)
PC(c)

)
+

− max
c∈supp(PC)

n−1∑
i=0

log2

(
1 +

ε+ 2−w

PCi+1|Ci
1
(ci+1|ci1)

)
︸ ︷︷ ︸

∆k

where supp(PC) = {c ∈ An : PC(c) > 0}. The first term
is the upper bound on kIPA from (12). The latter term is the
input length loss (also called rate-loss) ∆k due to the FPA
implementation of an AC-DM (∆k=0 =⇒ kFPA =kIPA). By
using the identity log2(1 + x) ≤ x log2 e, we get

∆k ≤ (ε+ 2−w)

(
max

c∈supp(PC)

n−1∑
i=0

log2 e

PCi+1|Ci
1
(ci+1|ci1)

)
The rate-loss ∆k shrinks exponentially7 with w, which allows
to keep the rate loss small with reasonable precision.

VI. EFFICIENT IMPLEMENTATION OF THE CCDM
We now turn to designing an FPA CCDM.

Definition 2 Composition and n-type. A composition of a vec-
tor c ∈ An is a vector containing the numbers of occurrences
in c of each of the symbols from the alphabet A. We denote
a composition by

γ(c) := [na1(c), . . . , nam(c)] (30)

where na(c) = |{i : ci = a}| denotes the number of occur-
rences of the symbol a in the sequence c. An n-type QA is a
probability distribution corresponding to the composition γ(c)

QA(a) =
na(c)

n
, a ∈ A. (31)

Example 1. A = {0, 1}, c = [1011],γ(c) = [1, 3] and
QA(0) = 0.25, QA(0) = 0.75.

The CCDM chooses some composition γ = [na1 , . . . , nam ]
and the following model for AC

PC(c) =

{
1
|Tγ | , if c ∈ Tγ
0, otherwise

(32)

where Tγ is a set of length-n sequences with the composition
γ, i.e., Tγ = {c ∈ An : γ(c) = γ}. For the IPA imple-
mentation the input length would be kIPA = blog2 |Tγ |c. The
CCDM’s conditional model is

PCi+1|Ci
1
(aj |s) =

naj − naj (s)

n− i , for aj ∈ A. (33)

7If ε shrinks exponentially which is the case when rounding is used.

The CCDM is an AC-DM with the model (32) and can be
implemented using the FPA implementation presented above.
The CCDM’s conditional probabilities (33) can be represented
exactly8 by choosing Θ = n−i in (13), i.e., Θ is decremented
after each encoded symbol. This way the rounding is avoided
and kFPA from (29) can be bounded by

kFPA≤ log2 |Tγ | −max
c∈Tγ

n−1∑
i=0

log2

(
1 +

2−w

PCi+1|Ci
1
(ci+1|ci1)

)
= log2 |Tγ | −∆k

choose
=⇒ kFPA = blog2 |Tγ | −∆kc (34)

where γ is the composition used by the CCDM. ∆k can
be found analytically for the CCDM, see Theorem 1. This
theorem simplifies the choice of kFPA for an FPA CCDM
and guarantees that the CCDM is one-to-one. We note that
Theorem 1 applies to any composition, i.e., the alphabet’s
symbols can be relabeled such that the theorem’s prerequisites
are satisfied.

Theorem 1 The longest interval for FPA CCDM. Consider an
FPA CCDM using the composition γ = [na1 , . . . , nam ] with
na1 ≤ na2 ≤ . . . ≤ nam . A sequence

z = [a1 . . . a1︸ ︷︷ ︸
na1

a2 . . . a2︸ ︷︷ ︸
na2

. . . am . . . am︸ ︷︷ ︸
nam

], (35)

has the largest upper bound (28) on the interval length among
all sequences in Tγ , or equivalently the interval I(z) can be
the longest after dilution due to the rounding operations. Thus,
the sequence z determines the FPA rate-loss

∆k =

n−1∑
i=0

log2

(
1 +

2−w

PCi+1|Ci
1
(zi+1|zi1)

)
. (36)

Proof. See Appendix.

In [2] the authors consider a one-to-one IPA CCDM that
is asymptotically optimal.9 It turns out that the FPA rate-loss
∆k prevents the asymptotic optimality of a one-to-one FPA
CCDM implemented as above. See Corollary 1.

Corollary 1 One-to-one, FPA CCDM is not asymptotically
optimal. Consider an FPA CCDM with the precision param-
eter w.

1) Suppose CCDM uses the n-type QA. The matching rate
R = kFPA

n of the CCDM satisfies

lim
n→∞

R < H(QA)− log2

(
1 + 2−w

)
. (37)

2) Consider an arbitrary target distribution PA on the out-
put alphabet A, and a CCDM that chooses an arbitrary
n-type QA. Then we have

lim
n→∞

1

n
D(PÃ‖PnA) > log2

(
1 + 2−w

)
. (38)

8From (14), (13), and (5), the rounded model 1
Θ
P̂Ci+1|Ci

1
with Θ = n−i

is equal to the IPA model PCi+1|Ci
1

.
9In short, the optimality means that for a target distribution PA and properly

chosen composition, we have k
n
→ H(PA) and 1

n
D(PÃ‖P

n
A) → 0 as

n→∞, see [2] for more detail.
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Proof. From (34) we have

R =
kFPA

n
≤ 1

n
log2 |Tγ | −

∆k

n
(39)

< H(QA)− log2

(
1 + 2−w

)
(40)

where γ is the corresponding composition. The inequality
1
n log2 |Tγ | < H(QA) follows by the optimality of the IPA
CCDM. Equation (40) follows by (34) with the branching
probabilities bounded by one.

Next, the divergence for the CCDM with the n-type QA is

1

n
D(PÃ‖PnA) = H(QA)− kFPA

n
+ D(QA||PA)

> log2

(
1 + 2−w

)
+D(QA||PA)

where the last step follows by (40).

We remark that the bounds (37) and (38) are not tight and
suffice only to show that the FPA CCDM is not asymptotically
optimal. Tighter bounds can be obtained by evaluating ∆k
using Theorem 1.

VII. RESULTS

A. Optimal m-out-of-n Codes

The paper [12] provides an upper bound on the rate-loss
∆k for a binary CCDM. For the composition γ = [n0, n1],
the bound from [12] is

∆k < log2

(
1 + loge

1

1− 2−(w+1)T

)
for 2−(w+1)T < 1

with

T =
∑

b∈{0,1}

nb

(
1.5772 + loge n1−b +

1

2n1−b

)
.

The optimal codes k = blog2

(
n
m

)
c, can be constructed by

the FPA CCDM only when ∆k < 1. Let nMAX denote the
maximum output sequence length for which ∆k < 1. For
example, [12] approximates nMAX ≈ 2390 for m = n

2 and
w = 14. By using Theorem 1 we obtain a tighter bound,
i.e., nMAX ≈ 4440, see Fig. 1. To verify the result, we built a
CCDM with γ = [1600, 1600] and k = 3193, and successfully
verified the encoding and decoding for 1010 different input
sequences.

B. Low Precision CCDM

We use the algorithm from Sec. IV to implement non-binary
CCDMs with precision parameters w ∈ {6, 12, 18}. The target
distribution is PA(a) ∝ e−0.004a2 for a ∈ A = {1, 3, . . . , 31},
and the CCDM’s composition is chosen to minimize per-
symbol divergence as in [2]. To guarantee that the CCDMs
are one-to-one, we use (34) and Theorem 1 to choose the
maximal possible input length kFPA. The results are presented
in Fig. 2. Due to the low arithmetic precision, the input length
of the CCDM with w=6 does not approach the target entropy
H(PA). Consequently, the normalized divergence for the low-
precision CCDM is bounded away from zero and the CCDM
is not asymptotically optimal.

It is difficult to see the difference in matching rates of the
CCDMs with w=12 and w=18 due to the scale, see Fig. 2a.
However, for long sequences, the divergence of the CCDM
with w = 12 differs from the divergence of the CCDM with
w=18. This happens due to a small (unobservable in Fig. 2a)
difference in matching rates. Finally, the CCDM with w=18
performs as well as an IPA CCDM in the range n ≤ 104.

Theorem 1 is useful for choosing the lowest-complexity
(minimal precision) CCDM for a given target probability and
output length. E.g., for n=100, the CCDMs with w=12 and
w=18 perform as well as the IPA CCDM. For n>1000, the
CCDM with w = 18 has significantly lower divergence. We
observed the trend that longer output sequences and larger
output alphabets require higher precision w to achieve a
performance on par with the IPA CCDM.

VIII. CONCLUSIONS

We showed how to efficiently implement an AC-DM in FPA,
and how to choose the input length for the CCDM to guarantee
error-free decoding. The required input length depends on
the precision of the arithmetic operations performed by the
CCDM implementation. We observe that the precision of
18 bits allows to achieve a performance on par with the
IPA implementation for an alphabet of size 16 and output
sequences of length up to 104 symbols.

APPENDIX A
PROOF OF THEOREM 1

We begin with some lemmas.

Lemma 1 Properties of log2(1 + δx). Consider the function
f(x) = log2 (1 + δx) for δ > 0, x ≥ 0. Then f has the
following properties:

x2 > x1 ≥ 0 =⇒ f(x2)− f(x1) ≤ f(x2 − x1), (41)
x2 ≥ 0, x1 ≥ 0 =⇒ f(x1 + x2) ≤ f(x1) + f(x2), (42)

x1, . . . , xk ≥ 0 =⇒ f

(
k∑
i=1

xi

)
≤

k∑
i=1

f(xi). (43)

Lemma 2 Binary maximizer of the cost function. Consider
real numbers x1 > x2 > . . . > xk ≥ 0 and the function
f(x) = log2 (1 + δx) with 1

x1
≥ δ > 0. Consider a sequence
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Fig. 2. Matching rate and normalized divergence for CCDM with the target distribution PA(a) ∝ e−0.004a2
for a ∈ A = {1, 3, . . . , 31}, and precision

parameter w ∈ {6, 12, 18}.

s ∈ {0, 1}k with composition γ(s) = [n0, n1] where n0 ≤ n1.
Define the cost function

c(s) =
k∑
i=1

f

(
xi

nsi − nsi(si−1
1 )

)
. (44)

Then the maximizer of the cost function is

z = [0 . . . 0︸ ︷︷ ︸
n0

1 . . . 1︸ ︷︷ ︸
n1

] = argmax
s∈{0,1}k : γ(s)=[n0,n1]

c(s). (45)

Furthermore, if n0 < n1 then the maximizer z is unique.

Proof. The proof was removed due to the 6-page limit for
submissions.

Lemma 3 Optimality of a greedy maximizer. Consider a
sequence a ∈ {a1, . . . , am}n = An, a composition γ =
[na1 , . . . , nam ] with

∑n
1 nai = n, and a scalar function

f(x) = log2 (1 + δx) with 1
n ≥ δ > 0. Define the cost function

c(s) =

n∑
i=1

f

(
n+ 1− i

nsi − nsi(si−1
1 )

)
(46)

and consider the optimization

max
s∈An : γ(s)=γ

c(z). (47)

Then the greedy solution z defined below is a global maximizer
of the optimization. The next symbol zi ∈ A is obtained by

zi = argmin
a∈A : na>na(si−1

1 )

na − na(si−1
1 ) (48)

where the constraint ensures that z has the required compo-
sition γ and the chosen zi maximizes the instantaneous cost
increment.

Proof. The proof was removed due to the 6-page limit for
submissions.

Finally, we prove Theorem 1. We are interested in the
solution of

max
c∈Tγ

n∑
i=1

log2

(
1 + 2−w

n+ 1− i
nci − nci(ci−1

1 )

)
. (49)

An FPA implementation of the CCDM requires 2w ≥ n, since
we require 2w ≥ Θ (see (21)) and for CCDM we use Θ =
n − i. This implies 1

n ≥ δ = 2−w > 0. From Lemma 3,
it follows that a greedy optimizer to the above problem is a
global optimizer. Observe that the sequence (35) is a greedy
optimizer.
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