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Abstract—The polarization process of conventional polar codes
in binary erasure channel (BEC) is recast to the Domany-Kinzel
cellular automaton model of directed percolation in a tilted
square lattice. Consequently, the former’s scaling exponent, µ,
can be analogously expressed as the inverse of the percolation
critical exponent, β. Relying on the vast percolation theory litera-
ture and the best known numerical estimate for β, the scaling ex-
ponent can be easily estimated as µperc

num ≃ 1/0.276486(8) ≃ 3.617,
which is only about 0.25% away from the known exponent
computation from coding theory literature based on numerical
approximation, µnum ≃ 3.627. Remarkably, this numerical result
for the critical exponent, β, can be analytically approximated
(within only 0.028%) leading to the closed-form expression for
the scaling exponent µ ≃ 2 + ϕ = 2 + 1.618 . . . ≃ 3.618, where
ϕ , (1 +

√
5)/2 is the ubiquitous golden ratio. As the ultimate

achievable scaling exponent is quadratic, this implies that the
penalty for polar codes in BEC, in terms of the scaling exponent,
can be very well estimated by the golden ratio, ϕ, itself.

I. INTRODUCTION

Polar codes are capacity-achieving codes with an unprece-

dented diagrammatic construction [1]. The latter property,

along with a relatively simple decoding procedure, make polar

codes a popular and attractive candidate for error correction

in the design of state-of-the-art communication systems. For

example, polar codes were recently chosen to encode the

transmission of the control channels in the fifth generation

(5G) cellular standardization.

One important metric of any error-correcting code (ECC)

is its scaling exponent. The scaling exponent, µ, quantifies,

per a given target decoding error probability, how fast a rate-

R code’s blocklength, N , increases as the gap to channel

capacity, C, diminishes, or namely

N ∝ (C −R)−µ. (1)

While the ultimate scaling exponent, achieved by random

binary coding [2], is quadratic, conventional polar codes (i.e.,

using Arikan’s original 2 × 2 binary kernel [1]) approach

capacity rather slowly1. For instance, their scaling exponent for

the binary erasure channel (BEC) was numerically computed,

based on a heuristic eigen-analysis of the polarization operator,

to be about µnum ≃ 3.627 [4]. For such a case, lower and

upper analytical bounds on the scaling exponent were derived,

1A recent discussion on polar code constructions based on l × l binary
polarization kernels with lower scaling exponents can be found in [3].

Fig. 1: The scaling exponent, µ, of conventional polar code in

BEC. The marker � denotes this contribution’s newly derived

analytical approximation, being exactly ϕ above the optimal

value (◦). Also marked for comparison, previous heuristic

numerical computation (�, [4]) and known bounds (⊳,◭, [4]

and ⊲, [5]).

originally in [4] with the upper bound being further improved

in [5], to yield 3.579 ≤ µ ≤ 3.639 (The upper bound for any

binary-input memoryless output-symmetric channel is 4.714,

and it was also conjectured that the lower bound can get tighter

up to the BEC’s scaling exponent [4].) In [4], also another

lower bound, of closed-form nature, was suggested to give

µ ≥ (1− 1
2 log 2 )

−1 ≃ 3.589. However, to date an exact explicit

closed-form analytical expression for the scaling exponent

remains unknown, even for the simple case of transmission

over the BEC.

In this contribution, an analytical closed-form accurate

approximation of the scaling exponent of conventional polar

codes in BEC is explicitly derived to interestingly yield

µ ≃ 2 + ϕ ≃ 3.618, (2)

where

ϕ ,
(1 +

√
5)

2
≃ 1.618 (3)

is the legendary golden ratio. Fig. 1 depicts the derived

approximation (2) w.r.t. the optimal scaling exponent and

aforementioned numerical and bounding results. This closed-

form approximation is shown to be quite precise, beautifully

falling within the relatively narrow allowable range as defined
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by the known bounds, and is only about a quarter percent away

from the heuristic numerical estimate. Furthermore, based

on (2), the main takeaway of this contribution is that the

penalty, or excess, in scaling exponent for conventional polar

codes in BEC, w.r.t. the best possible scaling exponent of 2,

is very well approximated by the golden number ϕ.

The golden ratio, which goes by many names including

the divine proportion, has appeared ubiquitously across the

history of science and art. It dates back to Euclid’s "Elements"

around 300 B.C., 1509’s "De Divina Proportione" written by

Luca Pacioli and illustrated by Leonardo da Vinci, Johannes

Kepler’s triangle (and limit of the ratios of successive terms

of the Fibonacci sequence) around 1600 and even in Dan

Brown’s 2003 best-selling novel, “The Da Vinci Code”. More

on the fascinating history of this mythical number can be

found, for instance, in [6], [7]. It is quite remarkable how this

fundamental number finds its way into polar coding and can

be intimately connected into the intrinsic properties of such a

modern artifact.

The proof of the proposed approximation stems from iden-

tifying a strong resemblance between the notion of channel

polarization from coding theory, which is the ‘magic sauce’

behind the workings of polar codes, and the statistical physics’

concepts of Domany-Kinzel (DK) cellular automaton and

directed percolation (DP) in a two-dimensional grid [8]–

[10]. Percolation theory, in general, describes the behavior of

connected clusters in large random graphs [11]. One of its

evident manifestations is coffee percolation, modeling the way

water filters through the ground beans to deliver the essential

coffee brew. In DP the water is restricted to sink in only along

a certain direction in space. To the best of our knowledge,

this is the first time the DK model of cellular automaton, DP

theory and their universal scaling laws are applied as tools for

analyzing modern ECCs.

II. PROBLEM FORMULATION

Consider the transmission over a BEC(z) with erasure

parameter, z ∈ (0, 1), of a binary polar code of block length

N = 2n generated by Arikan’s 2× 2 kernel, where n ∈ Z
∗ is

the number of channel polarization stages used in the code’s

construction [1]. Under successive cancellation decoding, the

synthetic channel’s erasure parameter polarizes (almost surely)

to {0, 1}-valued random variable Z∞. Furthermore, the evo-

lution of this polarizing erasure parameter, Zn, is known to

be determined by the following closed-form recursion2

Zn+1 =

{

Z2
n, w.p. 1

2 ,

1− (1− Zn)
2, w.p. 1

2 ,
(4)

where Z0 = z.

Let 0 < c < d < 1 be real constants and consider

pn(z, c, d) , Pr(Zn ∈ [c, d]|Z0 = z), (5)

2More about the intricacies of polar codes can be found, for instance, in [1],
[4], [5].

Fig. 2: Binary tree representing (4) and a tilted square grid

corresponding to (8). For a small Z0 = z initialization, the

square grid very well approximates the polarization process’

binary tree.

the probability that the erasure parameter at polarizing stage n
in a BEC(z) gets a value within the range [c, d]. Following (4),

this probability satisfies the recursion rule

pn+1(z, c, d) =
pn(z

2, c, d) + pn(2z − z2, c, d)

2
, (6)

with p0(z, c, d) = 1z∈[c,d].

Now, we seek the limiting rate, µ̃−1 ∈ (0,∞), in which the

probability of having an unpolarized channel (exponentially)

decays to zero, or namely

µ̃−1 , − lim
n→∞

1

n
log2

(

pn(z, c, d)
)

. (7)

A proof that µ̃ = µ, i.e. the reciprocal of the limiting value

of (7) equals the scaling exponent, as defined in (1), can be

found in [4]. In the following section the main result, as stated

in (2), is derived.

III. ANALYTICAL APPROXIMATION

Evidently due to polarization, the decay of the probability

pn(z, c, d) is driven by its limiting behavior in the two extreme

regimes as Zn symmetrically approaches either the noiseless

0 or useless 1 erasure values. Hence, it is sufficient to study

and evaluate the decay of pn(z, c, d), according to (6), in the

regime of Zn → 0.

Based on (4), the random process, Zn, underlying the

channel polarization mechanism exhibited by the polar code in

the BEC, can be clearly represented by a (perfect) binary tree

with a root and n layers, each with 2n nodes. However, this

polarization process’ binary tree, ordinary at first sight, has

a peculiar, yet as we shall see very useful, attribute: As Zn

diminishes, certain adjacent nodes in each layer of the tree

become ‘sticky’ and (almost) indistinguishable, and the tree

(which is by definition an infinite-dimensional lattice) resem-

bles a two-dimensional (tilted) square lattice. This behavior is



Fig. 3: The 1 + 1 DK model. Binary-valued sites in a tilted

square grid are either active (•) or inactive (◦). Examples of

its transition probabilities as defined in (10): 1. si,t+1 = 1
with probability p1 given its adjacent neighbors at time t are

in opposite states. 2. si,t+3 = 0 with probability 1− p2 when

both preceding neighbors are active.

illustrated in Fig. 2 plotting the evolution of the logarithm of

Zn across the polarization stages n.

This attribute can be explained by the fact that in the small

Zn regime, the leading quadratic and linear orders of Z2
n and

2Zn − Z2
n, respectively, dominate, and the recursion rule (4)

can be very well approximated by the simplified recursion rule

Zn+1 =

{

Z2
n, w.p. 1

2 ,

Zn, w.p. 1
2 ,

(8)

where Z0 equals (some small) z.3

Consequently, the recursive tree update rule (6) of the

probability of having an unpolarized channel, pn(z, c, d), can

be approximated via a random process on a square grid with

pn+1(z, c, d) ≃
pn(z

2, c, d) + pn(z, c, d)

2
. (9)

This important observation allows recasting the original polar-

ization problem on a binary tree, from the domain of coding

theory, into a DP analysis in a square grid, well-known as the

DK cellular automaton.

A. Domany-Kinzel Cellular Automaton

A cellular automaton consists of a regular grid of discrete

finite-state sites evolving according to some pre-defined par-

allel update rule with a discrete time variable t ∈ N. The

celebrated Domany-Kinzel (DK) model [8] is a stochastic

cellular automaton defined on a tilted square lattice4, as

3Clearly the trivial recursion Zn → Zn+1 does not support the existence
of the complementary polarization towards 1. This subtlety is addressed and
circumvented in Section III-A.

4Commonly known also as the 1 + 1 DK model as referring to a single
spatial dimension plus a single perpendicular temporal dimension composing
together a two-dimensional square lattice.

Fig. 4: 1+1 DK model phase diagram. The numerical values

of the critical percolation thresholds (p1,c, p2,c), composing

the solid transition line, are taken from [10], [12].

depicted in Fig. 3. The i’th site at time instance t, si,t, in the

square lattice can be either active (occupied), hence si,t = 1,

or inactive (empty), thus si,t = 0.

Referring to the notations in Fig. 3, the DK model evolves

stochastically following the conditional transition probabili-

ties Pr(si,t+1|si−1,t, si+1,t) which depend on two parameters

p1, p2 ∈ [0, 1], where

Pr(si,t+1 = 1|si−1,t = 0, si+1,t = 0) = 0,

Pr(si,t+1 = 1|si−1,t = 1, si+1,t = 0) = p1,

Pr(si,t+1 = 1|si−1,t = 0, si+1,t = 1) = p1,

Pr(si,t+1 = 1|si−1,t = 1, si+1,t = 1) = p2, (10)

and also evidently

Pr(si,t+1 = 0|si−1,t, si+1,t) = 1−Pr(si,t+1 = 1|si−1,t, si+1,t).
(11)

This means a site at time t + 1 in the square grid becomes

active either with probability p2 if its two nearest neighbors

at time t are both active or with probability p1 if only one of

them is active.

In the DK model, and in directed percolation in general,

there are two main merits of interest: (a) The density, ̺, of

active sites in the stationary state of an infinitely large lattice.5

(b) The percolation probability, Pperc, that a single active site

in an empty lattice generates an infinite cluster successfully

percolating to t → ∞.

As expressed in its underlying transition probabilities (10),

the DK model is essentially controlled by the two parameters

p1 and p2 and gives rise to a two-dimensional phase diagram,

as shown in Fig. 4. The active (0 < ̺, Pperc ≤ 1) and inactive

(̺ = Pperc = 0) phases of the DK model are separated by a

5Analogously, ̺ is also the probability that a given site belongs to an infinite
connected cluster that evolved from a fully occupied lattice, si,−∞ = 1, ∀i.



critical line of phase transition points, (p1,c = pc, p2,c), where

pc is known as the percolation threshold.

Although in general the two quantities (a.k.a. order param-

eters) of density of active sites, ̺, and percolation probability,

Pperc, are different, in DP at the vicinity of the critical threshold

line, p1 − pc → 0+, both scale algebraically with the same

critical exponent β, that is

̺ ∝ (p1 − pc)
β , Pperc ∝ (p1 − pc)

β . (12)

Moreover, for the particular case of bond DP, as discussed in

the sequel and in Section III-B, these two order parameters

also have the same scaling factor, and furthermore ̺ = Pperc,

thus can be used interchangeably.

Note that there is a strong numerical evidence in the

percolation theory literature that the critical behaviour along

the entire phase transition line (except for its upper end point

▽), as plotted in Fig. 4, is the same, exhibiting a second-order6

phase transition. This is what is known in percolation theory

as the directed percolation universality class for which the

critical exponent β (12) is identical. Now, as mentioned, there

is one exceptional point at (p1,c = 1/2, p2,c = 1), known as

compact DP [8], [10], and although its misleading name it is

not part of the DP universality class as it exhibits a first-order

phase transition, meaning the density ̺ itself is discontinuous

with a sharp jump from 0 to 1 at p1,c = 1/2, thus in this case

β = 0.7

The DK model includes, as special cases, the classical bond

and site DP. In bond DP, the site si,t+1 is activated with

probability p1 = p ∈ [0, 1] if only one of its nearest neighbors

was active at time t, while it is activated with probability

p2 = 1 − (1 − p)2 = 2p − p2 if both of them were active.

Similarly in site DP, sites instead of bonds, are permeable

with probability p and blocked otherwise, thus p1 = p2 = p.

The percolation threshold of bond (�) and site (�) DP are

denoted in Fig. 4 at the intersection of these (dotted) lines,

expressing the above stated relations between p1 and p2, with

the phase transition (solid) line. The special case of p2 = 0
(•) corresponds to what is known as rule ‘W18’ of Wolfram’s

code of (deterministic) cellular automata [13].

Now, by definition, the average density of active sites at row

t is, ̺t , E(si,t), where E(·) denotes the expectation on the

binary value of an arbitrary site, i, at the (stationary) state t.

6That is ̺ and Pperc are continuous, but their derivatives are discontinuous.
7As a matter of fact, in compact DP the percolation probability, Pperc, no

longer scales similarly to the density, ̺, and an additional critical exponent
β′ = 1 must be introduced.

Then one gets

̺t+1 = Pr(si,t+1 = 1)

= Pr(si,t+1 = 1|si−1,t = 1, si+1,t = 0)×
Pr(si−1,t = 1, si+1,t = 0) +

Pr(si,t+1 = 1|si−1,t = 0, si+1,t = 1)×
Pr(si−1,t = 0, si+1,t = 1) +

Pr(si,t+1 = 1|si−1,t = 1, si+1,t = 1)×
Pr(si−1,t = 1, si+1,t = 1) +

Pr(si,t+1 = 1|si−1,t = 0, si+1,t = 0)×
Pr(si−1,t = 0, si+1,t = 0). (13)

Hence incorporating the conditional transition probabilities of

the 1 + 1 DK model (10), the density can be rewritten as

̺t+1 = Pr(si,t+1 = 1)

= p1 Pr(si−1,t = 1, si+1,t = 0) +

p1 Pr(si−1,t = 0, si+1,t = 1) +

p2 Pr(si−1,t = 1, si+1,t = 1). (14)

Now let us pick a working point p∗1,c = p∗c = (1/2 + ǫ)
(where ǫ → 0+) on the critical threshold line. This point is at

the vicinity of the compact DP point, but resides within the

DP universality class. Avoiding in our analysis the compact

DP point, for which β = 0, resonates with our aim to circum-

vent the trivial recursion, as previously stated in Footnote 3.

Consequently, the recursion rule for the probability of the site

occupancy, in the neighborhood of p∗c in the active phase,

approximately adheres to

Pr(si,t+1 = 1) ≃ 1

2

(

Pr(si−1,t = 1, si+1,t = 0) +

Pr(si−1,t = 1, si+1,t = 1)
)

+
1

2

(

Pr(si−1,t = 0, si+1,t = 1) +

Pr(si−1,t = 1, si+1,t = 1)
)

(15)

=
Pr(si−1,t = 1) + Pr(si+1,t = 1)

2
.

Note the resemblance of the above percolation-related re-

cursion rule on Pr(si,t+1 = 1) (15) with the approximation

of the polarization recursion rule of pn+1(z, c, d) (9) (with

t = n). Since there are 2t+1 − 1
t→∞−−−→ 2t nodes (sites) in

the original binary tree, then the gap from the percolation

probability, p1 = p, to the threshold, pc, can not decay to

zero faster than exponentially with t, namely p − pc ∝ 2−t.

Substituting this diminishing gap into the scaling law of the

DP universality class (12), yields

β = − lim
t→∞

1

t
log2(̺) = − lim

t→∞

1

t
log2(Pperc)

= − lim
t→∞

1

t
log2

(

Pr(si,t = 1)
)

. (16)



Due to the observed similarity in the behavior of percolation’s

Pr(si,t = 1) and polarization’s pn(z, c, d), comparing (16) to

the limiting rate (7), one can conclude to this end, that

β ≃ µ̃−1 = µ−1. (17)

Bear in mind again that the approximation, rather than equal-

ity, in (17) stems from approximating the polarization tree

via a percolating square grid. Hence in order to evaluate the

polar code’s scaling exponent, µ, one can alternatively infer

the percolation critical exponent, β.

Based on the rich literature of DP and past extensive

numerical investigations of the critical exponent, β, one can

already provide a numerical approximation for the scaling

exponent from the viewpoint of the proposed DP approach.

The best known numerical estimate of β in DP literature is

given in [14], to yield

µperc
num ≃ β−1

num ≃
(

0.276486(8)
)−1

≃ 3.617. (18)

Remarkably, relying on the universality of the scaling laws

of DP, one can choose any working point on the phase

transition line (plotted in Fig. 4, and as discussed excluding

the compact DP case). In the following section we choose to

concentrate in bond DP, as a particular instantiation of the

DK model, which lends itself to the derivation of a closed-

form approximation for the scaling exponent, µ, adopting the

analytic route taken in [15].

B. Bond Directed Percolation

In bond DP, bonds in the 1 + 1 square grid (Fig. 3) are

randomly eliminated with probability 1 − p (i.e., in the DK

model’s terminology p1 = p, p2 = 2p−p2). Note again that in

bond DP the stationary site density, ̺, which is the probability

in steady state that a site is active (si,t = 1), is identical to

the percolation probability, Pperc, that at least one site at time

t → ∞ is connected to a single originating site at time t = 0.

In this section we denote these identical probabilities as pi,t.
Thus knowing the configuration of active sites at time t, one

can compute the next configuration at time t+1 according to

the following straightforward probabilistic rule of bond DP

pi,t+1 = p · pi−1,t + p · pi+1,t − p2 · pi−1,tpi+1,t. (19)

Taking expectation with both sides of (19), we get in the

stationary limit

̺(p) = E(si,t) = 2pE(si,t)− p2E(si−1,tsi+1,t). (20)

Assuming a mean-field (MF) approximation, meaning one

only accounts for the single-site probabilities and simply

factorizes the pairwise correlation, namely

E(si−1,tsi+1,t) = E(si,t)
2, (21)

then the density (20) in its MF approximation adheres to the

closed-form expression

̺MF(p) =
2p− 1

p2
. (22)

From (20) we can also rewrite the exact active site density in

terms of its MF approximation

̺MF(p)̺(p) = E(si−1,tsi+1,t). (23)

The average density and pairwise correlation can be written

in terms of their corresponding respective derivatives, denoted

as ρ and ρ2, where

̺(p) ,

∫ p

0

ρ(x)dx, (24)

E(si−1,tsi+1,t) ,

∫ p

0

∫ p

0

ρ2(x1, x2)dx1dx2. (25)

It is well-known that for bond DP the percolation threshold

is about p1,c = pc ≃ 0.6447 [10]. As can be seen from (22),

for p > pc the MF density resides within the O(1) range

[≃ 0.6963, 1]. Hence one can approximate the logarithm of

the left hand side of (23), using (24), as

log
(

̺MF(p)̺(p)
)

= log
(

̺MF(p)

∫ p

0

ρ(x)dx
)

= log
(

̺MF(p)−
∫ 1

p

̺MF(p)ρ(x)dx
)

≃ −
∫ 1

p

̺MF(p)ρ(x)dx. (26)

Similarly, taking the logarithm of the right hand side of (23),

this time with (25), we also get

log
(

̺MF(p)̺(p)) = log

∫ p

0

∫ p

0

ρ2(x1, x2)dx1dx2

≃ −(1−
∫ p

0

∫ p

0

ρ2(x1, x2)dx1dx2)

= −
∫ p

0

∫ 1

p

ρ2(x1, x2)dx1dx2

−
∫ 1

p

∫ 1

0

ρ2(x1, x2)dx1dx2. (27)

Writing the pairwise correlation’s stationary probability

distribution in a form supporting a non-zero probability that

x1 = x2, one gets

ρ2(x1, x2) = ρ̃(x1, x2) + ρ(x1)g(x1)δ(x1 − x2), (28)

where g(x) is defined as the probability that x2 = p,

conditional to its neighbor being x1 = p, and ρ̃(x1, x2)
is the corresponding two-point probability density function

without a point-mass. δ(·) is the Dirac delta function. Now

comparing (26) and (27), utilizing the formulation (28),

immediately yields the approximate relation

̺MF(x)ρ(x) ≃ ρMF(x) + ρ(x)g(x), (29)

where

ρMF(x) ,
d̺MF(x)

dx
= ρ̃(x) =

∫ 1

0

ρ̃(x, x2)dx2. (30)

Rearranging (29), we get that

ρ(x) ≃ ρMF(x)

̺MF(x)− g(x)
. (31)



Now, the density (or interchangeably the percolation prob-

ability) can be approximated as

̺(p) = exp
(

log
(

̺(p)
)

)

= exp
(

log
(

∫ p

0

ρ(x)dx
)

)

= exp
(

log
(

1−
∫ 1

p

ρ(x)dx
)

)

≃ exp
(

−
∫ 1

p

ρ(x)dx
)

≃ exp
(

−
∫ 1

p

ρMF(x)

̺MF(x) − g(x)
dx

)

(32)

, exp
(

−
∫ 1

p

f1(x)

f2(x)
dx

)

, (33)

where in (32) we have applied the approximate relation (31).

From (12) we know that as p → pc, the density ̺ vanishes

according to (p− pc)
β . Hence the function within the integral

in (33), must have a single pole at pc of residue β. This means

that f2(pc) = 0, thus ̺MF(pc) = g(pc), and the residue, which

is the critical exponent, can be obtained from the L’Hôpital’s

rule as

β ≃ f1(x)

df2(x)/dx

∣

∣

∣

x=pc

=
ρMF(pc)

ρMF(pc)− dg(x)/dx|x=pc

. (34)

We have already computed ̺MF(p) explicitly in (22). Thus

taking its derivative w.r.t. p, we find

ρMF(p) =
d̺MF(p)

dp
=

2(1− p)

p3
. (35)

Hence in order to compute β from (34) we are only missing

the expression for g(p).
Here is where the golden ratio comes into action. We first

observe that in bond DP the percolation threshold

pc ≃ 0.6447 ≈ Φ ≃ 0.618, (36)

where

Φ , 1/ϕ = ϕ− 1 (37)

is known as the golden ratio conjugate. We will see how the

relatively crude approximation of the percolation threshold of

bond DP as the golden ratio conjugate in (36), pc ≈ Φ, entails

a remarkable prediction of its critical exponent β.

Now, note that

̺MF(Φ) =
2Φ− 1

Φ2
= Φ = g(Φ). (38)

Hence, for two scalars a and b with a > b for which

̺MF(Φ) ,
b

a
= Φ, (39)

then since these two scalars are in the golden ratio, also

g(Φ) =
a− b

b
= Φ, (40)

which immediately yields the missing explicit expression

g(p) =
(1− p)2

2p− 1
. (41)

Thus now one can also easily compute the derivative

dg(p)/dp|p=Φ, along with ρMF(Φ) from (35), and substitute

them into (34) to get8

β ≃ (2 + 1 + Φ)−1 = (2 + ϕ)−1 ≃ 0.276393. (42)

Note how close (within only 0.028%) is this approximation

to the best known numerically computed estimate βnum =
0.276486(8) from [14]. Using the relation (17), we can finally

conclude

µ = µ̃ ≃ β−1 ≃ 2 + ϕ ≃ 3.618, (43)

which proves the main result (2).

Recapping on the analysis, it consists of two approximation

insights: (a) First, an approximation of the polarization on the

binary tree to directed percolation in a 1 + 1 DK model. (b)

And then applying another approximation based on the golden

number relations to facilitate an analytical, rather than numer-

ical, expression for the 1 + 1 DK model’s critical exponent,

β. Thus it is important to note that the approximation error

in (2) mainly stems from the former, rather than the latter,

approximation concept.

IV. CONCLUSION

The yet unknown, in closed-form, penalty in the scaling

exponent of the conventional polar code in BEC, w.r.t. the

optimal value of 2, achieved by random coding, is analytically

approximated by the golden ratio, which ubiquitously appears

across the history of science, design and art. The derived scal-

ing exponent, born from pure percolation analysis, falls within

the previously known tight analytical bounds and beautifully

approximates numerical estimate.

From a wider viewpoint, to the best of our knowledge this is

the first successful attempt in applying (directed) percolation

theory as a tool for analyzing ECCs, showing that the universal

scaling laws of DP can be effectively utilized in the study of

the intrinsic characteristics of polar codes. We hope it may help

in igniting a proliferation of valuable results in the interface

of percolation theory and coding.
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8In (40) one can alternatively use the golden relation g(Φ) = a/(a +
b) = Φ, to infer a different expression for g(p). However, substituting the
derivative of this second solution, at p = Φ, in (34) interestingly yields the
complementary value β2 = 1−β, which is not a valid solution for the scaling
exponent as resulting in µ < 2. Thus the golden relation (40) was chosen.
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