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Abstract
The Generalized Degrees of Freedom (GDoF) of the two user interference channel

are characterized for all parameter regimes under the assumption of finite precision
channel state information at the transmitters (CSIT), when a limited amount of (half-
duplex or full-duplex) cooperation is allowed between the transmitters in the form
of π DoF of shared messages. In all cases, the number of over-the-air bits that each
cooperation bit buys is shown to be equal to either 0, 1, 1/2 or 1/3. The most interesting
aspect of the result is the 1/3 slope, which appears only under finite precision CSIT
and strong interference, and as such has not been encountered in previous studies
that invariably assumed perfect CSIT. Indeed, the achievability and converse for the
parameter regimes with 1/3 slope are the most challenging aspects of this work. In
particular, the converse relies on non-trivial applications of Aligned Images bounds.
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1 Introduction

As distributed computing applications become increasingly practical there is renewed in-
terest in fundamental limits of cooperative communication in robust settings. Partially
overlapping message sets naturally arise as computing tasks are distributed with some re-
dundancy, e.g., to account for straggling nodes and adverse channel conditions [1]. Studies
of cellular communication with limited backhaul [2], unreliable cooperating links [3], and
variable delay constrained messages [4] lead to similar scenarios as well. An elementary
model for information theoretic analysis of such settings is an interference network with a
limited amount of shared messages between the transmitters. While the body of literature
on information theoretic benefits of cooperative communication is too vast to survey here
(e.g., see [5]), it is notable that robust settings with finite precision CSIT remain under-
explored, especially with limited cooperative capacities. Most closely related to this work
are degrees of freedom (DoF) and generalized degrees of freedom (GDoF) studies in [6–12].
Connections to these prior works are explained in the remainder of this section.

Since exact capacity limits tend to be intractable, Generalized Degrees of Freedom
(GDoF) studies have emerged as an alternative path to progress for understanding the
fundamental limits of wireless networks. Robustness is enforced in GDoF studies by lim-
iting the channel state information at the transmitters (CSIT) to finite precision. Until
recently, a stumbling block for robust GDoF characterizations has been the difficulty of
obtaining tight converse bounds under finite precision CSIT (cf. Lapidoth-Shamai-Wigger
conjecture in [6] and the PN conjecture in [13]). However, the introduction of aligned
images bounds in [7] has made it possible to circumvent this challenge. Building upon this
opportunity, in this work we pursue the the GDoF of the interference channel under finite
precision CSIT with limited cooperation between the transmitters.

Perhaps the most powerful regime for cooperative communication is the strong inter-
ference regime, because the sharing of messages among transmitters allows essentially a
re-routing of messages through stronger channels. However, this regime turns out to be
also the most challenging regime for information theoretic GDoF characterizations under
finite precision CSIT. For example, in [8] the GDoF are characterized for the K user broad-
cast channel obtained by full transmitter cooperation in a K user symmetric interference
channel with partial CSIT levels. Remarkably, while the GDoF are characterized for the
weak interference regime, the strong interference regime remains open. More recently, the
extremal GDoF benefits of transmitter cooperation under finite precision CSIT were char-
acterized in [9] for large interference networks. The benefits of cooperation are shown to
be substantial, but the extremal analysis is again limited to weak interference settings.
Evidently the strong interference regime poses some challenges. To gauge the difficulty of
robust GDoF characterizations in different parameter regimes with limited cooperation,
especially the strong interference regime, in this work we explore the 2-user setting.

The main result of this work is the exact GDoF characterization of the 2 user interfer-
ence channel under finite precision CSIT, when a limited amount of cooperation is allowed
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between the transmitters in the form of π DoF of shared messages. To place this work in
perspective, let us note that the GDoF region for the 2-user broadcast channel (where all
messages are shared) under finite-precision CSIT is found in [10], while the GDoF region
of 2-user interference channel (where no messages are shared) under finite-precision CSIT
is the same as that under perfect CSIT [11]. This work bridges the gap between these two
extremes. Finally, let us recall that under perfect CSIT, Wang and Tse found in [12] that
each bit of cooperation buys either 0, 1 or 1/2 bit over-the-air. In this work, with finite
precision CSIT, for all parameter regimes we show that the number of over-the-air bits
that each bit of transmitter cooperation buys is either 0, 1, 1/2 or 1/3. Remarkably, the
1/3 factor shows up only in the strong interference regime and only under finite precision
CSIT. Indeed, the central contribution of this work, is the strong interference regime which
requires the most sophisticated converse and achievability arguments.

Notation: The notation (x)+ represents max(x, 0). Index set {1, 2, . . . , n} is represented

as [n]. f(x) = o(g(x)) denotes that lim supx→∞
|f(x)|
|g(x)| = 0. Define bxc as the largest integer

that is smaller than or equal to x when x is nonnegative.

2 System Model: Interference Channel with Limited Coop-
eration

Tx1W11,W01

Tx2W22,W02

W01 W02

X1

X2

Y1

Y2

(W11,W01,W02)

(W22,W01,W02)

(Ŵ11, Ŵ01)

(Ŵ22, Ŵ02)

α11

α22

α21

α12

Figure 1: Interference Channel with Limited Cooperation. The rates of cooperative messages
W01,W02 are limited by the cooperation capability π.

The interference channel with limited cooperation is comprised of 4 independent mes-
sages: W11,W22,W01,W02. Messages W11,W22 are the noncooperative messages that orig-
inate at Transmitters 1, 2, and are intended for Receivers 1, 2, respectively. Messages
W01,W02 are the cooperative messages intended for Receivers 1, 2, respectively, with the
distinction that these messages are assumed to be known to both transmitters because
they are shared among the transmitters through the limited conference link. Specifically,
message W01 is sent through the cooperation link by Transmitter 1 to Transmitter 2, and
message W02 is sent through the cooperation link by Transmitter 2 to Transmitter 1.

For GDoF studies, the 2-user interference channel with limited cooperation is described
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by the following input-output relationship.

Y1(t) =
√
Pα11G11(t)X1(t) +

√
Pα12G12(t)X2(t) + Z1(t) (1)

Y2(t) =
√
Pα21G21(t)X1(t) +

√
Pα22G22(t)X2(t) + Z2(t) (2)

During the tth use of the channel, Xi(t) = fi,t(Wii,W01,W02) ∈ C is the symbol sent from
Transmitter i, and is subject to unit transmit power constraint. The symbol observed
by Receiver i is denoted Yi(t) ∈ C, and Zi(t) ∼ NC(0, 1) is the zero mean unit variance
additive white Gaussian noise (AWGN) at Receiver i. The variable P is referred to as
power and represents a nominal parameter that approaches infinity to define the GDoF
limit. The parameters αki ∈ R+ represent the coarse channel strength between Transmitter
i and Receiver k, respectively. To understand the intuition behind the GDoF model, it
is useful to think of αki as the (approximate) capacity of the physical channel between
Transmitter i and Receiver k in a given finite SNR setting that we wish to study. The
GDoF model scales the capacity of every link by the same factor γ = log(P ). Note
that in the GDoF model the capacity of the physical channel between Transmitter i and
Receiver k is approximately αki log(P ). Intuitively, the reason for this proportional scaling
of capacities is the expectation of approximate scale invariance, i.e., when the the capacity
of every link in a network is scaled by the same factor γ, then we expect that the capacity of
the overall network should scale approximately by the same factor γ as well. So normalizing
the capacity of the network by γ = log(P ) yields an approximation to the capacity of the
original finite SNR network; hence the normalization by log(P ) of the rates in the GDoF
definition (see (3)).

The power P and the channel strengths αki are known to all transmitters and receivers.
Gki(t) ∈ C are the channel coefficient values, known perfectly to the receivers. Robustness
is enforced by the assumption that the channel coefficients are only available to transmitters
with finite precision. Recall that under the finite precision CSIT assumption, as defined
in [7], the transmitters are only aware of the probability density functions of the channel
coefficients, and it is assumed that all joint and conditional probability density functions
of channel coefficients exist and are bounded. As in [7], to avoid degenerate conditions,
the channel coefficients are also assumed to be bounded away from 0 and infinity, i.e., all
Gki(t) ∈ [1/∆,∆] for some positive finite constant ∆. The set of all channel coefficient
random variables is denoted G = {Gki(t) | i, k ∈ {1, 2}, t ∈ Z+}.

The rates associated with messagesW11,W22,W01,W02 are denoted asR11, R22, R01, R02,
respectively. The definitions of probability of error, achievable rate tuples (R11, R22, R01, R02),
codebooks and capacity region C are all in the standard Shannon-theoretic sense (see for
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example [14]). The GDoF region is defined as,

D =


(d11, d22, d01, d02) :

∃((R11(P ), R22(P ), R01(P ), R02(P )) ∈ C(P )

s.t. d11 = lim
P→∞

R11(P )
log(P ) , d22 = lim

P→∞
R22(P )
log(P ) ,

d01 = lim
P→∞

R01(P )
log(P ) , d02 = lim

P→∞
R02(P )
log(P )


(3)

The total cooperation capability of the system is fixed by a given parameter π. We
focus in particular on two models for cooperation, half-duplex and full-duplex, represented
by the following assumptions.

Half-duplex Assumption: d01 + d02 ≤ π, (4)

Full-duplex Assumption: d01 ≤
π

2
, d02 ≤

π

2
. (5)

Thus, the half-duplex assumption implies that the capacity of the cooperation link is
limited to π GDoF, which can be divided arbitrarily between the two one-way modes,
while the full-duplex assumption implies that the capacity of the cooperation link is limited
to π

2 , which can be simultaneously utilized in both directions without mutual interference.
Correspondingly, the sum-GDoF value of the interference channel with limited cooperation
is denoted as DΣ,ICLC for the half-duplex model, and as D′Σ,ICLC

for the full-duplex model.
In each case, the sum-GDoF value is the maximum value of d11 + d22 + d01 + d02 across all
(d11, d22, d01, d02) tuples the GDoF region.

2.1 Interference Channel

The interference channel corresponds to the setting with no cooperation, i.e., π = 0, so
there are no cooperative messages W01,W02. In [11], the GDoF region of the interference
channel is characterized under perfect CSIT. As noted in [15], for the 2-user interference
channel, GDoF under finite precision CSIT are the same as that under perfect CSIT. The
sum-GDoF value, denoted DΣ,IC is found to be,

DΣ,IC = min

(
max(α11 − α21, α12) + max(α22 − α12, α21),

max(α11, α12) + (α22 − α12)+,

max(α21, α22) + (α11 − α21)+,

α11 + α22

)
(6)

2.2 Broadcast Channel

The broadcast channel corresponds to unlimited cooperation, i.e., π → ∞, so that only
cooperative messages W01,W02 are needed for the sum-GDoF characterization. The sum-
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GDoF value, denoted DΣ,BC under finite-precision CSIT is found in [10] as,

DΣ,BC = min
(

max(α11, α12) + max(α21 − α11, α22 − α12)+,

max(α21, α22) + max(α11 − α21, α12 − α22)+
)

(7)

Note that unlike the interference channel, the broadcast channel suffers a loss in GDoF
due to finite precision CSIT as compared to perfect CSIT.

2.3 Weak, Mixed and Strong Interference Regimes

The range of values of αki parameters is partitioned into three regimes, labeled weak, mixed
and strong interference. These regimes are defined as follows.

Weak interference: max(α12, α21) ≤ min(α11, α22) (8)

Mixed interference: min(α12, α21) ≤ max(α11, α22),max(α12, α21) ≥ min(α11, α22) (9)

Strong interference: max(α11, α22) ≤ min(α12, α21) (10)

The boundaries between regimes may be considered to belong to either regime.

2.4 Sub-Messages

In the description of the achievable scheme, we partition messages into sub-messages, and
in labeling these sub-messages we use subscripts to indicate transmitter cooperation, while
the superscripts are associated with the decodability of the message. Specifically, if the
subscript contains a 0 then that part of the message is shared between the two transmitters,
otherwise it is not. Similarly, if the superscript is a p then that part of the message is
private, i.e., only decodable at its desired receiver, otherwise it is common, i.e., decodable
by both receivers. Specifically, the noncooperative message Wii and cooperative message
W0i are split into common and private parts, so that Wii = (W c

ii,W
p
ii),W0i = (W c

0i,W
p
0i),

and we have the following sub-messages:
W p

11: Noncooperative private message, encoded by Transmitter 1 and decoded by Receiver 1.

W p
22: Noncooperative private message, encoded by Transmitter 2 and decoded by Receiver 2.

W c
11: Noncooperative common message, encoded by Transmitter 1, decoded by both receivers.

W c
22: Noncooperative common message, encoded by Transmitter 2, decoded by both receivers.

W p
01: Cooperative private message, private part of W01, encoded1 by Transmitter 2, decoded by

Receiver 1.

W p
02: Cooperative private message, private part of W02, encoded by Transmitter 1, decoded by

Receiver 2.

W c
01: Cooperative common message, common part of W01, encoded by both transmitters, decoded

1Note that even though W p
01 is a cooperative message, i.e., it is known to both transmitters and as such

could be jointly encoded by both transmitters, our achievable schemes only require it to be encoded by
Transmitter 2. Similar observation holds for W p

02 as well.
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by both receivers.

W c
02: Cooperative common message, common part of W02, encoded by both transmitters, decoded

by both receivers.

W c
0 : Combination of common parts of W01,W02, i.e., W c

0 = (W c
01,W

c
02).

3 Results

Under the half-duplex model, the sum-GDoF value for the interference channel with lim-
ited transmitter cooperation under finite precision CSIT is characterized in the following
theorem.
Theorem 1. Under the half-duplex model, in the weak and mixed interference regime, we
have

DΣ,ICLC = min
(
DΣ,IC + π,DΣ,BC

)
, (11)

and in the strong interference regime

DΣ,ICLC = min
(
DΣ,IC + π,

D2e + π

2
,
D3e + π

3
,DΣ,BC

)
(12)

where

D2e = α12 + α21 (13)

D3e = min(α21 − α22, α11) + 2 max(α21 − α11, α22) + α12 + max(α12 − α22, α11). (14)

As an immediate corollary, we obtain the minimum value of π needed for the interference
channel to achieve the same sum-GDoF value as the broadcast channel.
Corollary 1. Let π∗ denote the minimum half-duplex cooperation GDoF needed to achieve
the broadcast channel bound. In the strong interference regime with an assumption α12 ≥
α21, π∗ > DΣ,BC −DΣ,IC, and its value is given below

π∗ =


N − 2 max(α11, α22) α12, α21 ≤M,N ≤M + α11

2N −M − 3 max(α11, α22) α12, α21 ≤M,N ≥M + α11

N + α21 − 3 max(α11, α22) α12 ≥M,α21 ≤M
N +M − 3 max(α11, α22) α12 ≥M,α21 ≥M

(15)

where M = α11 +α22, N = α12 +α21. In all other parameter regimes, π∗ = DΣ,BC−DΣ,IC.
Our next result is the sum-GDoF characterization of the interference channel with

limited full-duplex transmitter cooperation, under finite precision CSIT, as presented in
the following theorem.
Theorem 2. Under the full-duplex model, in the weak interference regime, we have

D′Σ,ICLC = min
(
DΣ,IC + π,DΣ,BC

)
, (16)
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in the mixed interference regime we have,

D′Σ,ICLC = min
(
DΣ,IC +

π

2
,DΣ,BC

)
(17)

and in the strong interference regime we have,

D′Σ,ICLC = min
(
DΣ,IC + π,min(α12, α21) +

π

2
,
D3e + π

3
,DΣ,BC

)
(18)

where D3e is the same as in (14).
Similarly, as a corollary we obtain the minimum value of π needed for the interference

channel with full-duplex cooperation to achieve the same sum-GDoF value as the broadcast
channel.
Corollary 2. Let π+ denote the minimum full-duplex cooperation GDoF needed to achieve
the broadcast channel bound. In the weak interference regime, π+ = (DΣ,BC − DΣ,IC). In
the mixed interference regime, π+ = 2(DΣ,BC − DΣ,IC). In the strong interference regime,
where we assume α21 ≤ α12 without loss of generality, the value of π+ is given below

π+ =


2N −M − 3 max(α11, α22) α12, α21 ≤M, 2α21 ≥M + max(α11, α22)
N + α21 − 3 max(α11, α22) α12 ≥M,α21 ≤M,α12 ≤ 2α21 −max(α11, α22)
N +M − 3 max(α11, α22) α12 ≥M,α21 ≥M,α12 ≤ α21 + min(α11, α22)
2α12 − 2 max(α11, α22) otherwise,

(19)

where M = α11 + α22, N = α12 + α21.
To place the results in perspective, let us present some observations and examples.

1. A comparison of Theorem 2 with Theorem 1 reveals that the sum-GDoF of the full-
duplex setting are identical to the half-duplex setting, i.e., for the same amount of
total cooperation capability, with only two exceptions – the mixed interference regime
where the full-duplex bound DΣ,IC + π

2 is different from the half-duplex bound DΣ,IC +
π, and the strong interference regime where the full-duplex bound min(α12, α21) + π

2
is different from the half-duplex bound 0.5(α12 + α21 + π). A notable insight here
is that when either of these bounds is active in the full-duplex setting, then only
one-way cooperation is needed, i.e., half of the cooperation capability is wasted in
the full-duplex setting.

2. The slope of sum-GDoF with respect to π for full-duplex and half-duplex, respectively,
represents how many over-the-air bits are bought with each bit of total cooperation
capability. Based on Theorem 1 and Theorem 2 the slope only takes values 0, 1, 1/2,
or 1/3. Figure 2 shows an example where the slopes 0, 1, 1/2, 1/3 can all be seen.
Note that in Figure 2, half-duplex cooperation has greater slope than full-duplex
cooperation for 0 ≤ π ≤ 0.2, and smaller slope than full-duplex cooperation for
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Figure 2: Sum-GDoF of the interference channel (α11 = 1.2, α22 = 1, α12 = 2, α21 = 1.8) with
limited cooperation for half-duplex and full-duplex settings, under perfect [12] and finite precision
CSIT (this work).

0.6 ≤ π ≤ 1.2. Thus, the incremental benefit from each additional bit of cooperation
capability may be greater for either half-duplex or full-duplex cooperation in different
regimes. Also note that the benefits of cooperation saturate much more quickly under
finite precision CSIT.

3. In general, for both full-duplex and half-duplex settings, each incremental bit of co-
operation capability buys either 0, 1, 1/2 or 1/3 additional over-the-air bit. Compare
this to the findings in [12] for perfect CSIT, where each incremental bit of cooper-
ation capability buys either 0, 1, or 1/2 additional bit over-the-air. The 1/3 slope
appears only under finite precision CSIT and only under strong interference. In fact,
the GDoF bounds with slope 1/3 are the only2 bounds in Theorem 1 and Theorem
2 that do not appear in the perfect CSIT setting studied in [12]. Indeed, the con-
verse and achievability for the parameter regimes where the 1/3 slope appears are
the central contributions of this work.

4. A notable insight here is that when the 1/3 slope appears, it is because each in-
cremental ε increase in GDoF corresponds to an ε increase in the GDoF of each of
the three cooperative messages W p

01,W
p
02,W

c
0 , and a simultaneous ε decrease in the

2Of course, the bound corresponding to the sum-GDoF of the broadcast channel takes different values
under perfect CSIT and finite precision CSIT. Under perfect CSIT, we have DΣ,BC = max(α11 +α22, α12 +
α21), while under finite precision CSIT, the value is given by (7).
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GDoF of each of the two noncooperative messages W11,W22. Therefore, the total
increase in GDoF is ε, while the total increase in the required cooperation capability
is 3ε, which gives us the 1/3 slope.

0 0:5 1 1:5 2 2:5 3 3:5 4 4:5 5

1

2

3

4

5

6

¸ !̀

S
u
m
-G
D
o
F
!̀

Perfect CSIT, ı !1
Finite Precision CSIT, ı !1
Perfect CSIT, ı = 4

Finite Precision CSIT, ı = 4

Perfect CSIT, ı = 2

Finite Precision CSIT, ı = 2

Perfect CSIT, ı = 1

Finite Precision CSIT, ı = 1

Perfect CSIT, ı = 1=3

Finite Precision CSIT, ı = 1=3

Perfect CSIT, ı = 0

Finite Precision CSIT, ı = 0

1

1

¸

¸

Figure 3: Sum-GDoF of the symmetric interference channel (α11 = α22 = 1, α12 = α21 = α) with
limited cooperation for various half-duplex and full-duplex settings, under perfect [12] and finite
precision CSIT (this work).

5. Figure 3 plots the sum-GDoF value of the 2 user interference channel with limited
cooperation under the symmetric setting (α11 = α22 = 1, α12 = α21 = α) for both
half-duplex and full-duplex cooperation models, under both perfect CSIT [12] and
finite-precision CSIT (this work). Note that in this symmetric setting, full-duplex
cooperation and half-duplex cooperation have identical sum-GDoF as a function of
π. This is because the mixed interference regime does not appear in the symmetric
setting, and in the strong interference regime the full-duplex bound min(α12, α21)+ π

2
matches the half-duplex bound 0.5(α12 +α21 +π). Note that there is no cooperation
gain for 2/3 ≤ α ≤ 1, which recovers the results in [10]. Furthermore, for any fixed
cooperation capability π, as α increases, eventually the sum-GDoF with perfect CSIT

10



match the sum-GDoF of finite precision CSIT, as they both converge to 2+π. In fact,
this is true more generally (even with asymmetric settings) in the following sense.
For any fixed values of (π, α11, α22), as the cross-channels α12, α21 become stronger,
the sum-GDoF for both finite precision CSIT and perfect CSIT must converge to
α11 + α22 + π. This is because as the cross-channels become stronger, each receiver
is able to decode all interference and desired signals without interference, so the
sum-GDoF for each user are only limited by the min-cut between its transmitter
and receiver. Thus, the total GDoF of User 1, d1 is only limited by α11 + d01, and
similarly d2 is only limited by α22 + d02, so that the sum-GDoF are only limited by
α11 + α22 + π.

6. From Theorems 1 and 2 we can find the minimum amount of cooperation capability
needed to achieve any given sum-GDoF value. In particular, the minimum amount
of cooperation needed to achieve the same sum-GDoF as with unlimited cooperation,
i.e., DΣ,BC, is specified in Corollaries 1 and 2. Since the DΣ,BC was characterized pre-
viously in [10], a natural question is to gauge the efficiency of the achievable schemes
used in [10]. Since cooperation efficiency is not a concern in [10], understandably the
schemes from [10] that achieve DΣ,BC are in general not the most efficient in terms
of the amount of cooperation needed. This is shown explicitly through the examples
in Figure 5 and Figure 6. Evidently, even for settings where the sum-GDoF are al-
ready known, the most efficient solution in terms of the minimum required level of
cooperation is a non-trivial question that is answered by Theorems 1 and 2.

4 Proof of General Converse

Let us recall some definitions that are needed for aligned images bounds.
Definition 1 (Power Levels). Consider the integer valued random variables Xi over al-
phabet Xλi

Xλi , {0, 1, 2, · · · , P̄
λi − 1} (20)

where P̄ λi , b
√
P λic. We are primarily interested in limits as P → ∞, where P ∈ R+ is

denoted as power. The constant λi refers to the power level of Xi.
Definition 2. Consider integer valued random variables X ∈ Xλ, and any nonnegative
real numbers λ1, λ2 such that 0 ≤ λ1 ≤ λ2 ≤ λ, define

(X)λ2 ,
⌊ X

P̄ λ−λ2

⌋
(21)

(X)λ1 , X − P̄ λ1

⌊ X

P̄ λ1

⌋
(22)

(X)λ2
λ1

,
⌊(X)λ2

P̄ λ1

⌋
(23)
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In other words, (X)λ2 retrieves the top λ2 power levels of X, (X)λ1 retrieves the bottom λ1

power levels of X, (X)λ2
λ1

retrieves the partition of X between levels λ1 and λ2.
Let us prove the outer bounds on the GDoF region of the interference channel with

limited cooperation under finite precision CSIT, for arbitrary levels of cooperation, d01 ≤
π01, d02 ≤ π02. These bounds can then be specialized to obtain the tight converse for both
half-duplex and full-duplex models. As noted previously, with the exception of the bounds
that have slope 1/3 (as a function of π), all other bounds that we need for Theorem 1 and
Theorem 2 also hold under perfect CSIT, so they can be obtained from [12]. However, for
the sake of completeness we will prove all the bounds here.

The bound DΣ,ICLC ≤ DΣ,BC is trivial because full cooperation cannot reduce GDoF.
The bound DΣ,ICLC ≤ DΣ,IC + π01 + π02 is also trivial because d11 + d22 ≤ DΣ,IC and
d01 ≤ π01, d02 ≤ π02 by assumption. These bounds suffice for the weak interference regime
in both half-duplex and full-duplex settings.

Next, let us consider the bounds that are needed for the mixed and strong interference
regimes. Here we will use the Aligned Images bounds approach, starting with the deter-
ministic model of [7] whose GDoF region contains the GDoF region of the original channel
model from above.

Ȳ1(t) = b
√
Pα11−max(α11,α21)G11(t)X̄1(t)c+ b

√
Pα12−max(α12,α22)G12(t)X̄2(t)c (24)

Ȳ2(t) = b
√
Pα21−max(α11,α21)G21(t)X̄1(t)c+ b

√
Pα12−max(α12,α22)G22(t)X̄2(t)c (25)

where X̄i(t) = X̄iR(t) + jX̄iI(t), i ∈ {1, 2}, and X̄1R, X̄1I ∈ {0, 1, 2, · · · , d
√
Pmax(α11,α21)e},

while X̄2R, X̄2I ∈ {0, 1, 2, · · · , d
√
Pmax(α12,α22)e}.

Applying Fano’s inequality and ignoring the o(log(P )) terms that are inconsequential
for GDoF, we have

nR22 + nR02 ≤ I(W22,W02; Ȳ
[n]

2 | G) (26)

≤ H(W22,W02; Ȳ
[n]

2 |W01,G) (27)

= H(Ȳ
[n]

2 |W01,G)−H(Ȳ
[n]

2 |W22,W01,W02,G) (28)

= H(Ȳ
[n]

2 |W01,G)−H((X̄
[n]
1 )α21 |W22,W01,W02,G) (29)

where (29) holds because X̄
[n]
2 is a function of (W22,W01,W02), and Ȳ

[n]
2 is a function of

(X̄
[n]
1 )α21 and (X̄

[n]
2 )α22 because Receiver 2 only hears the top α21 dimensional space of

X̄
[n]
1 and top α22 dimensional space of X̄

[n]
2 above the noise floor. In addition, from Fano’s

12



inequality,

nR11 ≤ I(W11; Ȳ
[n]

1 | G) (30)

≤ I(W11; Ȳ
[n]

1 |W01,W02,W22,G) (31)

≤ H(Ȳ
[n]

1 |W01,W02,W22,G) (32)

= H(b
√
Pα11−max(α11,α21)G

[n]
11 X̄

[n]
1 c |W01,W02,W22,G) (33)

≤ H(b
√
Pα11−max(α11,α21)G

[n]
11 X̄

[n]
1 c, (X̄

[n]
1 )α11 |W22,W01,W02,G) (34)

≤ H((X̄
[n]
1 )α11 |W22,W01,W02,G) + no(log(P )) (35)

where (33) holds because given (W22,W01,W02) and G, Receiver 1 is able to reconstruct X̄
[n]
2

and then subtract b
√
Pα12−max(α12,α22)G

[n]
12 X̄

[n]
2 c from received signal, and the remaining re-

ceived signal at Receiver 1 is b
√
Pα11−max(α11,α21)G

[n]
11 X̄

[n]
1 c. Then (35) holds because con-

ditioned on any value of (X̄
[n]
1 )α11 = b

√
Pα11−max(α11,α21)X̄

[n]
1 c, there can be3 no more than

(∆+2)n possible values of b
√
Pα11−max(α11,α21)G

[n]
11 X̄

[n]
1 c, soH(b

√
Pα11−max(α11,α21)G

[n]
11 X̄

[n]
1 c |

(X̄
[n]
1 )α11 ,W22,W01,W02,G) ≤ n log(∆ + 2) = no(log(P )).
Adding (29) and (33), then applying the Aligned image inequalities (Lemma 1 in [15]),

we have

nR11 + nR22 + nR02 ≤ H(Ȳ
[n]

2 |W01,G)+[
H((X̄

[n]
1 )α11 |W22,W01,W02,G)−H((X̄

[n]
1 )α21 |W22,W01,W02,G)

]
(36)

≤ nmax(α21, α22) log(P ) + n(α11 − α21)+ log(P ). (37)

Similarly,

nR11 + nR22 + nR01 ≤ nmax(α12, α11) log(P ) + n(α22 − α12)+ log(P ). (38)

Dividing both sides in (37) and (38) by n log(P ), and applying the GDoF limit, we obtain
the following GDoF bounds:

d11 + d22 + d02 ≤ max(α21, α22) + (α11 − α21)+ (39)

d11 + d22 + d01 ≤ max(α12, α11) + (α22 − α12)+ (40)

Thus, the following bound is obtained.

DΣ,ICLC ≤ min(max(α21, α22) + (α11 − α21)+ + π01,max(α12, α11) + (α22 − α12)+ + π02)
(41)

3Since bbX̄c ≤ bX̄ = (b/a)aX̄ ≤ (b/a)(baX̄c+ 1) and bbX̄c ≥ bX̄ − 1 = (b/a)(aX̄)− 1 ≥ (b/a)baX̄c− 1,
it follows that given a, b, baX̄c there are no more than |b/a| + 2 possible values for bbX̄c. Also recall that
|G11(t)| ≤ ∆.
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(X1)
α21
δ

C α22
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Ȳ1
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C α22

(X2)
α12
γ

Ȳ2

Figure 4: Power level partitions A,B,C where η = α21−α22, θ = α11+α22−α21, δ = α21−α11, γ =
α12 − α22, X̄1 ∈ Xα21 , X̄2 ∈ Xα12 and α21 ≤ α11 + α22.

This bound is useful in the mixed and strong regimes. Note that in the strong interference
regime, the bound can be simplified as

DΣ,ICLC ≤ min(α21 + π01, α12 + π02). (42)

Finally, consider the strong interference regime, and in particular, the case α12 ≥ α21. The
alternative setting of α12 ≤ α21 will follow similarly. For ease of notation, define

A =

{
(X̄

[n]
1 )α21

α22
α21 ≤ α11 + α22

(X̄
[n]
1 )α21

α21−α11
α21 ≥ α11 + α22

(43)

B =

{
(X̄

[n]
1 )α22

α21−α11
α21 ≤ α11 + α22

0 α21 ≥ α11 + α22
(44)

C = (X̄
[n]
2 )α12

α12−α22
(45)

Figure 4 illustrates the definitions for the case α21 ≤ α11 + α22, where the notation [n]
is omitted for simplicity. The case α21 ≥ α11 + α22 can be shown similarly. Note that if

α21 ≤ α11 +α22, then A represents the top α21−α22 power levels of X̄
[n]
1 , and B represents

the remaining power level partition of X̄
[n]
1 that appears above the noise floor at Receiver

1. Otherwise, if α21 ≥ α11 + α22, then A represents the top α11 levels of X̄
[n]
1 and B is

zero. The combination of A,B is the partition of X̄
[n]
1 that is heard by Receiver 1 above

the noise floor. Note that in both cases, A represents the power level partition of X̄
[n]
1 that

14



is heard above the signal due to X̄
[n]
2 at Receiver 2, i.e.,

H(A | Ȳ [n]
2 ,G) = no(log(P )) (46)

C represents the top α22 power levels of X̄
[n]
2 , which is all that Receiver 2 is able to hear

from Transmitter 2. Note that the sum of power levels of A and C is always less than α12,
which will be important when applying the sum-set inequality.

Because C is a function of W22,W01,W02,

H(C |W22,W02,G)

= I(C;W01 |W22,W02,G) (47)

≤ I(A,C;W01 |W22,W02,G)

= I(A;W01 |W22,W02,G) + I(C;W01 |W22,W02, A,G) (48)

≤ I(A;W01 |W22,W02,G) +H(C |W22,W02, A,G) (49)

Thus,

I(A;W01 |W22,W02,G) ≥ H(C |W22,W02,G)−H(C |W22,W02, A,G) (50)

At the same time, we also have the following bound,

H(C |W22,W02,G) ≥ H(C |W02,G)−H(W22|W02,G) (51)

= H(C |W02,G)−H(W22 | G) (52)

≥ H(C |W02,G)− I(C;W22 |W11,W01,W02,G) (53)

≥ H(C |W02,G)−H(C |W11,W01,W02,G) (54)

= I(C;W11,W01 |W02,G) (55)

= I(C, Ȳ1
[n]

;W11,W01 |W02,G)− I(Ȳ1
[n]

;W11,W01 | C,W02,G) (56)

≥ I(Ȳ1
[n]

;W11,W01 |W02,G) + I(C;W11,W01 | Ȳ1
[n]
,G)

−H(Ȳ1
[n] | C,W02,G) +H(Ȳ1

[n] | C,W11,W01,W02,G) (57)

≥ I(Ȳ1
[n]

;W11,W01 |W02,G)−H(Ȳ1
[n] | C,W02,G) (58)

≥ I(Ȳ1
[n]

;W11,W01 | G)−H(Ȳ1
[n] | C,W02,G) (59)

≥ I(Ȳ1
[n]

;W11,W01 | G)−H(Ȳ1
[n] | C,G) (60)

≥ nR11 + nR01 −H(Ȳ1
[n] | C,G) (61)

Where (57) is because mutual information and entropy are no less than zero. (58) is
because (W11,W01) is independent from W02 and for any three random variables U, V, T ,
if V and T are independent, then

I(U ;V ) ≤ I(U ;V | T ) (62)
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(60) is because conditioning cannot increase entropy.
Next, from Fano’s inequality, we have

nR11 + nR01 ≤ I(W11,W01; Ȳ1
[n] | G) (63)

≤ H(Ȳ1
[n] | G)−H(A,C|W11,W01,G) (64)

≤ H(Ȳ1
[n] | G)−H(A,C|W11,W01,G) (65)

= H(Ȳ1
[n] | G)−H(A |W11,W01,G)−H(C|W11,W01, A,G) (66)

≤ H(Ȳ1
[n] | G)−H(A |W11,W01,G)−H(C|W11,W01, A,W02,G) (67)

= H(Ȳ1
[n] | G)−H(A |W11,W01,G)−H(C |W11,W01,W02,G) (68)

= H(Ȳ1
[n] | G)−H(A |W11,W01,G)− nR22 (69)

= H(Ȳ1
[n] | G)− I(A;W22,W02 |W11,W01,G)− nR22 (70)

≤ H(Ȳ1
[n] | G)− I(A;W22,W02 | G)− nR22 (71)

where (64) is due to the sumset inequality (Theorem 1 in [16]). Rearranging the above
inequality we get

I(A;W22,W02 | G) ≤ H(Ȳ1
[n] | G)− n(R11 +R22 +R01) (72)

Next, applying Fano’s inequality at Receiver 2, we have

nR22 + nR02

≤ I(W22,W02; Ȳ2
[n] | G) (73)

≤ I(W22,W02; Ȳ2
[n]
, A | G) (74)

= I(W22,W02;A | G) + I(W22,W02; Ȳ2
[n] | A,G) (75)

= I(W22,W02;A | G) +H(Ȳ2
[n] | A,G)−H(Ȳ2

[n] | A,W22,W02,G) (76)

= I(W22,W02;A | G) +H(Ȳ2
[n] | A,G)−H(Ȳ2

[n] |W22,W02,G)+

I(Ȳ
[n]

2 ;A |W22,W02,G) (77)

≤ I(W22,W02;A | G) +H(Ȳ
[n]

2 | A,G)−H(A,C |W22,W02,G)+

I(Ȳ
[n]

2 ;A |W22,W02,G) (78)

≤ I(W22,W02;A | G) +H(Ȳ2
[n] | A,G)−H(C | A,W22,W02,G) (79)

where in (78), we used sum-set inequality from Theorem 1 in [16]. Combining (72) and
(79),

H(C | A,W22,W02,G) ≤ H(Ȳ
[n]

1 | G) +H(Ȳ
[n]

2 | A,G)− n(R11 + 2R22 +R01 +R02) (80)
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Combining (50), (61), (80), we have,

I(A;W01 |W22,W02,G) ≥ n(2R11 + 2R22 + 2R01 +R02)

−H(Ȳ
[n]

1 | C,G)−H(Ȳ
[n]

1 | G)−H(Ȳ
[n]

2 | A,G) (81)

Using again the sum-set inequality from Theorem 1 in [16] we have,

H(Ȳ
[n]

2 |W22,W02,G) ≥ H(A,B |W22,W02,G) (82)

Combining (82) with (77), and rearranging the terms we get

H(B |W22,W02, A) ≤ H(A) +H(Ȳ
[n]

2 | A,G)− n(R22 +R02)

−H(A |W22,W02,G) (83)

Message W11 can only be transmitted through A,B because it needs to be successfully
decoded by User 1. Therefore,

nR11 ≤ H(A,B |W22,W02,W01,G) (84)

= H(A |W22,W02,W01,G) +H(B |W22,W02,W01, A,G) (85)

≤ H(A |W22,W02,W01,G) +H(B |W22,W02, A, ,G) (86)

Combining (83) and (86), we get

I(A;W01 |W02,W22,G) ≤ H(A | G) +H(Ȳ
[n]

2 | A,G)− n(R11 +R22 +R02). (87)

Because (87) and (81) are upper and lower bound on the same mutual information, com-
bining them we have

3n(R11 +R22) + 2n(R01 +R02) ≤

H(A | G) + 2H(Ȳ
[n]

2 | A,G) +H(Ȳ
[n]

1 | G) +H(Ȳ
[n]

1 | C,G) (88)

Note that the following bounds hold, with o(log(P )) terms omitted.

H(A | G) ≤ nmin(α21 − α22, α11) log(P ) (89)

H(Ȳ
[n]

2 |A,G) ≤ nmax(α21 − α11, α22) log(P ) (90)

H(Ȳ
[n]

1 | G) ≤ nα12 log(P ) (91)

H(Ȳ
[n]

1 |C,G) ≤ nmax(α12 − α22, α11) log(P ) (92)

Thus, (88) yields the GDoF bound,

3d11 + 3d22 + 2d01 + 2d02 ≤ D3e (93)
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Combining it with the assumption d01 ≤ π01, d02 ≤ π02, we get the bound

DΣ,ICLC ≤
D3e + π01 + π02

3
. (94)

Proceeding similarly, the same bound is obtained for α21 ≥ α12.
At this point, let us list the bounds that we have shown along with the regimes where

they are useful.

Weak Interference Regime:

DΣ,ICLC ≤ min
(
DΣ,IC + π01 + π02,DΣ,BC

)
(95)

Mixed Interference Regime:

DΣ,ICLC ≤ min
(
DΣ,IC + π01 + π02,max(α21, α22) + (α11 − α21)+ + π01,

max(α12, α11) + (α22 − α12)+ + π02,DΣ,BC

)
(96)

Strong Interference Regime:

DΣ,ICLC ≤ min
(
DΣ,IC + π01 + π02, α12 + π02, α21 + π01,

D3e + π01 + π02

3
,DΣ,BC

)
(97)

Next, we show how these bounds provide a tight converse for Theorem 1 as well as
Theorem 2.

4.1 Converse for Theorem 1 and Theorem 2

4.1.1 Weak Interference

First consider the weak interference regime where we apply the bound (95). Setting
π01 + π02 ≤ π for the half-duplex setting we recover the tight converse bound, DΣ,ICLC ≤
min(DΣ,BC,DΣ,IC + π). Similarly, setting π01 ≤ π

2 , π02 ≤ π
2 for the full-duplex setting, we

obtain the tight converse bound, D′Σ,ICLC
≤ min(DΣ,BC,DΣ,IC + π).

4.1.2 Mixed Interference

Next consider the mixed interference regime. The converse for the half-duplex case with
mixed interference is trivial because the bounds are identical to the weak interference
regime. So let us focus on the full-duplex case. It follows from the sum-GDoF under
finite precision CSIT of the broadcast channel (reference [10], summarized in (7)), and the
interference channel without cooperation (reference [10,12], summarized in (6)), that in the
mixed interference regime, there is no cooperation gain, i.e., DΣ,BC = DΣ,IC, when either of
the following conditions holds.
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1. α11 + α22 ≥ α12 + α21

2. min(α11, α22) ≤ min(α12, α21) ≤ max(α12, α21) ≤ max(α11, α22)

In both cases the trivial bound DΣ,ICLC ≤ DΣ,BC is tight. Henceforth in this section we will
only consider the remainder of the mixed interference regime, which excludes α11 + α22 ≥
α12 + α21 and min(α11, α22) ≤ min(α12, α21) ≤ max(α12, α21) ≤ max(α11, α22).

Let us assume without loss of generality that α22 ≤ α11. Next, let us define max(α21, α22)+
(α11 − α21)+ as Λ1, and similarly max(α12, α11) + (α22 − α12)+ as Λ2, so the bound (96)
can be written as:

DΣ,ICLC ≤ min (DΣ,IC + π01 + π02,Λ1 + π01,Λ2 + π02,DΣ,BC)

Now let us show that one of Λ1,Λ2 is equal to DΣ,IC and the other is equal to DΣ,BC. This
will be useful to simplify the bound later. We have the following four cases.

• α21 ≤ α22 ≤ α11 ≤ α12

Λ1 is α11 + α22 − α21 = DΣ,IC, and Λ2 is α12 = DΣ,BC.

• α12 ≤ α22 ≤ α11 ≤ α21

Λ1 is α21 = DΣ,BC, and Λ2 is α11 + α22 − α12 = DΣ,IC.

• α22 ≤ α12 ≤ α11 ≤ α21

Λ1 is α21 = DΣ,BC, and Λ2 is α11 = DΣ,IC.

• α22 ≤ α21 ≤ α11 ≤ α12

Λ1 is α11 = DΣ,IC, and Λ2 is α12 = DΣ,BC.

Next, let us apply the bound (96) to the full-duplex setting (5) which corresponds to
π01 ≤ π

2 , π02 ≤ π
2 . In the mixed interference regime with α11 + α22 ≤ α12 + α21, we have,

D′Σ,ICLC ≤ min (DΣ,IC + π01 + π02,Λ1 + π01,Λ2 + π02,DΣ,BC)

≤ min
(
DΣ,IC + π,DΣ,IC +

π

2
,DΣ,BC +

π

2
,DΣ,BC

)
≤ min

(
DΣ,IC +

π

2
,DΣ,BC

)
Thus, a tight converse for the full-duplex setting is obtained in the mixed interference
regime.
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4.1.3 Strong Interference

Let us apply the bound (97) to the half-duplex setting (4) which corresponds to π01 +π02 ≤
π. Here we have,

DΣ,ICLC ≤ min
(
DΣ,IC + π01 + π02, α12 + π02, α21 + π01,

D3e + π01 + π02

3
,DΣ,BC

)
(98)

≤ min
(
DΣ,IC + π,

α12 + α21 + π01 + π02

2
,
D3e + π

3
,DΣ,BC

)
(99)

≤ min
(
DΣ,IC + π,

α12 + α21 + π

2
,
D3e + π

3
,DΣ,BC

)
(100)

≤ min
(
DΣ,IC + π,

D2e + π

2
,
D3e + π

3
,DΣ,BC

)
(101)

which is the tight converse bound for the half-duplex setting in the strong interference
regime.

Next, let us apply the bound (97) to the full-duplex setting (5) which corresponds to
π01 ≤ π

2 , π02 ≤ π
2 . Here we have,

D′Σ,ICLC ≤ min
(
DΣ,IC + π01 + π02, α12 + π02, α21 + π01,

D3e + π01 + π02

3
,DΣ,BC

)
(102)

≤ min
(
DΣ,IC + π, α12 +

π

2
, α21 +

π

2
,
D3e + π

3
,DΣ,BC

)
(103)

≤ min
(
DΣ,IC + π,min(α12, α21) +

π

2
,
D3e + π

3
,DΣ,BC

)
(104)

which is the tight converse bound for the full-duplex setting in the strong interference
regime. This completes the proof of converse for both Theorem 1 and Theorem 2.

5 Achievability for Weak and Mixed Interference

In this section, we specify the achievable schemes for the weak and mixed interference
regimes, for both the half-duplex setting and the full-duplex setting. Without loss of
generality, we will assume throughout this section that

α11 ≥ α22. (105)

5.1 Weak Interference Regime: max(α12, α21) ≤ min(α11, α22)

We will assume π ≤ DΣ,BC−DΣ,IC. There is no loss of generality in this assumption because
the achievability for π > DΣ,BC − DΣ,IC is the same as that for π = DΣ,BC − DΣ,IC, i.e.,
the upperbound of DΣ,BC is achieved without need for further cooperation. The achievable
schemes for both half-duplex and full-duplex settings are shown in the Table 1. This is
because in the weak interference regime the cooperative messages W01,W02 are combined
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Subcases Codewords’ GDoF and Transmitted Power Received Power

X11 X22 Xc
0 User 1 User 2

α11, α22 ≥ N
π ≤ DΣ,BC −DΣ,IC

= min(α12, α21)

d11 = α11 − α21

E|X11|2 = P−α21

d22 = α22 − α12

E|X22|2 = P−α12

dc0 = π
E|Xc

0|2 =
Diag(1− P−α21 ,

1− P−α12)

Xc
0 :∼ Pα11

X11 :∼ Pα11−α21

X22 :∼ P 0

Xc
0 :∼ Pα22

X22 :∼ Pα22−α12

X11 :∼ P 0

α11 ≥ N
α22 ≤ N
π ≤ DΣ,BC

−DΣ,IC

= α22−
max(α12, α21)

α12 ≥
α21

dp11 = α11 − α21

E|Xp
11|2 = P−α21

dc11 =
α12 + α21 − α22

E|Xc
11|2 =

1− P−dc11

d22 = α22 − α12

E|X22|2 = P−α12

dc0 = π
E|Xc

0|2 =
Diag(P−d

c
11 − P−α21 ,

1− P−α12)

Xc
11 :∼ Pα11

Xc
0 :∼ P−dc11+α11

Xp
11 :∼ Pα11−α21

X22 :∼ P 0

Xc
0 :∼ Pα22

Xc
11 :∼ Pα21

X22 :∼ Pα22−α12

Xp
11 :∼ P 0

α12 ≤
α21

dp11 = α11 − α21

E|Xp
11|2 = P−α21

dc11 = 2α21 − α22

E|Xc
11|2 =

1− P−dc11

d22 = α22 − α21

E|X22|2 = P−α21

dc0 = π
E|Xc

0|2 =
Diag(P−d

c
11 − P−α21 ,

1− P−α21)

Xc
11 :∼ Pα11

Xc
0 :∼ P−dc11+α11

Xp
11 :∼ Pα11−α21

X22 :∼ P 0

Xc
0 :∼ Pα22

Xc
11 :∼ Pα21

X22 :∼ Pα22−α21

Xp
11 :∼ P 0

α11, α22 ≤ N
N + max(α12, α21) ≤M
π ≤ DΣ,BC −DΣ,IC

= M −N −max(α12, α21)

dp11 = α11 − α21

E|Xp
11|2 = P−α21

dc11 =
α12 + α21 − α22

E|Xc
11|2 =

1− P−dc11

dp22 = α22 − α12

E|Xp
22|2 = P−α12

dc22 =
α12 + α21 − α11

E|Xc
22|2 =

1− P−dc22

dc0 = π
E|Xc

0|2 =
Diag(P−d

c
11 − P−α21 ,

P−d
c
22 − P−α12)

Xc
11 :∼ Pα11

Xc
0 :∼ P−dc11+α11

Xc
22 :∼ Pα12

Xp
11 :∼ Pα11−α21

Xp
22 :∼ P 0

Xc
22 :∼ Pα22

Xc
0 :∼ P−dc22+α22

Xc
11 :∼ Pα21

Xp
22 :∼ Pα22−α12

Xp
11 :∼ P 0

Table 1: The achievability for weak interference regime under both half-duplex and full-duplex
settings, where M , α11 + α22, N , α12 + α21, and π ≤ DΣ,BC − DΣ,IC. The received powers of
different codewords at each receiver are specified in decreasing order, which also corresponds to the
successive decoding order at that receiver.

into one common message W c
0 = (W01,W02), which carries dc0 DoF and can be decoded by

both users. Therefore, without loss of generality we can assume d01 = d02 = dc0/2. Since the
total cooperation capability is shared equally in the two directions, there is no distinction
between the half-duplex and full-duplex settings in the weak interference regime.

As shown in Table 1 the achievable schemes are partitioned into three sub-cases. To
complement Table 1, let us explicitly note the sum-GDoF of the interference channel [11]
and the broadcast channel [10] for each sub-case as follows.

• α11, α22 ≥ N
DΣ,IC = M −N , DΣ,BC = M −max(α12, α21).

• α11 ≥ N,α22 ≤ N
DΣ,IC = α11, DΣ,BC = M −max(α12, α21).

• α11, α22 ≤ N
DΣ,IC = min(N,M − max(α12, α21)), DΣ,BC = M − max(α12, α21). Note that if
N + max(α12, α21) > M then there is no cooperation gain as DΣ,IC = DΣ,BC =
M −max(α12, α21). This is why we have the constraint N + max(α12, α21) ≤ M in
the last row of the table.

In order to illustrate how the entries in the table describe the achievable scheme for each
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case, let us explain the last row of the table. The achievability for all other cases follows
from the description in Table 1 in a similar fashion.

In the subcase corresponding to the last row of Table 1, the noncooperative messages
W1 and W2 are both split into private and common components, W11 = (W c

11,W
p
11),

W22 = (W c
22,W

p
22). The submessages W c

11, W p
11, W c

22, W p
22 carry α12 + α21 − α22, α11 −

α21, α12 + α21 − α11, and α22 − α12 GDoF respectively. W p
11,W

c
11,W

p
22,W

c
22 are en-

coded into independent Gaussian codebooks producing codewords Xp
11, X

c
11, X

p
22, X

c
22 with

power levels P−α21 , 1 − P d
c
11 , P−α12 , and 1 − P d

c
22 , respectively. Message W c

0 car-
ries π GDoF and is encoded into the vector Gaussian codeword Xc

0 = (Xc
01, X

c
02) with

covariance matrix Diag(P−d
c
11 − P−α21 , P−d

c
22 − P−α12). The transmitted symbols are

X1 = Xc
11 + Xc

01 + Xp
11, X2 = Xc

22 + Xc
02 + Xp

22. Next let us describe the decoding. User
1 (resp. User 2) decodes Xc

11, X
c
0, X

c
22, X

p
11 (resp. Xc

22, X
c
0, X

c
11, X

p
22) successively. Specif-

ically, for User 1, the received power of Xc
11 is ∼ Pα11 while the interference power is

∼ P−d
c
11+α11 , so that the SINR is ∼ P d

c
11 . Therefore Xc

11 for message W c
11 can be suc-

cessfully decoded. Then User 1 reconstructs and subtracts the contribution of Xc
11 and

starts to decode Xc
0. The desired power for Xc

0 is ∼ P−d
c
11+α11 while the interference

power is Pα12 , so that SINR is ∼ P−dc11+α11−α12 = Pα11+α22−2α12−α21 = PM−N−α12 . Since
dc0 = π ≤ M − N − max(α12, α21) ≤ M − N − α12, it follows that message W c

0 can be
successfully decoded. Proceeding similarly, by using successive interference cancellation,
User 1 can decode Xc

22, X
p
11, X

p
22 in that order for messages W c

22,W
p
11,W

p
22. Note that the

decoding order corresponds to the decreasing order of power levels at the receiver, which
is also the order in which the codewords are listed in the last two columns of Table 1.

5.2 Mixed Interference Regime: min(α12, α21) ≤ max(α11, α22),max(α12, α21) ≥
min(α11, α22)

In the mixed interference regime, as explained in Section 4.1.2, there are only four cases
where a cooperation gain exists. Therefore, the description of achievable schemes in Table
2 shows only these four sub-cases.

The achievability for the full-duplex setting follows by replacing π with π/2. This is
because only one-sided cooperation is needed in the mixed interference regime, i.e., either
W01 or W02 is not used, thereby wasting one-half of the cooperation capability.

To illustrate how the table describes the achievable scheme, let us consider the first
row. In this regime, User 1 is strictly stronger than User 2. Messages W11,W22,W01

carry α11−α21, α22, π GDoF, and they are encoded into independent Gaussian codebooks
X11, X22, X01 with powers P−α21 , 1 − P−α22 , and P−α22 , respectively. The transmitted
signals are X1 = X11, X2 = X22 + X01. User 1 decodes X22 for W22 first, while treating
everything else as noise. For this decoding stage, the desired signal power is ∼ Pα12 while
the interference power is ∼ Pα12−α22 so that SINR is ∼ Pα12 , which gives us the GDoF
value d22 = α22. After successfully decoding W22, Receiver 1 is able to reconstruct the
codeword X22 and subtract its contribution from the received signal. Then it decodes
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Subcases Codeswords’ GDoF and Transmitted Power Received Power

X11 X22 X01 X02 User 1 User 2

α21 ≤ α22 ≤
α11 ≤ α12

π ≤ DΣ,BC −DΣ,IC

= N −M

d11 = α11

−α21

E|X11|2 =
P−α21

d22 = α22

E|X22|2 =
1− P−α22

d01 = π
E|X01|2 =
P−α22

X22 :∼ Pα12

X01 :∼ Pα12−α22

X11 :∼ Pα11−α21

X22 :∼ Pα22

X01 :∼ P 0

X11 :∼ P 0

α12 ≤ α22 ≤
α11 ≤ α21

π ≤ DΣ,BC −DΣ,IC

= N −M

d11 = α11

E|X11|2 =
1− P−α11

d22 = α22

−α12

E|X22|2 =
P−α12

d02 = π
E|X02|2 =
P−α11

X11 :∼ Pα11

X02 :∼ P 0

X22 :∼ P 0

X11 :∼ Pα21

X02 :∼ Pα21−α11

X22 :∼ Pα22−α12

α22 ≤ α12 ≤
α11 ≤ α21

π ≤ DΣ,BC −DΣ,IC

= α21 − α11

d11 = α11

E|X11|2 =
1− P−α11

d02 = π
E|X02|2 =
P−α11

X11 :∼ Pα11

X02 :∼ P 0
X11 :∼ Pα21

X02 :∼ Pα21−α11

α22 ≤ α21 ≤
α11 ≤ α12

π ≤ DΣ,BC −DΣ,IC

= α12 − α11

d11 = α11

E|X11|2
= 1

d01 = π
E|X01|2

= 1

X01 :∼ Pα12

X11 :∼ Pα11

X11 :∼ Pα21

X01 :∼ Pα22

Table 2: The achievability for mixed interference regime under half-duplex setting and full-duplex
setting. It is assumed that π ≤ DΣ,BC − DΣ,IC, because any further cooperation is redundant. The
table also applies to the full-duplex setting, provided that π is replaced by π

2 . This is because one of
W01,W02 is wasted.

the codeword X01 for its message W01 while treating the remaining signal as noise. The
desired power is ∼ Pα12−α22 while interference power is ∼ Pα11−α21 , so that the SINR for
this decoding is ∼ PN−M . Since π ≤ N −M , W01 can be successfully decoded. After
reconstructing and subtracting the contribution of codeword X01, User 1 decodes X11 for
its desired message W11, while treating the remaining signal as noise. The desired signal
power is ∼ Pα11−α21 while interference power is ∼ P 0. Since d11 = α11−α21, message W11

can be successfully decoded. Receiver 2 is able to decode X22 by treating everything else
as noise.

6 Achievability for Strong interference: min(α12, α21) ≥ max(α11, α22)

In this section, we describe the achievable schemes for the strong interference regime, which
are separated into half-duplex and full-duplex settings. The broadcast channel bound for
the strong interference, which is found in [10], is DΣ,BC = α12 +α21−max(α11, α22). In this
section, we no longer assume that α11 ≥ α22. Instead, in the strong interference regime, it
is more convenient to assume α12 ≥ α21 without loss of generality.
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6.1 Half-duplex Setting

Let us begin with an illustrative example where α11 = α22 = 2, α12 = 5, α21 = 3. For this
setting, DΣ,BC = 6 according to [10] and DΣ,IC = 3 according to [11]. Let us consider how
much cooperation is needed in this case to achieve DΣ,BC. The achievable scheme of [10]
summarized in Figure 5, requires π = 6 GDoF of cooperation, i.e., all messages must be
shared between the two transmitters. This is because in order to take advantage of the
strong interference links, the private messages of Users 1 and 2, are sent from opposing
transmitters, i.e., Transmitters 2 and 1, respectively. These are messages W p

01,W
p
02 in

Figure 5. The common message W c
o that is decoded by both users is sent from both

transmitters, so it is shared as well. However, as shown in Theorem 1 in this paper,

X1

W
p
021

Wc
02

X2

W
p
013

Wc
02

2

2

3
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Wc
02

W
p
01 3

Wc
0 2

Y1

(X1)31

X2

W
p
021

Wc
02

Wc
0 2

Y2

X1

(X2)53

Figure 5: The scheme from [10] requires π = 6 GDoF of cooperation to achieve the broadcast
channel bound.

the sum-GDoF of limited cooperation interference channel for this example is DΣ,ICLC =
min(3 + π, 8+π

2 , 13+π
3 , 6). Therefore, π∗ = 5 is the minimum value of cooperative GDoF

needed to achieve the BC bound. The optimally efficient scheme is shown in Figure 6. The
improvement in efficiency comes from the observation that part of the common message
(in this case, W22) can be transmitted from only one transmitter (in this case, Transmitter
2), and therefore requires no cooperation.

The achievable scheme is described as follows: The cooperative messages W01,W02 are
split into a cooperative common4 message W c

0 = (W c
01,W

c
02) and the cooperative private

messages W p
01,W

p
02. Messages W22,W

c
0 ,W

p
01,W

p
02 carry 1, 1, 3, 1 GDoF respectively such

that π = 5. W22,W
p
01,W

p
02 are encoded into independent Gaussian codebooks X22, X

p
01, X

p
02

4The cooperative common message may be arbitrarily divided among the two users, e.g., without loss
of generality, we can assume that half of W c

0 is the desired message for User 1 and the other half of W c
0 is

the desired message for User 2.
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respectively with powers E|X22|2 = 1 − P−1, E|Xp
01|2 = P−2, E|Xp

02|2 = P−2. Message
W c

0 carries 1 GDoF and is encoded to a vector Gaussian codebook Xc
0 = (Xc

01, X
c
02) with

power covariance matrix Diag(1 − P−2, P−1 − P−2). The transmitted symbols are X1 =
Xc

01 + Xp
02, X2 = X22 + Xc

02 + Xp
01. Suppressing the time index for clarity, the received

signals are:

Y1 =
√
P 2G11(Xc

01 +Xp
02) +

√
P 5G12(X22 +Xc

02 +Xp
01) + Z1

Y2 =
√
P 3G21(Xc

01 +Xp
02) +

√
P 2G22(X22 +Xc

02 +Xp
01) + Z2

When decoding, User 1 first decodes X22 for W22 while treating everything else as
Gaussian noise. Since X22 is received at power level ∼ P 5 while all other signals are
received with power levels ∼ P 4 or lower, the SINR for decoding W22 is ∼ P 1, which
gives us the GDoF value d22 = 1. After decoding W22, Receiver 1 is able to reconstruct
codeword X22 and subtract its contribution from the received signal. After this, Receiver 1
decodes the codeword Xc

0 for message W c
0 , while treating the remaining signals as Gaussian

noise. Since the desired signal for this decoding is received with power level ∼ P 4 while
all other signals are received with power levels ∼ P 3 or less, the SINR for decoding W c

0

is ∼ P 1 which gives GDoF value dc0 = 1. Then Receiver 1 subtracts the contribution of
Xc

0 and decodes message W p
01 while treating all other remaining signals as Gaussian noise.

As evident from Figure 6, the SINR for this decoding is ∼ P 3 which gives us GDoF value
dp01 = 3. Receiver 2 proceeds similarly by successively decoding W c

0 ,W22,W
p
02.

X1

W
p
021

Wc
01

X2

W
p
013

Wc
01

W221

2

2

3

5

Wc
01 W

p
01 3

Wc
0 1

W22 1

Y1

(X1)31

X2

W
p
021

Wc
01

Wc
0 1

W22 1

Y2

X1

(X2)53

Figure 6: The optimally efficient achievable scheme achieves the broadcast channel bound with only
π = 5 GDoF of cooperation.

In general, to prove the achievability for the strong interference regime completely,
there are 4 subcases, which cover all possibilities. Note that we assume π ≤ π∗ because
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the achievable scheme for π > π∗ is the same as π = π∗, since π∗ already achieves the
broadcast channel bound.

Case 1: α12 ≤ α11 + α22, α21 ≤ α11 + α22, α12 + α21 ≤ α11 + α22 + max(α11, α22)

X1

W
p
02dp02

W11d11

X2

W
p
01dp01

W22d22

α11

α22

α21

α12

W11d11

W
p
01 dp01

W22 d22

Y1

(X1)
α21
δ

X2

W
p
02dp02

W11d11

W22 d22

Y2

X1

(X2)
α12
γ

Figure 7: Signal partition in the regime α12 ≤ α11 +α22, α21 ≤ α11 +α22, α12 +α21 ≤ α11 +α22 +
max(α11, α22), δ = α21 − α11, γ = α12 − α22.

The sum-GDoF value in this case is characterized as:

DΣ,ICLC = min
(
α21 + π,

α12 + α21 + π

2
,DΣ,BC

)
(106)

• When π ≤ α12−α21, the first bound is tight, which is achieved by havingW11,W22,W
p
01

carry α21−α22, α22, π GDoF respectively. They are encoded into independent Gaus-
sian codebooks producing codewordsX11, X22, X

p
01 with powers E|X11|2 = 1,E|X22|2 =

1−P−α21 ,E|Xp
01|2 = P−α21 . The transmitted signals are X1 = X11, X2 = X22 +Xp

01.
When decoding, User 1 first jointly (acting as the receiver in a multiple access chan-
nel) decodes X11 and X22 while treating everything else as noise, while the noise floor
due to Xp

01 is ∼ Pα12−α21 . The GDoF region for this multiple access channel is the
following.

{(d11, d22) : d11 ≤ α11 + α21 − α12, d11 + d22 ≤ α21}. (107)

Since d11 = α21−α22 ≤ α11+α21−α12, d11+d22 = α21 belongs to the GDoF region of
the multiple access channel, User 1 is able to decode X11, X22 for messages W11,W22.
After this, User 1 subtracts the reconstructed codewords X11, X22 and then decodes
Xp

01. The SINR for this decoding is ∼ Pα12−α21 , such that dp01 = π ≤ α12 − α21 and
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the decoding is successful. User 2 decodes X11, X22 successively. The SINR values for
X11, X22 are ∼ Pα21−α22 ,∼ Pα22 respectively, which give us d11 = α21 − α22, d22 =
α22. Therefore X11, X22 are successfully decoded at User 2.

• When α12 − α21 ≤ π ≤ π∗, where π∗ = α12 + α21 − 2 max(α11, α22) according to
Corollary 1, the second bound is tight and is achieved as follows: W11,W22,W

p
01,W

p
02

carry d11 = (α21 +2α11−α12−π)/2, d22 = α12−α11, d
p
01 = (α12−α21 +π)/2, dp02 =

(α21 − α12 + π)/2 GDoF respectively. They are encoded into independent Gaussian
codewords X11, X22, X

p
01, X

p
02 with powers E|X11|2 = 1 − P−d11−d22 ,E|X22|2 = 1 −

P−d11−d22 ,E|Xp
01|2 = P−d11−d22 ,E|Xp

02|2 = P−d11−d22 . The transmitted symbols are
X1 = X11 + Xp

02, X2 = X22 + Xp
01. When decoding, User 1 decodes X22, X11, X

p
01

successively, The SINRs for these codewords are ∼ Pα12−α11 ,∼ Pα11−α12+d11+d22 =
P d11 ,∼ Pα12−d11−d22 = P d

p
01 respectively. User 2 acts as a multiple access receiver, it

jointly decodes X11 and X22 while treating everything else as noise, where the noise
floor due to Xp

02 is α21 − d11 − d22 = α21−α12+π
2 . Hence the GDoF region for this

multiple access channel is the following.{
(d11, d22) : d22 ≤ α22 −

α21 − α12 + π

2
, d11 + d22 ≤

α12 + α21 − π
2

}
. (108)

Since d22 = α12 − α11 ≤ α22 + max(α11, α22) − α21 = α22 − α21−α12+π∗

2 ≤ α22 −
α21−α12+π

2 , d11 + d22 = α12+α21−π
2 belongs to the GDoF region of the multiple access

channel, the messages W11,W22 can be jointly decoded successfully by User 2. After
this, User 2 subtracts the contribution of X11, X22 and decodes Xp

02, whose SINR

is ∼ Pα21−d11−d22 = P d
p
02 , such that Xp

02 for W p
02 can be successfully decoded. The

signal partitioning is shown in Figure 7. The cooperation capability beyond π∗ is
redundant because with π∗ cooperation the broadcast GDoF are already achieved.

Case 2: α12 ≤ α11 + α22, α21 ≤ α11 + α22, α12 + α21 ≥ α11 + α22 + max(α11, α22)

In this regime, the sum-GDoF value, as characterized in (12), is:

DΣ,ICLC = min
(
α21 + π,

α12 + α21 + π

2
,
α11 + α12 + α21 + α22 + π

3
,DΣ,BC

)
(109)

• When π ≤ α12−α21, the first bound is active. The achievable scheme is the same as
the achievable scheme in Case 1 which achieves the first bound for the corresponding
π value.

• When α21 − α12 ≤ π ≤ 2α11 + 2α22 − α12 − α21, the second bound is active and also
achieved with the same scheme as in Case 1 for corresponding π value.

• When 2α11 +2α22−α12−α21 ≤ π ≤ π∗, where according to Corollary 1 we have π∗ =
2α12+2α21−α11−α22−3 max(α11, α22), the third bound is tight. It is achieved by the

27



X1

W
p
02dp02

Wc
0dc0

W11d11

X2

W
p
01dp01

Wc
0dc0

W22d22

α11

α22

α21

α12

Wc
0dc0

W11d11

W
p
01 dp01

Wc
0 dc0

W22 d22

Y1

(X1)
α21
δ

X2

W
p
02dp02

Wc
0dc0

W11d11

Wc
0 dc0

W22 d22

Y2

X1

(X2)
α12
γ

Figure 8: Signal partition in the regime α12, α21 ≤ α11+α22, α12+α21 ≥ α11+α22+max(α11, α22),
where δ = α21 − α11, γ = α12 − α22.

following: W11,W22,W
p
01,W

p
02 carry (2α21−α12+2α11−α22−π)/3, (2α12−α21+2α22−

α11−π)/3, (α11 +α22 +α12−2α21 +π)/3, (α11 +α22 +α21−2α12 +π)/3 GDoF respec-
tively. They are encoded into independent Gaussian codebooks X11, X22, X

p
01, X

p
02

with powers E|X11|2 = 1 − P−d11 ,E|X22|2 = 1 − P−d22 ,E|Xp
01|2 = P−d11−d22−dc0 =

P (α11+α22−2α12−2α21+π)/3,E|Xp
02|2 = P−d11−d22−dc0 = P (α11+α22−2α12−2α21+π)/3. W c

0

carries (α12 +α21− 2α11− 2α22 +π)/3 GDoF and it is encoded to a vector Gaussian
codebookXc

0 = (Xc
01, X

c
02) with power covariance matrix Diag(P−d11−P (α11+α22−2α12−2α21+π)/3,

P−d22 − P (α11+α22−2α12−2α21+π)/3). The transmitted symbols are X1 = X11 +Xc
01 +

Xp
02, X2 = X22+Xc

02+Xp
01. When decoding, User 1 decodesX22.X

c
0, X11, X

p
01 for mes-

sagesW22,W
c
0 ,W11,W

p
01 successively, whose SINR values are∼ P d22 ,∼ P−d22+α12−α11 =

P d
c
0 ,∼ Pα11−(α11+α22+α12−2α21+π)/3 = P d11 ,∼ Pα12+(α11+α22−2α12−2α21+π)/3 = P d

p
01

respectively. User 2 proceeds similarly by successively decoding W11,W
c
0 ,W22,W

p
02.

See Figure 8 for an illustration.

Case 3: α12 ≥ α11 + α22, α21 ≤ α11 + α22

In this regime, the sum-GDoF value is

DΣ,ICLC = min
(
α21 + π,

2α12 + α21 + π

3
,DΣ,BC

)
(110)

• When π ≤ α12 − α21, the first bound is tight. The achievable scheme is as fol-
lows: W11,W22,W

p
01 carry α21−α22, α22, π GDoF respectively and they are encoded

into independent Gaussian codebooks producing codewords X11, X22, X
p
01 with power

E|X11|2 = 1,E|X22|2 = 1−P−α22 ,E|Xp
01|2 = P−α22 . When decoding, User 1 decodes

X22 first with SINR value ∼ Pα22 . Then, it subtracts the reconstructed codeword
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Figure 9: Signal partition depiction for α12 ≥ α11 + α22, α21 ≤ α11 + α22, where where δ =
α21 − α11, γ = α12 − α22.

X22 and acts as a multiple access receiver to jointly decode X11 and Xp
01. The GDoF

region for this multiple access channel is the following.

{(d11, d
p
01) : d11 ≤ α11, d11 + dp01 ≤ α12 − α22} (111)

Since d11 = α21 − α22 ≤ α11, d11 + dp01 = α21 − α22 + π ≤ α12 − α22 belongs to
the GDoF region, X11, X

p
01 can be successfully decoded at User 1. For User 2, it

successively decodes X11, X22, whose SINR values are ∼ Pα21−α22 = P d11 ,∼ Pα22 =
P d22 respectively. Therefore W11,W22 are decoded successfully decoded at User 2.

• When α12−α21 ≤ π ≤ π∗, where according to Corollary 1 we have π∗ = α12 +2α21−
3 max(α11, α22), the second bound is tight. The achievable scheme is as follows:
Messages W11,W22,W

p
01,W

p
02 carry (2α21 + α12 − 3α22 − π)/3, (3α22 + α12 − α21 −

π)/3, (2α12 − 2α21 + π)/3, (α21 − α12 + π)/3 GDoF respectively. They are encoded
into independent Gaussian codebooks producing codewords X11, X22, X

p
01, X

p
02 with

powers E|X11|2 = 1 − P−d11 ,E|X22|2 = 1 − P−d22 ,E|Xp
01|2 = P−α22 , E|Xp

02|2 =
P−d11−d22−dc0 = P−(2α21+α12−π)/3. W c

0 carries (α21−α12 +π)/3 GDoF and is encoded
into a vector Gaussian codebook Xc

0 = (Xc
01, X

c
02) with power covariance matrix

Diag(P−d11 − P−(2α21+α12−π)/3, P−d22 − P−α22). The transmitted symbols are X1 =
X11 + Xc

01 + Xp
02, X2 = X22 + Xc

02 + Xp
01. When decoding, User 1 decodes W22,W

c
0

successively while treating everything else as noise. Their SINR values are ∼ P d22 ,∼
Pα22−d22 = P d

c
0 . After this, User 1 subtracts the reconstructed codewords X22, X

c
0.

Then it acts as a multiple access receiver to jointly decode W11 and W p
01 while treating
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the remaining signal as noise. The GDoF region for this multiple access channel is
the following.

{(d11, d
p
01) : d11 ≤ α11, d11 + dp01 ≤ α12 − α22} (112)

Since d11 = (2α21+α12−3α22−π)/3 ≤ α21−α22 ≤ α11, d11+dp01 ≤ α12−α22 belongs to
this GDoF region, it follows thatW22,W

c
0 can be successfully decoded. User 2 decodes

X11, X
c
0, X22, X

p
02 successively, whose SINR values are ∼ P d11 ,∼ Pα21−d11−α22 =

P d
c
0 ,∼ Pα22−α21+(2α21+α12−π)/3 = P d22 ,∼ Pα21−(2α21+α12−π)/3 = P d

p
02 respectively.

See Figure 9 for an illustration. Note that cooperation capability beyond π∗ is re-
dundant because with π∗ cooperation the broadcast GDoF are already achieved.

Case 4: α12 ≥ α11 + α22, α21 ≥ α11 + α22

X1

W
p
02dp02

Wc
0dc0

W11d11

X2

W
p
01dp01

Wc
0dc0

W22d22

α11

α22

α21

α12
Wc

0dc0

W11d11

W
p
01 dp01

Wc
0 dc0

W22 d22

Y1

(X1)
α21
δ

X2

W
p
02dp02

Wc
0dc0

W11d11

Wc
0 dc0

W22 d22

Y2

X1

(X2)
α12
γ

Figure 10: Signal partition in the regime α12, α21 ≥ α11 +α22, where δ = α21−α11, γ = α12−α22.

In this regime, we have

DΣ,ICLC = min
(
α11 + α22 + π,

2α12 + 2α21 − α11 − α22 + π

3
,DΣ,BC

)
(113)

• When π ≤ α21 − α11 − α22, the first bound is active, which is achieved by letting
W11,W22,W

p
02 carry α11, α22, π GDoF respectively. They are encoded into indepen-

dent Gaussian codebooks X11, X22, X
p
02 with power E|X11|2 = 1− P−α11 ,E|X22|2 =

1,E|Xp
02|2 = P−α11 . The transmitted symbols are X1 = X11 + Xp

02, X2 = X22.
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When decoding, User 1 decodes X22, X11 successively, whose SINR values are ∼
Pα12−α11 ,∼ Pα11 respectively. Since d22 = α22 ≤ α12 − α11, d11 = α11, mes-
sages W22,W11 can be decoded successfully. User 2 decodes X11, X

p
02, X22 succes-

sively, whose SINR values are ∼ Pα11 ,∼ Pα21−α11−α22 ,∼ Pα22 respectively. Since
d11 = α11, d

p
02 = π ≤ α21 − α11 − α22, d22 = α22, messages W11,W

p
02,W22 can be

decoded successfully.

• When α21−α11−α22 ≤ π ≤ α12 +α21−2α11−2α22, the first bound is still active and
is achieved by letting W11,W22,W

p
01,W

p
02 carry α11, α22, π + α11 + α22 − α21, α21 −

α11−α22 GDoF respectively. They are encoded into independent Gaussian codebooks
X11, X22, X

p
01, X

p
02 with power E|X11|2 = 1− P−α11 ,E|X22|2 = 1− P−α22 ,E|Xp

01|2 =
P−α22 ,E|Xp

02|2 = P−α11 . The transmitted symbols are X1 = X11 + Xp
02, X2 =

X22 +Xp
01. When decoding, User 1 decodes X22, X

p
01, X11 successively, whose SINR

values are ∼ Pα22 ,∼ Pα12−α22−α11 ,∼ Pα11 respectively. Since d22 = α22, d
p
01 =

π + α11 + α22 − α21 ≤ α12 − α22 − α11, d11 = α11, X22, X
p
01, X11 can be decoded

successfully. User 2 proceeds similarly by decoding X11, X
p
02, X22 successively.

• When α12 + α21 − 2α11 − 2α22 ≤ π ≤ π∗, where according to Corollary 1 we have
π∗ = α12 + α21 + α11 + α22 − 3 max(α11, α22), the second bound is tight. It is
achieved as follows: W11,W22,W

p
01,W

p
02 carry (α12 +α21− 2α22 +α11− π)/3, (α12 +

α21 − 2α11 + α22 − π)/3, (2α12 + π − α11 − α22 − α21)/3, (2α21 + π − α11 − α22 −
α12)/3 GDoF respectively and are encoded into independent Gaussian codebooks
X11, X22, X

p
01, X

p
02 with powers E|X11|2 = 1−P−d11 ,E|X22|2 = 1−P−d22 ,E|Xp

01|2 =
P−α22 ,E|Xp

02|2 = P−α11 . W c
0 carries (2α11 + 2α22 + π − α12 − α21)/3 GDoF and is

encoded into a vector Gaussian codebook Xc
0 = (Xc

01, X
c
02) with power covariance

matrix Diag(P−d11 − P−α11 , P−d22 − P−α22). The transmitted symbols are X1 =
X11 +Xc

01 +Xp
02, X2 = X22 +Xc

02 +Xp
01. User 1 decodes W22,W

c
0 successively while

treating everything else as noise, whose SINR values are ∼ P d22 ,∼ Pα22−d22 = P d
c
0

respectively. After this, User 1 subtracts the contribution of codewords X22, X
c
0 and

then acts as a multiple access receiver by jointly decoding W11 and W p
01 while treating

the remaining signals as noise. The GDoF region for this multiple access channel is
the following.

{(d11, d
p
01) : d11 ≤ α11, d11 + dp01 ≤ α12 − α22} (114)

Since d11 = (α12 + α21 − 2α22 + α11 − π)/3 ≤ (α12 + α21 − 2α22 + α11 − (α12 +
α21 − 2α11 − 2α22))/3 ≤ α11, d11 + dp01 = α12 − α22 belongs to the GDoF region,
W11,W

p
01 can be decoded successfully. User 2 proceeds similarly. See Figure 10 for

an illustration.
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6.2 Full-duplex Setting

In this section we consider the achievability for the full-duplex setting. Before presenting
the complete proof, let us use our example (α11 = α22 = 2, α12 = 5, α21 = 3) to convey the
main insights. Here we have D′Σ,ICLC

= min(3+π, 3+ π
2 ,

13+π
3 , 6). The bounds DΣ,IC +π and

D3e+π
3 are redundant. To achieve the broadcast channel bound (DΣ,BC = 6), the GDoF in

the conference link is π = 6, which means our proposed scheme is no more efficient than [10].
This is because in our scheme, dc0 = 1, dp01 = 3, dp02 = 1, which requires π

2 ≥ d
p
01 = 3. Hence

1 DoF in the W02 conference link is wasted because d02 ≤ dp02 + dc0 = 2. We can see that
under full-duplex setting, one cooperation link is fully wasted in the mixed interference
regime, but in the strong interference regime, one cooperation link is partially wasted.

In the full-duplex setting, first of all, the achievable schemes even for one cooperative
bit to buy one over-the-air bit or half over-the-air bit become nontrivial as one of the
cooperation links is partially wasted for some π values. Hence we will discuss it in a bit
more detail. On the other hand, the achievable scheme for achieving the 1/3 bound (when
the bound is active) in the full-duplex setting is the same as the corresponding scheme for
half-duplex setting. In general, we also consider the 4 cases. Similarly, π ≤ π+ is assumed.

Case 1: α12 ≤ α11 + α22, α21 ≤ α11 + α22, α12 + α21 ≤ α11 + α22 + max(α11, α22)

In this regime, the sum-GDoF is

D′Σ,ICLC = min
(
α21 +

π

2
,DΣ,BC

)
(115)

• When π
2 ≤ α12−α21, the first bound is active. The achievability is the same as Case

1 in the half-duplex setting to achieve the first bound, except dp01 = π/2 here.

• When α12 − α21 ≤ π
2 ≤

π+

2 , where according to Corollary 2 we have π+ = 2α12 −
2 max(α11, α22), the first bound is still active and is achieved by lettingW11,W22,W

p
01,W

p
02

carry α11 − π
2 , α12 −α11,

π
2 ,

π
2 +α21 −α12 GDoF respectively. They are encoded into

independent Gaussian codebooks producing codewords X11, X22, X
p
01, X

p
02 with pow-

ers E|X11|2 = 1−P−d11−d22 ,E|X22|2 = 1−P−d11−d22 ,E|Xp
01|2 = P−d11−d22 ,E|Xp

02|2 =
P−d11−d22 . The transmitted signals are X1 = X11 + Xp

02, X2 = X22 + Xp
01. When

decoding, Receiver 1 uses successive interference cancellation to decode X22, X11, X
p
01

successively, whose SINR values are∼ Pα12 ,∼ Pα11−α12+d11+d22 = P d11 ,∼ Pα12−d11−d22 =
P
π
2 . Therefore, W22,W11,W

p
01 can be successfully decoded. User 2 acts as a multiple

access receiver, it jointly decodes X11 and X22, while the noise floor due to Xp
02 is

Pα21−α12+π
2 , the GDoF region for this multiple access channel is the following.

{(d11, d22) : d22 ≤ α22 − (α21 − α12 +
π

2
), d11 + d22 ≤ α12 −

π

2
} (116)
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Since d22 = α12 − α11 ≤ α22 − α21 + max(α11, α22) = α22 − (α21 − α12 + π+

2 ) ≤
α22 − (α21 − α12 + π

2 ), d11 + d22 = α12 − π
2 = α21 − dp02, W22,W11 can be decoded

successfully. Then User 2 subtracts the contribution of X11, X22 and decodes Xp
02,

whose SINR is ∼ Pα21−d11−d22 = P d
p
02 , so W p

02 is decoded successfully.

Case 2: α12 ≤ α11 + α22, α21 ≤ α11 + α22, α12 + α21 ≥ α11 + α22 + max(α11, α22)

• 2α21 ≤ α11 + α22 + max(α11, α22)
In this regime, the sum-GDoF value is

D′Σ,ICLC = min
(
α21 +

π

2
,DΣ,BC

)
(117)

– When π
2 ≤ α11 + α22 − α21, the first bound is active. The achievability is the

same as in Case 1 above to achieve the first bound for the corresponding π value.

– When α11 +α22−α21 ≤ π
2 ≤

π+

2 , where according to Corollary 2 we have π+ =
2α12 − 2 max(α11, α22), the first bound is still active and is achieved by letting
W11,W22,W

p
01,W

p
02,W

c
0 carry α11− π

2 , α12−α21 +α22− π
2 ,

π
2 , α21−α12 + π

2 , α21−
α11 − α22 + π

2 GDoF respectively. Messages W11,W22,W
p
01,W

p
02 are encoded

into independent Gaussian codewords X11, X22, X
p
01, X

p
02 with powers E|X11|2 =

1−P−d11 ,E|X22|2 = 1−P−d22 ,E|Xp
01|2 = Pα11−α12−d11 ,E|Xp

02|2 = Pα22−α21−d22 ,
respectively. Message W c

0 is encoded into a vector Gaussian codeword Xc
0 =

(Xc
01, X

c
02) with covariance matrix Diag(P−d11−Pα22−α21−d22 , P−d22−Pα11−α12−d11).

The transmitted symbols are X1 = X11 + Xc
01 + Xp

02, X1 = X22 + Xc
02 + Xp

01.
When decoding, User 1 decodes X22, X

c
0, X11, X

p
01 successively, with SINR values

∼ P d22 ,∼ Pα12−α11−d22 = P d
c
0 ,∼ P d11 ,∼ Pα11−d11 = P

π
2 = P d

p
01 , respectively.

Therefore W22,W
c
0 ,W11,W

p
01 can be successfully decoded at User 1. User 2 pro-

ceeds similarly by decoding X11, X
c
0, X22, X

p
02 successively. The signal partition

depiction is similar to Figure 8 except that codewords’ power levels are changed.
It can be checked that d01 = dp01 = π

2 , d02 = dp02+dc0 = 2α21−α12−α11−α22+π ≤
2α21 − α12 − α11 − α22 + π+

2 + π
2 ≤ 2α21 − α11 − α22 −max(α11, α22) + π

2 ≤
π
2 .

• 2α21 ≥ α11 + α22 + max(α11, α22)
The sum-GDoF value in this regime is

D′Σ,ICLC = min
(
α21 +

π

2
,
α11 + α12 + α21 + α21 + π

3
,DΣ,BC

)
(118)

– When π
2 ≤ α11 + α22 + α12 − 2α21, the first bound is active. The achievable

scheme is identical to 2α21 ≤ α11 + α22 + max(α11, α22) for the same π value.

– When α11 +α22−2α12 +α21 ≤ π
2 ≤

π+

2 , where according to Corollary 2 we have
π+ = 2α12 + 2α21 − α11 − α22 − 3 max(α11, α22), the second bound is active,
whose achievability is the same as the achievable scheme for the corresponding
bound in Case 2 in the half-duplex setting.
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Case 3: α12 ≥ α11 + α22, α21 ≤ α11 + α22

• α12 ≥ 2α21 −max(α11, α22)
In this regime, the sum-GDoF value is

D′Σ,ICLC = min
(
α21 +

π

2
,DΣ,BC

)
(119)

– When π
2 ≤ α12 − α21, the first bound is tight, and its achievability is identical

to first bound in Case 3 under the half-duplex setting except dp01 = π
2 here.

– When α12 − α21 ≤ π
2 ≤

π+

2 , where according to Corollary 2 we have π+ =
2α12−2 max(α11, α22), the first bound is active and is achieved as follows: Mes-
sages W11,W22,W

p
01,W

p
02 carry α12 − α22 − π

2 , α22 + α12 − α21 − π
2 ,

π
2 , α21 −

α12 + π
2 GDoF respectively. They are encoded into independent Gaussian code-

words X11, X22, X
p
01, X

p
02 with powers E|X11|2 = 1 − P−d11 ,E|X22|2 = 1 −

P−d22 ,E|Xp
01|2 = P−α22 ,E|Xp

02|2 = P−d11−d22−dc0 = P−α12+π
2 . W c

0 carries α21 −
α12 + π

2 GDoF and is encoded into a vector Gaussian codebook Xc
0 = (Xc

01, X
c
02)

with covariance matrix E|Xc
0|2 = Diag(P−d11 − P−α12+π

2 , P−d22 − P−α22). The
transmitted symbols are X1 = X11 +Xc

01 +Xp
02, X2 = X22 +Xc

02 +Xp
01. When

decoding, User 1 decodes X22, X
c
0 successively while treating everything else as

noise. The SINR values for X22, X
c
0 are ∼ P d22 ,∼ Pα22−d22 = P d

c
0 respectively.

After subtracting the contribution of X22, X
c
0, it jointly decodes X11 and Xp

01.
The GDoF region for this multiple access channel is the following.

{(d11, d
p
01) : d11 ≤ α11, d22 + dp01 ≤ α12 − α22} (120)

Since d11 = α12 − α22 − π
2 ≤ α12 − α22 − π+

2 = max(α11, α22)− α22 ≤ α11, d11 +
dp01 = α12 − α22 belongs to the GDoF region of the multiple access channel,
W11,W

p
01 can be decoded successfully. User 2 successively decodesX11, X

c
0, X22, X

p
02,

whose SINR values are∼ P d11 ,∼ Pα21−d11−α22 = Pα21−α12+π
2 = P d

c
0 ,∼ Pα22−α21+α12−π2 =

P d22 ,∼ Pα21−α12+π
2 = P d

p
02 respectively. The signal partition depiction is simi-

lar to Figure 9 except that the codewords’ power levels are changed. Note that
d01 = dp01 = π

2 , d02 = dp02 + dc0 = 2α21 − 2α12 + π ≤ 2α21 − 2α12 + π+

2 + π
2 =

2α21 − α12 −max(α11, α22) + π
2 ≤

π
2 .

• α12 ≤ 2α21 −max(α11, α22)
In this regime, the sum-GDoF value is

D′Σ,ICLC = min
(
α21 +

π

2
,
2α12 + α21 + π

3
,DΣ,BC

)
(121)

– When π
2 ≤ 2α12 − 2α21, the first bound is active. The achievable schemes are

identical to those for α12 ≥ 2α21 −max(α11, α22) for the same π value.
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– When 2α12 − 2α21 ≤ π
2 ≤

π+

2 , where according to Corollary 2 we have π+ =
α12 + 2α21 − 3 max(α11, α22), the second bound is active, and its achievability
is the same as the corresponding 1/3 factor bound scheme in Case 3 of the
half-duplex setting.

Case 4: α12 ≥ α11 + α22, α21 ≥ α11 + α22

Regimes Codewords’ GDoF and Corresponding Power
Received Power

User 1 User 2

α12 ≥M,
α21 ≥M,
α12 ≥ α21+

min(α11, α22)
(α12 ≥ α21 is

assumed)

π
2 ≤ α21 −M
DΣ,ICLC = M + π

X11 : d11 = α11,E|X11|2 = 1− P−α11

X22 : d22 = α22,E|X22|2 = 1− P−α22

Xp
01 : dp01 = π

2 ,E|Xp
01|2 = P−α22

Xp
02 : dp02 = π

2 ,E|Xp
02|2 = P−α11

X22 :∼ Pα12

Xp
01 :∼ Pα12−α22

X11 :∼ Pα11

Xp
02 :∼ P 0

X11 :∼ Pα21

Xp
02 :∼ Pα21−α11

X22 :∼ Pα22

Xp
01 :∼ P 0

α21 −M ≤ π
2

≤ α12 −M
DΣ,ICLC = α21 + π

2

X11 : d11 = α11,E|X11|2 = 1− P−α11

X22 : d22 = α22,E|X22|2 = 1− P−α22

Xp
01 : dp01 = π

2 ,E|Xp
01|2 = P−α22

Xp
02 : dp02 = α21 −M ,E|Xp

02|2 = P−α11

X22 :∼ Pα12

Xp
01 :∼ Pα12−α22

X11 :∼ Pα11

Xp
02 :∼ P 0

X11 :∼ Pα21

Xp
02 :∼ Pα21−α11

X22 :∼ Pα22

Xp
01 :∼ P 0

α12 −M ≤ π
2

≤ α12 −max(α11, α22)
DΣ,ICLC = α21 + π

2

X11 : d11 = α12 − α22 − π
2 ,E|X11|2 = 1− P−d11

X22 : d22 = α12 − α11 − π
2 ,E|X22|2 = 1− P−d22

Xp
01 : dp01 = π

2 ,E|Xp
01|2 = P−α22

Xp
02 : dp02 = α21 − α12 + π

2 ,E|Xp
02|2 = P−α11

Xc
0 : dc0 = M − α12 + π

2 ,E|Xc
0|2 =

Diag(P−d11 − P−α11 , P−d22 − P−α22)

X22 :∼ Pα12

Xc
0 :∼ Pα12−d22

Xp
01 :∼ Pα12−α22

X11 :∼ Pα11

Xp
02 :∼ P 0

X11 :∼ Pα21

Xc
0 :∼ Pα21−d11

Xp
02 :∼ Pα21−α11

X22 :∼ Pα22

Xp
01 :∼ P 0

Table 3: The achievable scheme for Case 4 under the condition α12 ≥ α21 + min(α11, α22).

• α12 ≥ α21 + min(α11, α22)
The achievable scheme for this subcase is shown in Table 3. In this regime the
sum-GDoF value is

D′Σ,ICLC = min
(
α11 + α22 + π, α21 +

π

2
,DΣ,BC

)
(122)

– When π
2 ≤ α21−α11−α22, the first bound is active. MessagesW11,W22,W

p
01,W

p
02

carry α11, α22,
π
2 ,

π
2 GDoF respectively. They are encoded into independent

Gaussian codebooks producing codewordsX11, X22, X
p
01, X

p
02 with powers E|X11|2 =

1 − P−α11 ,E|X22|2 = 1 − P−α22 ,E|Xp
01|2 = P−α22 ,E|Xp

02|2 = P−α11 . The
transmitted signals are X1 = X11 + Xp

02, X2 = X22 + Xp
01. When decoding,

User 1 decodes X22, X
p
01, X11 successively, whose SINR values are ∼ Pα22 ,∼

Pα12−α11−α22 ,∼ Pα11 . Since d22 = α22, d
p
01 = π

2 ≤ α21 − α11 − α22 ≤ α12 −
α11−α22, messages W22,W

p
01,W11 can be decoded successfully. User 2 proceeds

similarly by decoding X11, X
p
02, X22 successively.

– When α21 − α11 − α22 ≤ π
2 ≤ α12 − α11 − α22, the second bound is ac-

tive. W11,W22,W
p
01,W

p
02 carry α11, α22,

π
2 , α21 − α11 − α22 GDoF respectively.

They are encoded into independent Gaussian codebooks producing codewords
X11, X22, X

p
01, X

p
02 with powers E|X11|2 = 1−P−α11 ,E|X22|2 = 1−P−α22 ,E|Xp

01|2 =
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P−α22 ,E|Xp
02|2 = P−α11 . For decoding, User 1 decodes X22, X

p
01, X11 succes-

sively while User 2 decodes X11, X
p
02, X22 successively. The distinction between

α21−α11−α22 ≤ π
2 ≤ α12−α11−α22 and π

2 ≤ α21−α11−α22 is that message
W p

02 carries different GDoF values.

– When α12−α11−α22 ≤ π
2 ≤

π+

2 , where according to Corollary 2 we have π+ =
2α12 − 2 max(α11, α22), the second bound is still active. Messages W11,W22,
W p

01,W
p
02 carry α12−α22− π

2 , α12−α11− π
2 ,

π
2 , α21−α12 + π

2 GDoF respectively.
They are encoded into independent Gaussian codebooks producing codewords
X11, X22, X

p
01, X

p
02, X

c
0 = (Xc

01, X
c
02) with powers E|X11|2 = 1−P−d11 ,E|X22|2 =

1 − P−d22 ,E|Xp
01|2 = P−α22 ,E|Xp

02|2 = P−α11 . W c
0 carries α11 + α22 − α12 +

π
2 GDoF and is encoded into a vector Gaussian codebook Xc

0 = (Xc
01, X

c
02)

with power covariance E|Xc
0|2 = Diag(P−d11 − P−α11 , P−d22 − P−α22). The

transmitted symbols are X1 = X11 +Xc
01 +Xp

02, X2 = X22 +Xc
02 +Xp

01. User 1
decodes W22,W

c
0 successively while treating everything else as noise, the SINR

values are ∼ P d22 ,∼ Pα22−d22 = Pα11+α22+π
2
−α12 = P d

c
0 respectively. After this

User 1 subtracts the contribution of X22, X
c
0, and it acts as a multiple access

receiver by jointly decoding W11 and W p
01 while treating the remaining signals

as noise. The GDoF region of this multiple access channel is the following.

{(d11, d
p
01) : d11 ≤ α11, d11 + dp01 ≤ α12 − α22} (123)

Since d11 = α12 − α22 − π
2 ≤ α11, d11 + dp01 = α12 − α22 belongs to the GDoF

region, W11, d
p
01 can be decoded successfully. User 2 proceeds similarly. The

signal partition depiction is similar to Figure 10 except that codewords’ power
levels are changed. It can be checked that d01 = dp01 = π

2 , d02 = dp02 + dc0 =

α21 − 2α12 + α11 + α22 + π ≤ α21 − 2α12 + α11 + α22 + π+

2 + π
2 = α21 − α12 +

α11 + α22 −max(α11, α22) + π
2 = α21 − α12 + min(α11, α22) + π

2 ≤
π
2 .

• α12 ≤ α21 + min(α11, α22)
The sum-GDoF value is

D′Σ,ICLC = min
(
α11 + α22 + π, α21 +

π

2
,
2α12 + 2α21 − α11 − α22 + π

3
,DΣ,BC

)
(124)

– When π
2 ≤ 2α12 − α21 − α11 − α22, the achievability for the first and second

bounds are the corresponding scheme as the regime α12 ≥ α21 + min(α11, α22)
for the same π

2 value.

– When 2α12 − α21 − α11 − α22 ≤ π
2 ≤

π+

2 , where according to Corollary 2 we
have π+ = α12 + α21 + α11 + α22 − 3 max(α11, α22) the third bound is active.
The achievability is the same as the corresponding scheme in Case 4 of the
half-duplex setting.
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7 Conclusion

The aligned image sets approach of [7], and the sum-set inequalities of [16] are utilized
to characterize the sum-GDoF of two user interference channel with limited cooperation,
both in half-duplex setting and full-duplex setting, which bridges the gap between the
interference channel and broadcast channel. The sum-GDoF value is characterized for
arbitrary parameter regimes. Promising directions for future work include extensions to
include more users and more messages, e.g., the X channel setting [17]. Notably, the 2
user X channel setting turns out to be quite straightforward. For the X channel with
limited cooperation, both with half or full-duplex operation, it is easy to see that DΣ,XLC =
min(DΣ,X+π,DΣ,BC). The converse is trivial because the sum-GDoF of the non-cooperative
messages are bounded by DΣ,X and the sum-GDoF of the cooperative messages are bounded
by π, so the total sum-GDoF cannot exceed DΣ,X + π. Also, the broadcast channel is
still an outer bound. For achievability, let us first consider the weak interference channel
regime, where max(α12, α21) ≤ min(α11, α22). From Theorem 2 in [10] we know that in
the weak interference regime, DΣ,X = DΣ,IC, which means X channel boils down to the
interference channel with message W11,W22 from the sum-GDoF perspective. Therefore
DΣ,XLC = min(DΣ,X + π,DΣ,BC) = min(DΣ,IC + π,DΣ,BC) whose achievability is implied by
Theorem 1 and Theorem 2 in this work. The strong interference regime maps to the weak
interference regime by relabeling the parameters so the sum-GDoF are established for that
as well. This leaves just the mixed interference regime. But from Theorem 2 in [10], we
know that DΣ,X = DΣ,BC in the mixed interference regime, i.e., cooperation has no gain in
the mixed interference regime. Thus, the sum-GDoF of the 2 user X channel with limited
cooperation are easily characterized and turn out to be much simpler than the 2 user
interference channel. However, we expect that going beyond 2 users will be challenging for
the X channel as well. Going further, the benefits of limited receiver cooperation under
finite precision CSIT are also of interest [18], as are other models of cooperation, such
as in-band cooperation [19, 20] which have previously been studied primarily under the
idealized assumption of perfect CSIT.
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