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Abstract—In this paper, we tackle channel estimation in
millimeter-wave hybrid multiple-input multiple-output systems
by considering off-grid effects. In particular, we assume that
spatial parameters can take any value in the angular domain,
and need not fall on predefined discretized angles. Instead of
increasing the number of discretized points to combat off-grid
effects, we use implicit Dirichlet kernel structure in the Fourier
domain, which conventional compressed sensing methods do
not use. We propose greedy low-complexity algorithms based
on orthogonal matching pursuit (OMP); our core idea is to
traverse the Dirichlet kernel peak using estimates of the discrete
Fourier transform. We demonstrate the efficacy of our proposed
algorithms compared to standard OMP reconstruction. Numer-
ical results show that our proposed algorithms obtain smaller
reconstruction errors when off-grid effects are accounted for.

Index Terms—Basis mismatch, compressed sensing, mmWave
channel estimation, off-grid, orthogonal matching pursuit.

I. INTRODUCTION AND RELATED WORK

One of the most promising features of next-generation
wireless systems is to use high-frequency high-bandwidth
signals in millimeter-wave (mmWave) frequency bands. These
mmWave bands combined with multiple-input multiple-output
(MIMO) technology have great potential in delivering higher
data rates, higher spectral efficiency, and lower latency, ex-
ceeding the performance of traditional cellular systems op-
erating at sub-6 GHz bands. Conventional mmWave MIMO
architectures use a large number of antennas, which results
in high cost and power consumption, making it difficult to
assign a radio frequency (RF) chain per antenna. To curtail
these issues, a hybrid analog/digital beamforming (HADB)
architecture is adapted at mmWave bands [1], [2].

The HADB architecture complicates the channel estima-
tion process, because only the low dimensional signals pre-
combined by the analog combiner are available at baseband,
which severely degrades the channel estimation process. The
accuracy with which the channel is estimated plays a critical
role in physical layer performance as it directly affects receiver
design, e.g., channel equalization [3] and radio resource
management [4]. To overcome these challenges, channel esti-
mation algorithms based on compressed sensing (CS) [2], [5]
have been proposed. These CS-based methods are based on
virtual channel models [6], which provide a virtual angular
representation of MIMO channels.

The virtual channel model describes the channel with
respect to (w.r.t.) fixed basis functions corresponding to spatial
angles within a finite discrete dictionary. In other words,
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the continuous parameter space of spatial angular features
is discretized into a finite set of pre-defined spatial angles,
which emphasizes the sparse representation of the MIMO
channels. The estimation accuracy of CS methods based on
this discretization is limited by the number of points in the
dictionary. Although this discretization procedure yields state-
of-art performance, it has several intrinsic disadvantages [7],
including the off-grid effect.

A natural yet inefficient approach to reduce off-grid effects
is to increase the number of discretized points, corresponding
to increased grid resolution. This approach not only increases
the mutual coherence of the dictionary matrix, leading to loss
of the restricted isometric property, but also increases the
problem dimension, which requires more computation [8].
An alternative is to tackle off-grid effects upfront without
increasing the grid size. For example, in the context of channel
estimation, Gurbuz et al. [8] provide a controlled perturbation
mechanism for spatial angular parameters based on orthogonal
matching pursuit (OMP) [9]. Other related works involve an
improved off-grid sparse Bayesian algorithm [10], and a grid-
less CS technique developed via atomic norm minimization
[11]. Although these methods all tackle off-grid issues, they
are computationally prohibitive, which motivates us to develop
and analyze robust low-complexity channel estimation algo-
rithms that account for off-grid effects.

Interestingly, standard CS methods based on sparsity fail to
leverage Dirichlet structure in the Fourier domain. We exploit
this structure to improve the channel estimation process. In
particular, we propose low-complexity algorithms based on
OMP [9], owing to its computational tractability. Our numer-
ical results show that while accounting for off-grid effects,
our proposed algorithms obtain smaller channel reconstruction
errors compared to standard OMP algorithms.

Notation: Vectors and matrices are represented by lower-
case and capital boldface letters, respectively (e.g.: a and A).
The transpose, conjugate, conjugate transpose, and pseudo-
inverse of a matrix A are denoted by AT, AH, A∗, and A†,
respectively. For a non-negative integer K, we denote the
set {1, 2, . . . ,K} by [K]; ⊗ denotes the Kronecker product;
vec(A) denotes the vectorized version of the matrix A; R
is the real part of a complex number; and min(a, b) is the
minimum of the scalars a and b.

II. SYSTEM MODEL AND CHANNEL MODEL

A. System Model
Consider a mmWave MIMO network comprised of a base

station (BS) communicating with generic user equipment
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(UE), both equipped with a uniform linear array (ULA). We
assume the BS is equipped with M antennas, MRF RF chains,
and MDS data streams. Similarly, the UE is assumed to be
equipped with N antennas, NRF RF chains, and NDS data
streams. Typically, it is assumed that MDS ≤ MRF ≤ M
and NDS ≤ NRF ≤ N . With the HADB MIMO processing
structure [1], the received signal at the UE is expressed,

Y = WHHFs + NW , (1)

where Y ∈ CNt×Mt is the received measurement matrix at
the UE, and it is assumed that the UE uses Nt combiners for
each Mt beamforming vector used by the BS. The received
measurements at the UE for each beamforming vector are
arranged in columns. The matrices H ∈ CN×M , W ∈ CN×Nt ,
and F ∈ CM×Mt represent the channel matrix from the BS to
UE, the combined effect of the RF/baseband combiner, and
precoder matrices, respectively. The noise matrix at the UE
after the combiner operation is NW = WH[n1, . . . ,nMt ],
where ni ∈ CN×1;∀i ∈ [Mt], follows a circularly symmetric
independent and identically distributed Gaussian distribution,
CN (0, σ2

n) with noise variance σ2
n. Further, s is assumed to

be known at the BS and omitted hereafter.

B. Channel Model

Based on [12], the mmWave channel model is given by:

H =

L∑
l=1

αlaUE(θl)a
H
BS(φl), (2)

where αl is the complex gain associated with lth multi-path
component (MPC) between the BS and UE. The number of
MPCs is L with L�M ;N may itself be time-varying due to
the mobility of the UE and the surrounding scatterers [13]. The
terms aBS(φ) and aUE(θ) are the normalized array response
to an MPC coming from the angles φ and θ w.r.t. the BS
and UE ULA, respectively. The tuple (φ, θ) ∈ [−π/2, π/2] is
the physical azimuth angle-of-departure (AoD) and angle-of-
arrival (AoA), respectively. The normalized ULA responses at
the BS and UE are expressed as

[aBS(φ)]m =
1√
M
ej

2π
λ dBS(m−1) sin(φ), m ∈ [M ],

[aUE(θ)]n =
1√
N
ej

2π
λ dUE(n−1) sin(θ), n ∈ [N ],

(3)

where dBS and dUE are the inter-element spacings in the BS
and UE ULA, respectively. We assume dBS = dUE = λ

2 where
λ is the carrier wavelength defined by c

f0
with c and f0 being

the speed of light and the carrier frequency, respectively.

C. Sparse Beamspace (Virtual) Representation

We use the virtual channel model representation of H,
which relates the beamspace and antenna space by the spatial
Fourier transform. The virtual channel model describes the
channel w.r.t. fixed basis functions corresponding to spatial
angles from the finite discrete dictionary. In particular, we
follow the framework in Lee et al. [5] and discretize the tuple
(φ̂, θ̂) such that the (sin(φ̂), sin(θ̂)) appearing in the array

responses (3) are uniformly distributed in [-1,1). Specifically,
the quantized grids should satisfy:

Φ = {φ̂ :
1 + sin(φ̂)

2
=
m− 1

M
;m ∈ [GBS,D]},

Θ = {θ̂ :
1 + sin(θ̂)

2
=
n− 1

N
;n ∈ [GUE,D]},

(4)

where GUE,D and GBS,D are the grid size for the spatial AoA-
AoD, respectively. The array response corresponding to the
discretized spatial angles are grouped to form the matrices
ABS,D = {aBS(φ̂); φ̂ ∈ Φ} and AUE,D = {aUE(θ̂); θ̂ ∈ Θ},
which are transmitting and receiving beamforming matrices at
BS and UE, respectively. Generally, GBS,D ≥M and GUE,D ≥
N . However, throughout this work we assume GBS,D = M
and GUE,D = N , resulting in ABS,D ∈ CM×M and AUE,D ∈
CN×N being unitary Inverse-discrete Fourier transform (DFT)
matrices, which are represented as

[ABS,D]m,m′ =
1√
M
ej2π(m−1)(

m′−1
M − 1

2 ); m,m′ ∈ [M ],

[AUE,D]n,n′ =
1√
N
ej2π(n−1)(

n′−1
N − 1

2 ); n, n′ ∈ [N ].
(5)

The exact beamspace representation can be expressed as
AUE,DHVAH

BS,D, where HV ∈ CN×M is the beamspace sparse
matrix defined as follows:

HV = AH
UE,DHABS,D =

L∑
l=1

αlâUE(θl)â
H
BS(φl), (6)

and âUE(θ) = AH
UE,DaUE(θ) and âBS(φ) = AH

BS,DaBS(φ) are the
normalized UE and BS array responses w.r.t. the DFT basis,
respectively. The UE array response w.r.t. the DFT basis can
be compactly represented as [7], [14],

[
âUE(θl)

]
n′

=
1

N

N−1∑
i=0

ej2πi(
n′−1
N − 1

2 )ejπi sin θl

=
1

N

sin(πϑn′,lN)

sin (πϑn′,l)
e−jπϑn′,l(N−1),

(7)

where ϑn′,l = n′−1
N − 1

2 sin (θl) − 1
2 ;n′ ∈ [N ]. The

proof of the equivalent representation is straightforward and
omitted for brevity. Similarly, âBS(φl) is formulated as
[âBS(φl)]m′ = 1

M

sin(πϕm′,lM)

sin (πϕm′,l)
e−jπϕm′,l(M−1), where ϕm′,l =

m′−1
M − 1

2 sin (φl)− 1
2 ;m′ ∈ [M ]. Substituting âUE and âBS into

(6), the (m′, n′) entry of the beamspace matrix HV becomes

[
HV
]
m′,n′

=

L∑
l=1

αlD(ϕm′,l, ϑn′,l)
e−jπϑn′,l(N−1)

e−jπϕm′,l(M−1)
, (8)

where D(ϕm′,l, ϑn′,l) = 1
MN

sin(πϕm′,lM)

sin (πϕm′,l)

sin(πϑm′,lN)

sin (πϑm′,l)
is the

Dirichlet kernel (note that D(ϕm′,l, ϑn′,l) = 1 when ϕm′,l =
ϑn′,l = 0). Since the DFT is discrete in nature, the beamspace
domain HV in (8) is evaluated only at integer points (m′, n′)
with m′ ∈ [M ], n′ ∈ [N ]. However, the Dirichlet kernel peak
need not occur at any of these integer points (m′, n′) and
can take continuous values, i.e., m? ∈ [1,M ], n? ∈ [1, N ].
Therefore, the Dirichlet kernel need not peak at one of the



Fig. 1: (Left) Normalized DTFT and DFT amplitude spectrum of the virtual beampscae matrix of a single MPC in the spatial AoA domain with M = N = 16.
(Middle) On-Grid and (Right) worst off-grid effect visualization in the 2D-virtual domain with three unit strength MPCs for M = N = 16. The ideal on-grid
case results in exact sparse representation in the virtual domain as the DFT and the Dirichlet (DTFT) peak coincide, whereas, in the worst off-grid condition
the DFT and the Dirichlet peaks do not coincide resulting in a significant increase in the number of non-zero elements.

pre-defined spatial angles, and maxima of the DFT may not
correspond to maxima of the Dirichlet kernel or maxima of
the discrete-time Fourier transform (DTFT).

We now sidestep away from the DFT representation to dis-
cuss the DTFT concept, which will be pivotal in understanding
our algorithms in Section III. The continuum of (8) evaluated
at m? ∈ [1,M ] and n? ∈ [1, N ] is represented as

[HV]m?,n? =

L∑
l=1

αlD(ϕm?,l, ϑn?,l)
e−jπϑn?,l(N−1)

e−jπϕm?,l(M−1)
. (9)

This form (9) is the DTFT counterpart of (8), where (m?, n?)
can take continuous values. That is, 1 ≤ m? ≤ M and
1 ≤ n? ≤ N . Intuitively, each MPC in the physical domain
results in a continuous Dirichlet kernel in the continuum of
the beamspace domain, as shown in Fig. 1.

D. Sparse Recovery Problem

Aided by the sparse virtual representation and vector iden-
tity property, vec(ABC) = (CT ⊗A)vec(B), MIMO channel
estimation (1) is posed as sparse recovery [1] and rewritten:

y = Avec([HV]m′,n′) + nW , (10)

where A = ΦΨ ∈ CMtNt×MN is the overall sensing matrix,
Φ = (FT ⊗ WH) represents the combined effect of the
precoder and combiner, Ψ = (A∗BS,D⊗AUE,D) is the dictionary
matrix, and ABS,D and AUE,D are matrices for the DFT basis.
Finally, y ∈ CMtNt×1 is the vectorized form of Y.

Conventional CS techniques assume that the signal is ex-
actly sparse, which is true only when the physical AoA-AoD
tuples are aligned with discretized spatial angles; this is the
ideal on-grid case. However, the physical AoA-AoD (θl, φl)
take continuous values, which may not be aligned with any
discretized spatial angles, resulting in basis mismatch (off-
grid) effects. These effects violate the sparsity assumption,
resulting in performance degradation of CS-based techniques
[7]. Below, we analyze the impact of basis mismatch on the
sparsity level, which is central to any CS methods.

E. Effect of Off-Grid/Basis Mismatch

Best Case (on-grid): The physical AoA-AoD (θl, φl) tuple
falls exactly on any of the pre-defined spatial angles, and the

DFT and DTFT peaks coincide, resulting in exact sparse rep-
resentation. This phenomenon is illustrated by a 1-dimensional
(1D) normalized Dirichlet kernel (Fig. 1, left).

Worst Case (off-grid): The physical AoA-AoD (θl, φl) tuple
results in a virtual AoA-AoD (ϕl, ϑl), which is exactly in
between any adjacent pre-defined virtual angles. That is, the
resulting virtual AoA-AoD tuple is at distance ( 1

2M , 1
2N ) away

from some predefined virtual angle. In this case, the DTFT
and DFT peaks do not coincide, which affects not only the
two adjacent cells but the entire grid, with amplitude decaying
at rate 1/M and 1/N in the virtual AoA-AOD, respectively,
violating the sparsity assumption. Examples of on-grid and
worst off-grid effects in a MIMO system appear in Fig. 1
(middle and right panels, respectively).

To provide insights about the worst case of the off-grid
problem, we provide a Lemma for MIMO in the presence of
a single unit strength MPC, which resembles Lemma 2 in Gao
et al. [15]. Our Lemma provides insights about the number of
non-zero indices (which we define as the sparsity level) that
need to be recovered by the CS methods to capture η percent
of the power of an MPC in the virtual domain. We concentrate
on the worst-case and upper bound the general case, which
can be extended to multiple MPCs as well.

Lemma 1: Let K represent the sparsity level in the virtual
AoA-AoD domain. Without loss of generality, we assume K
to be a multiple of 4. The power captured by the K strongest
elements in the DFT domain is given by η = PK

PT
, where

PK =
4

MN

K/4∑
i=1

K/4∑
j=1

∣∣∣∣∣ sin(Mπ (2i−1)
2 )

sin(π (2i−1)
2 )

sin(Nπ (2j−1)
2 )

sin(π (2j−1)
2 )

∣∣∣∣∣
2

,

PT =
4

MN

M/4∑
i=1

N/4∑
j=1

∣∣∣∣∣ sin(Mπ (2i−1)
2 )

sin(π (2i−1)
2 )

sin(Nπ (2j−1)
2 )

sin(π (2j−1)
2 )

∣∣∣∣∣
2

.

(11)

The ratio η is the power captured by K dominant K DFT
elements. For the worst and best case scenarios, Fig. 2 shows
the number of non-zeros that must be recovered by CS
algorithms in order to capture η power for a single MPC with
M = N = 16. In other scenarios, the sparsity level is between
the blue and red lines. As evident from the figure, in the worst
case scenario CS algorithms must recover significantly more
non-zeros, which is inefficient. A better way to capture power
in the virtual domain requires that we reach the peak of the



Fig. 2: Best and Worst Case Scenarios: Power captured by K dominant
elements in the virtual domain with a single MPC for M = N = 16.

DTFT spectrum instead of operating on DFT peaks. In other
words, we can capture all the power (100%) of each MPC by
identifying the peak location of the Dirichlet kernel.

In light of these observations, our main objective is to find
the maxima of the Dirichlet kernel peaks (strength/location)
instead of recovering all the non-zero elements in the virtual
DFT domain. Mathematically, the peak strength and location
can be obtained by solving the following optimization,

α̂l
?, m̂?

l , n̂
?
l = min

α?l ,m
?
l ,n

?
l

||y −Avec([HV]m′,n′)||22 (12)

s.t. 1 ≤ m,m?
l ≤M, 1 ≤ n, n?l ≤ N,m′ ∈ [M ], n′ ∈ [N ],

HV=

L∑
l=1

α?l
MN

sin(π(m−m?
l )) sin(π(n− n?l ))e−jπ(m−m

?
l )

sin ( πM (m−m?
l )) sin ( πN (n− n?l ))e−jπ(n−n

?
l )
.

Note that HV in our objective function is still evaluated
at integer points (m′, n′). This optimization procedure finds
the strength and location of the Dirichlet kernel peaks while
minimizing the `2 norm of the residual between the estimated
parameters and measurement vector. The constraints mandate
that the search is not just over a finite set of angles defined
in (4) but over the entire space. Intuitively, finding maxima
locations of the Dirichlet kernel (DTFT spectrum) corresponds
to estimating the AoA-AoD (θl, φl). Similarly, finding the
peak strength of the Dirichlet kernel corresponds to estimating
the strength of the MPC αl.

The above joint optimization problem (12) is non-convex
and in general challenging. The non-convexity mainly arises
from the Dirichlet structure; Fig.1 exudes it. For brevity, we
omit the proof of non-convexity. Below, we propose simpler
and efficient schemes to solve (12) using coarse estimates of
DFT points obtained from the greedy OMP algorithm.

III. EXPLOITING DIRICHLET KERNEL STRUCTURE

This section begins by investigating the Dirichlet kernel for
a single MPC. After addressing a single MPC, we propose an
algorithm that accommodates MIMO and multiple MPCs.

To keep our presentation simple, suppose that a single MPC
falls off the grid, resulting in a Dirichlet kernel in the virtual
AoA domain (Fig. 3). Denote the DFT and Dirichlet kernel
peaks by m′ and m?, respectively. Due to properties of the

Fig. 3: DFT and DTFT amplitude spectrum for a single MPC in the virtual
AoA domain.

DFT and DTFT, the Dirichlet kernel peak lies in the range
[m′ − 1,m′ + 1]. We compute least square (LS) estimates at
locations {m′ − 1,m′,m′ + 1} (integer indices adjacent to
m′) under the constraint of Dirichlet structure, resulting in
estimates [HV]m′−1, [HV]m′ , and [HV]m′+1. The goal is to
traverse to the Dirichlet kernel peak and reconstruct it using
the LS estimates. This can be achieved in at least two ways.

A. Dirichlet OMP-Main Lobe (DOMP-MLb)

Without loss of generality, suppose that the Dirichlet peak
is in the range [m′,m′ + 1]. In this case, |[HV]m′+1| >
|[HV]m′−1|, implying that the main-lobe (MLb) is in the
range [m′,m′ + 1]. Thus, we can ignore the side lobe (SLb)
estimate. Based on the MLb estimates, we can find the location
m? = m′ + δm, where δm = 1

2 min
(

[HV]m′
[HV]m′+1

,
[HV]m′+1

[HV]m′

)
is the deviation from the DFT index, which is obtained by
exploiting the uni-modal symmetric, concave property of the
main lobe (Fig. 3).

B. DOMP-Main and Side Lobe (DOMP-MSLb)

Instead of considering just the MLb estimate, the al-
gorithm becomes more robust by not discarding the SLb
estimates, but using them to estimate the Dirichlet peak.
Based on the main and side lobe (MSLb) estimates, we
can find the location m? = m′ + δm, where δm =
tan( πM )

π
M

R
(

[HV]m′−1−[HV]m′+1

2[HV]m′−[HV]m′−1−[HV]m′+1

)
; details in [16].

Extending the previous ideas to a 2D MIMO problem is
straightforward. For the 2D problem, suppose that the DFT
peaks occur at (m′, n′), where m′ and n′ refer to indices
in the virtual AoA/AoD domains, respectively. Similarly, the
Dirichlet kernel peak occurs at (m?, n?). For each MPC in
the MIMO case, we need 5 estimates: the DFT peak index
(m′, n′) and LS estimate ([HV]m′,n′ ) and 4 DFT indices
and LS estimates around the DFT peak (denoted by κ and
[HV]κ in Algorithm 1, respectively). With this information,
one can reconstruct the 2D Dirichlet and repeat the procedure
recursively for each MPC (denoted by l). Further details
of our proposed reconstruction method are summarized in
Algorithm 1; some remarks are in order.



Algorithm 1: Channel Estimation: DOMP-MLb/MSLb
Input: y, A, ε
Initialization: S = {}, yres = y, e = ||yres||2, l = 1.

1 while e < ε do
2 j? = arg max

j
|A(:, j)Tyres|; S = {j? ±M, j? ±N}

3 m′ = floor(j?/M ); n′ = mod(j?, N)
4 κ ∈ {(m′, n′), (m′ ± 1, n′), (m′, n′ ± 1)}
5 [HV]κ = (A(:,S))† yres
6 if DOMP-MLb Update: then
7 if |[HV]m′+1,n| > |[HV]m′−1,n| then
8 m?

l = m′ + 1
2 min

(
[HV]m′,n′

[HV]m′+1,n′
,
[HV]m′+1,n′

[HV]m′,n′

)
9 else

10 m?
l = m′ − 1

2 min
(

[HV]m′,n′

[HV]m′−1,n′
,
[HV]m′−1,n′

[HV]m′,n′

)
11 end
12 if |[HV]m′,n+1| > |[HV]m′,n| then
13 n?l = n′ + 1

2 min
(

[HV]m′,n′

[HV]m′,n′+1
,
[HV]m′,n′+1

[HV]m′,n′

)
14 else
15 n?l = n′ − 1

2 min
(

[HV]m′,n′

[HV]m′−1,n′
,
[HV]m′−1,n′

[HV]m′,n′

)
16 end
17 else
18 DOMP-MSLb Update:

m?
l = m′ +

tan( πM )
π
M

∆m; n?l = n′ +
tan( πN )

π
N

∆n

∆m = R
(

[HV]m′−1,n′ − [HV]m′+1,n′

2[HV]m′,n′ − [HV]m′−1,n′ − [HV]m′+1,n′

)
∆n = R

(
[HV]m′,n′−1 − [HV]m′,n′+1

2[HV]m′,n′ − [HV]m′,n′−1 − [HV]m′,n′+1

)
19

20 end

21 α?l=[HV]m′,n′

(
sin(π(m′−m?l )) sin(π(n′−n?l ))e

−jπ(m′−m?l )

MN sin ( π
M

(m′−m?
l
)) sin ( π

N
(n′−n?

l
))e
−jπ(n′−n?

l
)

)−1

22 [HVl ]m,n=
α?l
MN

sin(π(m−m?l ))
sin ( π

M
(m−m?

l
))

sin(π(n−n?l ))
sin ( π

N
(n−n?

l
))
e
−jπ(m−m?l )

e
−jπ(n−n?

l
)
, ∀m,n

23 yres = yres −Avec(HVl)
24 l = l + 1
25 end

Output: HV =
∑L
l=1 HVl

Remark 1: In some sense, what we describe in Algorithm
1 is a way to identify the true AoA-AoD for each MPC
provided the DFT points of the MLb/SLb surrounding each of
the Dirichlet kernels. The correct DFT peak points can often
be obtained by the computationally tractable OMP projection
strategy; steps 2 through 5 in Algorithm 1. Note that the steps
of Algorithm 1 after the projection operation (step 2) differ
from standard OMP, which iterates between the projection and
LS steps without exploiting the structure. Also, the steps for
DOMP-MLb/MSLb are the same, except for the update steps
enclosed in the if-else statement (steps 6 through 20).

Remark 2: The inherent disadvantage of the DOMP-
MLb/MSLb is that Dirichlet kernels in the virtual domain
must not overlap, implying that in the physical domain there
cannot be closely spaced MPCs. In their current form, DOMP-

Algorithm 2: Channel Estimation: DOMP-LO
Input: y, A, ε
Initialization: S = {}, yres = y, e = ||yres||2, l = 1.

1 while e < ε do
2 j? = arg max

j
|A(:, j)Tyres|

3 m′ = floor(j?/M ); n′ = mod(j?, N )
4 Solve the localized version of (12) :

α?l , m̂
?
l , n̂

?
l = min

αl,m?l ,n
?
l

||yres −Avec([HVl ]m′,n′)||22

s.t. m ∈ (m′ − 1,m′ + 1), n ∈ (n′ − 1, n′ + 1),

HVl =
αl

MN

sin(π(m−m?l ))
sin ( πM (m−m?l )

sin(π(n− n?l ))
sin ( πN (n− n?l ))

e−jπ(n−n?l )

e−jπ(m−m?
l
)
.

5 yres = yres −Avec([HVl ])
6 l = l + 1
7 end

Output: HV =
∑L
l=1 HVl

MLb/MSLb are suitable only for scenarios such as terahertz
communication [15] or a single MPC within each spatially
separated cone [17]. To overcome this limitation, we next
propose a variant of the above method.

C. DOMP-Local Optimization (DOMP-LO)

The key idea here is to solve (12) in an iterative fashion for
each MPC over a localized space around nearby DFT peaks.
If the point (m′, n′) where the DFT peaks for each MPC are
provided, then the search space for the Dirichlet peak can
be reduced to the range ([m′ − 1,m′ + 1], [n′ − 1, n′ + 1]),
which turns the joint optimization problem (12) into a convex
problem. The localized optimization problem (12) can then be
solved for the global optimum for each MPC separately; see
step 4 in Algorithm 2. Upon finding the peak location/strength
of the Dirichlet kernel, it will be subtracted from the measure-
ments yres using step 5. This gets repeated until the stopping
criterion is met. Finally, although DOMP-LO overcomes the
drawbacks of DOMP-MLb/MSLb by solving the localized
optimization problem (its ability to deal with multiple nearby
MPCs), it requires more computation.

IV. NUMERICAL RESULTS

In this section, the performance of the three proposed
channel estimation algorithms are provided, and compared to
standard OMP. The performance is evaluated by the normal-
ized mean square error (NMSE) = ||Ĥ−H||2F

||H||2F
. We consider

a scenario with M = N = GUE = GBS = 32 and 3
MPCs. We deliberately place the MPCs away from the grid
points. In particular, we place the AoA-AoD at a distance
of (±0.1ζ/2M,±0.1ζ/2N ) from the middle of the randomly
chosen adjacent grid points, where ζ is uniformly distributed
in the range [0, 1]. To avoid overlap in the virtual domain,
the MPCs are spatially separated by at least 20◦ from each
other. This scenario helps evaluate the performance of DOMP-
MLb/MSLb as noted in Remark 2. However, unlike the
DOMP-MLb/MSLb, the DOMP-LO can be used even when



Fig. 4: Off-grid scenario with 3 MPCs: NMSE versus signal-to-noise ratio
(SNR) in dB with measurements MtNt = 100, where Mt and Nt are as
in (1).

Fig. 5: Off-grid scenario with 3 MPCs: NMSE versus measurements (MtNt)
with the SNR = 20 dB.

the MPCs are closely spaced. All results presented below are
averaged over 50 independent trials.

Fig. 4 and Fig. 5 show how exploiting the Dirichlet ker-
nel improves the channel estimation NMSE performance by
accounting for off-grid effects, considering different SNRs
and different number of measurements. The performance
improvement of the DOMP algorithms is mainly due to their
ability to combat off-grid effects by traversing Dirichlet kernel
peaks.

Among the DOMP methods, the performance of DOMP-
MSLb is slightly better than DOMP-MLb, as it is more robust
than just considering the estimates from the MLb [16]. The
performance gap between standard OMP and DOMP-MLb
(and MSLb) is significant, even in the low-SNR and small
number of measurements regimes. Moreover, DOMP-LO (Al-
gorithm 2) outperforms other DOMP methods, although this
requires more computation for the gradient and the Lagrange
multipliers update in solving the localized problem. The
detailed computational complexity analysis of the proposed
methods is left for future work.

V. CONCLUSION
In this paper, we proposed low-complexity iterative OMP-

based algorithms to exploit the implicit Dirichlet structure in
the Fourier domain, and thus combat off-grid effects. The
proposed DOMP-MLb/MSLb uses the MLb/SLb estimates
to traverse to the Dirichlet peaks. On the other hand, the
DOMP-LO method solves localized optimization problems
to achieve a similar goal. Numerical results show that, in
comparison to standard OMP our proposed algorithms achieve
lower reconstruction errors in off-grid scenarios for a wide
range of SNR and measurement levels.
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