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Abstract—Semi-autonomous and fully-autonomous systems 
must have knowledge about the objects in their environment to 
ensure a safe navigation. Modern approaches implement deep 
learning techniques to train a neural network for object 
detection. This project will study the effectiveness of using 
several promising algorithms such as Faster R-CNN, SSD, 
and different versions of YOLO, to detect, classify, and track 
objects in near real-time fluvial domain. Since no dataset is 
available for this purpose in literature, we first started by 
annotating a dataset of 2488 images with almost 35 400 
annotations for training the convolutional neural network 
architectures. We made this data set openly accessible for the 
community working on this area. The other contribution of this 
research is the adaptation and the configuration of deep 
learning techniques used in other domains such as maritime 
and road domain to fluvial domain for autonomous vessels in 
which high accuracy and fast processing are vital. Experiments 
demonstrated that detecting objects in such environment is 
plausible in near real time with the selected algorithms.  

Index Terms—Real time, Object detection, Intelligent 
vehicles, Inland waterway vessels, Deep learning. 

I. INTRODUCTION

Inland water transport is a viable alternative to road and rail 
transport on European corridors. It is highly competitive with 
respect to other modes of transportation, environmentally-
friendly, reliable, safe and could provide lower transportation 
costs when moving large volumes of bulk cargo. However, the 
specificities of the waterways bring as many opportunities as 
new challenges for the automation of the transport vessels. 
Autonomous vehicles have made significant inroads into the 
area of transportation, but specifically in the terrestrial and 
marine environments. Thus, the idea in this work to study the 
performances of the methods used in these latters in inland 
environment in order to ensure a safe navigation of an 
autonomous vessels.  

Specially, the object detection module of autonomous ves-
sels plays an essential role in safe maritime navigation. The 
vessel needs to detect and avoid other nearby vessels and 
infrastructure. The current research trend is employing deep 
learning algorithms to learn useful features instead of hand-
designing them. In fact, since the rise of Convolutional Neural 
Networks (CNNs) within the ImageNet [9] challenge, they have 
gotten to be the foremost prevalent arrangement for com-mon 
question acknowledgment issues such as classification, 
localization, and location. They accomplished lower blunder 
rates than the past state-of-the-art results. For this reason, 

CNNs have been widely adopted in object recognition 
systems in almost all domains in [2], [5] and [14].  
The objective of the current work is to compare and 
identify the most appropriate algorithm for object 
detection in a fluvial environment in terms of accuracy, 
run-time and resources consumption. The novelties of 
this paper, compared to the state of art, consist of:  

We produce a unique dataset for training deep visual de-
tection models for object detection in inland environment, 
since there is no public dataset is available, 
We evaluate the accuracy and performance of six 
state-of-the-art object detection algorithms for the 
problem of object detection in inland environment. 

The rest of this paper is structured as follows. Section II 
gives an overview on the object detection problem and 
existing public datasets. In Section III, we detail the 
characteristics of our proposed dataset. Then, we 
describe the training process implementation in Section 
IV. Finally, discussion on results and performance
evaluation are drawn in Section V and Section VI.

II. RELATED WORKS 

In this section, object detection models, datasets and areas 
of application are reviewed. We mainly focus on the suitability 
of integrating the existing approaches to our problematic. 

1) Object Detection: Computer vision has been especially a
curiously intrigue field in later a long time since self-driving 
vehicles have taken centre stage. Generic object detection 
aims at locating and classifying existing objects in any one 
image and labeling them with rectangular bounding boxes to 
show the confidences of existence. Nowadays, the 
performance of object detection has been improved with the 
Deep CNNs methods which have recently come to dominate 
object recognition re-search due to their excellent performance 
on many challenging datasets harvested from the web, such 
as ImageNet [9]. They achieved top-1 and top-5 error rates of 
37.5% and 17.0%, respectively, which is impressively superior 
than the past state-of-the-art [9]. Among these methods, 
Faster R-CNN, SSD and YOLO show a better performance of 
detecting objects with different sizes in other application 
domains such as recognizing the types of marine vessels in 
sail [2], detecting people, cars, and roads [5], [13] and 
detecting marine litter [14]. 
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2) Public datasets: One of the biggest problems of
artificial intelligence, in general and image processing, is 
having a good dataset that properly relates to the problem. 
Besides that, the dataset has to be processed in a way that 
the model can make sense of the information. That way the 
model can successfully learn from that dataset. Scientific 
datasets are, at least, intermediate results in many 
scientific research projects. For some time, datasets were 
not even published and even if they were published it was 
mostly as a not re-usable by-product of the publication.  
In maritime environment, we find public datasets VAIS (Visible 
and Infrared Spectrums) and Marvel [10], used essentially for 
classification in [18], [21] and [6]. Details of the VAIS dataset, 
the most used dataset, are collected in Table I. 

TABLE I: VAIS dataset. 

Total images 2865 
IR Images 1242 
Visible Images 1623 
Night IR Images 154 
Number of classes 6 

Among popular datasets used for Image detection, we 
men-tion Pascal Visual Object Classes (Pascal VOC) [17] 
dataset which contains 17 125 annotated images with 20 
classes at the time of writing the article. This dataset was 
created within a challenge in visual object recognition 
funded by PASCAL network of excellence and then used to 
test and evaluate the performance of different models.  
However, there is not a public dataset annotated 
destined for fluvial environment with its different 
challenges that we detail below.  

3) Object Detection in Maritime Environments: Target de-
tection in maritime environments has a place to the investigate 
points that pick up small consideration in the field of computer 
vision. Some applications exist such as collision avoidance for 
autonomously operating vessels [3] or object detection in 
general in [12] and [1].However, these results can not be 
adapted to the fluvial environment since the two environments 
are different as we will detail in the following section. 

III. DATASET AND GROUND TRUTH LABELLING PROCESS

The characteristics of the fluvial environment are different 
from those of the maritime environment. There are differences 
in natural features (rocks, waterfalls, rapids, etc). Seas are 
wider than rivers. So, the canal size is smaller that the 
waterway in the maritime environment. In addition, there are 
other differences related to the infrastructure. In fact, the river 
ships are smaller, the itineraries are more port-intensive and 
the ships are closer to the land. In addition, locks and bridges 
do not exist in the maritime environment and limit of the canal 
is not marked by a physical infrastructure, but generally with 
trees. Consequently, rules of inland navigation differ from the 
rules of maritime navigation.  

So, to evaluate the performances of Neural Networks, we 
need a specific dataset that meets these requirements. 

Since no public dataset exists as described above, we make 
our own dataset1 following a data model we propose and
provide annotated images in two formats, as detailed below. 

A. Data Model
The objects we aim to detect are divided in five categories:

Riverside: As there is no lane markings in rivers, spec-
ifying the exact location of a lane marking in a camera 
image may be very ambiguous. So, in this category, we 
try to get as close as safely possible to the riverside, 
Vessel: In this category, we added different types of 
vessels that can be found in a river, 

Person: We added this category to detect fishermen or 
other persons on the river’s waters or persons in the 

riverside, since ships could be very close to the riverside, 
Infrastructure: In this category, we find two types of 

infrastructure that are locks and bridges, 
Road signals: As for cars as for boats, vehicles 
follow the traffic code by respecting the road 
signals. So, in this category we collect road signals 
we can find in real situations. 

Other versions of this data model were tested: one including a 
label for waves (rejected due to lack of data of this class and in 
consequence they present a lower accuracy) and models with 
multiple classes for different infrastructure and ships (rejected 
for lack of data on some classes and lower detection 
performance overall). Both versions achieved lower accuracy 
than this model on all networks. Examples of images 
annotated to have class-labels and bounding boxes from this 
data model can be seen in Fig. 1. 

Fig. 1: A sample from the training dataset are shown. 
Multiple rectangular bounding boxes are drawn to delimit 
objects with corresponding corresponding class labels. 

Although following a single object is the most common 
object-following scenario, detecting multiple objects is 
neces-sary for our application. As shown in Fig. 1, we add 
multi-object detection capabilities by drawing multiple 
bounding boxes for multiple objects in the same image. 

B. Dataset Construction
Our dataset is composed of 2 488 images. The number of

annotations for each class is detailed in the Table II. In order to 
get close to real conditions, we selected images with different 
backgrounds, camera positions, weather conditions and day 
time. This allows us to create a dataset for training which 

1The dataset and trained models will be made available for 
academic research purposes 
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TABLE II: Proposed dataset. 

Total images 2488 
Riverside 28084 
Vessels 3496 
Persons 1545 
Infrastructure 2051 
Road signals 193 
Number of classes 5 

closely conforms to real-world conditions, unlike 
previous works, which mostly rely on internally 
generated datasets with simulation software. 
C. Annotation

We annotated our dataset using the LabelImg. This
open source graphical image annotation tool can be 
downloaded on GitHub 2. It was selected because it 
saved the annotation files to the PASCAL VOC format 
XML and annotation files are saved separately for each 
image in the source folder. So, it will be easier for future 
users of this dataset to reuse the annotations.  
Unfortunately, right now there seems to be no standard on 
how to represent this information. In other words, each of 
the object detection systems expect a different format to 
represent the bounding box and class of each object: 

Darknet uses a text file, with the following format: 
[category number] [object center in X] [object center in Y] 
[object width in X] [object width in Y] 

Darkflow expects the annotations in the same format of the 
PASCAL VOC dataset in xml files with the following format: 

<width>width</width> 
<height>height</height> 
<depth>depth</depth> 

<bndbox> 
<xmin>xmin</xmin> 
<xmax>xmax</xmax> 
<ymax>ymax</ymax> 

</bndbox> 

Then we change XML files to text files using these 
equations: 

* Object center in X= (xmin+xmax)=2 
width 

* Object center in Y= (ymin+ymax)=2 

height 
* Object width in X= (xmax  xmin)=2 

width 
* Object width in Y= (ymax  ymin)=2 

height 
So, as we explained above, we build an annotated

dataset where each image has two separate files (text 
file and XML file) in the two formats. 

IV. NETWORKS CONFIGURATION AND TRAINING

This section explains the neural network architectures 
se-lected, the pre-processing alterations done and the 
training process suggested. 

2https://github.com/tzutalin/labelImg 

A. Network Architectures
We choose for this project some network architectures from

the most popular and successful object detection networks 
used today. Each one has its own benefits and drawbacks, 
with varying levels of accuracy and run-time speeds.  
In this section, we will briefly discuss their 
methodologies and the related design choices. 

1) Faster R-CNN: It is a project created by Shaoqing Ren,
Kaiming He, Ross Girshick and Jian Sun [8]. Similar to Fast R-
CNN, the image is provided as an input to a convolutional 
network which provides a convolutional feature map. Instead 
of using selective search algorithm on the feature map to 
identify the region proposals, Faster R-CNN is a very accurate 
region-based deep detection model which improves Fast R-
CNN by introducing the Region Proposal Networks. The 
predicted region proposals are then reshaped using a Region 
of interest (ROI) pooling layer which is then used to classify 
the image within the proposed region and predict the offset 
values for the bounding boxes. 

2) Single Shot Multibox Detector (SSD): It is a popular
algorithm in object detection [15]. It’s generally faster than Faster 
RCNN. It uses some middle layers, called feature maps, 
in the network to detect objects of different sizes instead of 
predicting using the last layer, as done in traditional 
networks. Single deep learning network can significantly 
reduce computation time and improve inference accuracy. 

3) Four versions of YOLO and Tiny-YOLO: The You only
look once (YOLO), first proposed in [22], is an object detec-
tion system targeted for real-time processing, which performs 
the region proposal and classification in one pass over the 
input image. It leads to a significant speed-up when compared 
to two-stage methods like Faster R-CNN. Two updates to the 
original YOLO method are described in [20], [21] with some 
modifications to increase the detection precision and speed.  
In this project, we use the improved versions of the 
models which are Yolo v2, Tiny-Yolo v2 [20], Yolo v3 
and Tiny-Yolo v3 [21]. 

B. Training Process
To train all the supervised deep models, we use an

NVIDIA GeForce GTX 2080 Ti GPU with 11GB of GPU 
memory on a Linux machine (ubuntu 18.04). In addition we 
used CUDA Deep Neural Network library (cuDNN) which is 
a GPU-accelerated library created by NVIDIA to improve 
deep neural network performance. CuDNN provides 
optimized implementations for common routines such as 
forward and backward convolution, pooling, normalization, 
and activation layers. TensorFlow [16] and Darknet [23] 
libraries are used for implementation. 
Collecting labeled data is expensive. However, training a
large neural network on a relatively small dataset, such
as our dataset, would lead to over-fitting. So, to
overcome this issue, we applied two methods:

3



Data augmentation: This technique has been shown to 
produce promising ways to increase the accuracy of 
detection tasks. We made some alterations to our 
existing dataset with rotation (angle=30 and angle=45) 
in order to increase the amount of training data. Neural 
network models consider additional as distinct images 
without concerning about the orientation. 

Fine tuning: This technique means taking weights of a 
trained neural network and use it as initialization for a 
new model being trained on data from the same 
domain. It is used to both speed up the training and 
overcome small dataset size. In our implementations, 
we initialize our models with weights of the same 
trained models on Pascal VOC dataset. 

Since the objects we aim to detect are different in term of 
size and shape, we calculated correctly tuned anchor 
boxes [11] to improve the detection of irregular objects. We 
stop the training when the loss no longer decreases. 

V. EVALUATION CRITERIA

We evaluate the different networks mentioned above 
using the following standard metrics: 

mAP (mean Average Precision): It is the first popular 
metric used for evaluating detection algorithms. Average 
precision computes the average precision value for recall 
value over 0 to 100. The mAP metric is the product of 
precision and recall of the detected bounding boxes. A 
higher value in mAP indicates a better performance. The 
mAP can be computed by calculating average pre-cision 
(AP) separately for each class, then calculating the 
average over the class. A detection is considered a true 
positive only if the Intersection over Union (IoU) is above 
0.5. AP summarizes a precision-recall curve as the 
weighted mean of precisions achieved at each threshold, 
using the increase in recall from the previous threshold 
as the weight: 

∑ 
AP= n(Rn-Rn  1) Pn, 

where Pn and Rn are the precision and recall at the nth

threshold. 
IoU (Intersection over Union): It is the second 
popular metric used for evaluating detection 
algorithms. It is given by the ratio of the area of 
intersection and the area of union of the predicted 
bounding box and the ground truth bounding box. 

IoU= AreaofOverlapAreaofUnion
These two metrics concisely describe the accuracy 
and the quality of object detections. Adding to that, 
we measure the runtime speed of the algorithms 
using a third metric. 
FPS (Frame per Second): It is the third important 
metric used for evaluating detection algorithms. It 
measures the number of frames processed by second. 

VI. PERFORMANCE EVALUATION AND RESULTS ANALYSIS

Detection results are obtained on a test set, with
images that do not appear in the train set. Our test set 
contains examples of every object mentioned in the data 
model with different background and camera position, to 
provide a realistic evalu-ation. 

A. Metrics
To evaluate the performance of the models in terms of

accuracy, we use the mAP. We set the IoU threshold to 
0.5, as suggested in [4]. If the classification of prediction 
matches the ground truth and IoU meets the threshold, 
the detection is considered as a correct prediction. 
Morevoer, to evaluate the performance of the models in 
terms of resource consumption, we use the FPS.  
In Table III and Table IV, we illustrate the results obtained on 
the test set of the different models in terms of accuracy (mAP) 
and runtime speed (FPS). As we can see, all the six network 
architectures have similar behavior in detecting overall 
classes; the best predicted object is the vessel and the worst 
one is the riverside class. In Table III, we notice that YOLO 
and Tiny-YOLO have lower mAP when compared to Faster R-
CNN and SSD. Conversely, Faster R-CNN and SSD have 
higher processing times, as shown in Table IV.  
In one hand, the Faster R-CNN model achieves much better 
detection performances compared to the other models 
although it is the slowest in terms of running time. In the other 
hand, YOLO v3 and SSD provide comparable detection perfor-
mances. Although Tiny-YOLO provides fast running time, its 
detection performance is not as good as the other models. 

TABLE III: Detection metrics in mAP and AP. 

Model mAP Person Riverside Vessel Infrastructure Road signals 
YOLO v3 60.36 64.87 27.53 80.16 68.08 61.14 
Tiny-YOLO v3 45.42 45.24 12.69 68.65 52.36 48.19 
YOLO v2 43.65 43.84 13.33 65.36 38.59 54.13 
Tiny-YOLO v2 40.95 41.89 14.07 60.98 43.61 44.20 
Faster R-CNN 72.14 76.2 49.67 92.96 76.35 65.52 
SSD300 50.31 62.63 29.65 56.9 56.15 46.21 

A model is said to be acting is real-time if its time 
response is less than the time response of a vessel. 
Then, to confirm whether the models are acting in real 
time conditions, we need to calculate the time a vessel 
make to stop, in real conditions.  
The navigation authority responsible for the management of 
the inland waterways network [19] indicates that "unless 
otherwise specified, signposts indicate limited speed on 
canals at 6 or 8 km/h and between 10 and 15 km/h in 
rivers". The type of ship, dimensions, mass and velocity are 
the parameters of greatest importance for the stopping 
distance and time of the ship. So, to calculate the minimum 
value of the stopping time (tmin), we should consider the 
maximum value of stopping distance (dmax) [7]. 
dmax= (loadmax * speedmax2/ (2* brake force) = 5.9 meters,
tmin = dmax = 1.41 seconds  

vessels′ sspeed 
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Hence, the results demonstrate that all the models, except 
the Faster R-CNN, validate their applicability in real-time 
object detection applications for inland navigation. 

TABLE IV: Detection metrics in FPS. 

Model FPS 
YOLO v3 96 
Tiny-YOLO v3 240 
YOLO v2 120 
Tiny-YOLO v2 160 
Faster R-CNN 0.48 
SSD300 4.54 

B. Prediction Results
In this section, we draw the predictions of the six models

for the same two images. Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9 
and Fig. 10 show the predictions of Faster R-CNN model, 
YOLO v3 model, Tiny-YOLO v3 model, YOLO v2 model, 
Tiny-YOLO v2 and SSD model, respectively.  
The result images reveal a correlation between detections in 
images and values in the Table III below. It is noticeable that 
all the models can detect almost all the classes with error 
percentages that differ from model to model and from image to 
image. By analyzing these results, we consider that Faster R-
CNN is the best method from a standpoint of accuracy, but it 
requires much more resources than other models in terms of 
run-time speed. Tiny-YOLO v3 is the fastest method and Yolo 
v3 has the ideal balance of accuracy and run-time speed. 
Hence, we confirm that despite the differences, the selected 
state-of-art models perform as well as in other domain appli-
cations since we have achieved similar results. 

Fig. 2: A sample of predicted images where the 
rectangles and text overlaid on the figures are the 
outputs generated by YOLO v3 at test time. 

Fig. 3: A sample of predicted images where the 
rectangles and text overlaid on the figures are the 
outputs generated by Tiny-YOLO v3 at test time. 

Fig. 4: A sample of predicted images where the 
rectangles and text overlaid on the figures are the 
outputs generated by YOLO v2 at test time. 

Fig. 5: A sample of predicted images where the 
rectangles and text overlaid on the figures are the 
outputs generated by Tiny-YOLO v2 at test time. 

Fig. 6: A sample of predicted images where the 
rectangles and text overlaid on the figures are the 
outputs generated by Faster-RCNN at test time. 

Fig. 7: A sample of predicted images where the 
rectangles and text overlaid on the figures are the 
outputs generated by SSD at test time. 

C. Detection of Particular Objects: riverside
The six models show encouraging performance in general

object detection. However, it still cannot identify and precisely 
localize particular objects, such as riverside in our case. As we 
notice in the Table III, the riverside class has the highest error 
values. In fact, this is due to the complexity of the class in 
terms of variations of its appearances, variations of the type of 
river, variations of the day time, for instance illumination 
appears to be totally different in the night, the presence of 
shadows of trees and vessels. Such situations are difficult 
even with human intervention.  
In Fig. 8, we evaluate the detections predicted by the Tiny- 
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YOLO v3 model, which has the worst performance in 
de-tecting the riverside class, on an image with only this 
class. We find some bounding boxes along the river, 
showing the edges. So, we conclude that even with this 
model, we can find useful results. Besides the results 
shown in Fig. 7, we confirm that these bounding boxes 
can be sufficient for the purpose of autonomous vessels, 
since it can detect almost all the near objects. 

Fig. 8: Detections generated by Tiny-YOLO v3 on a particular 
image with a complicate environment (shadow of trees). 

VII. CONCLUSION AND DISCUSSION

Real-time object detection plays a crucial role in au-
tonomous vehicles as the information obtained using 
this concept can be used to direct the vehicle along the 
safest possible path by avoiding obstacles.  
In this work, we addressed the challenges involved in real-time 
inland navigation. We exploited the existing deep con-
volutional neural network architectures, specifically, we tested 
Faster RCNN, YOLO v3, Tiny-YOLO v3, YOLO v2, Tiny-YOLO 
v2 and SSD to solve this problem. To accrately represent the 
specific needs of fluvial environment and since no dataset is 
available in litterature, we made a dataset of 2488 images with 
openly accessible for the community working on this area. We 
annotated it with a data model that contains five classes: 
vessel, person, riverside, road signals and infrastructure. The 
first comparative results demonstrate the effectiveness of 
these models in the fluvial domain.  
In the future, in order to improve the performance of the 
detection, we consider increasing the size of the dataset by 
adding new annotated images and videos. In addition, we 
will apply a mathematical method to mark the edge of the 
river by a shape that accurately maps the navigation area. 
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