
HAL Id: hal-03023090
https://hal.science/hal-03023090

Submitted on 11 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Deep Learning-Based Real-Time Object Detection in
Inland Navigation

Metzli Ramirez-Martinez, Wided Hammedi, Brunet Philippe, Sidi Mohamed
Senouci, Mohamed-Ayoub Messous

To cite this version:
Metzli Ramirez-Martinez, Wided Hammedi, Brunet Philippe, Sidi Mohamed Senouci, Mohamed-
Ayoub Messous. Deep Learning-Based Real-Time Object Detection in Inland Navigation. 2019
IEEE Global Communications Conference (GLOBECOM), Dec 2019, Waikoloa, United States.
�10.1109/GLOBECOM38437.2019.9013931�. �hal-03023090�

https://hal.science/hal-03023090
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Deep Learning-Based Real-time Object Detection in
Inland Navigation

Wided HAMMEDI, Metzli RAMIREZ-MARTINEZ, Philippe BRUNET,
Sidi Mohammed SENOUCI, and Mohamed Ayoub MESSOUS

DRIVE Laboratory EA1859, Univ. Bourgogne Franche Comté, F58000 Nevers, France
{wided.hammedi,metzli.ramirez-martinez,philippe.brunet,sidi-mohammed.senouci,mohamed-ayoub.messous}@u-bourgogne.fr

Abstract—Semi-autonomous and fully-autonomous systems
must have knowledge about the objects in their environment to
ensure a safe navigation. Modern approaches implement deep
learning techniques to train a neural network for object
detection. This project will study the effectiveness of using
several promising algorithms such as Faster R-CNN, SSD,
and different versions of YOLO, to detect, classify, and track
objects in near real-time fluvial domain. Since no dataset is
available for this purpose in literature, we first started by
annotating a dataset of 2488 images with almost 35 400
annotations for training the convolutional neural network
architectures. We made this data set openly accessible for the
community working on this area. The other contribution of this
research is the adaptation and the configuration of deep
learning techniques used in other domains such as maritime
and road domain to fluvial domain for autonomous vessels in
which high accuracy and fast processing are vital. Experiments
demonstrated that detecting objects in such environment is
plausible in near real time with the selected algorithms.

Index Terms—Real time, Object detection, Intelligent
vehicles, Inland waterway vessels, Deep learning.

I. INTRODUCTION

Inland water transport is a viable alternative to road and rail
transport on European corridors. It is highly competitive with
respect to other modes of transportation, environmentally-
friendly, reliable, safe and could provide lower transportation
costs when moving large volumes of bulk cargo. However, the
specificities of the waterways bring as many opportunities as
new challenges for the automation of the transport vessels.
Autonomous vehicles have made significant inroads into the
area of transportation, but specifically in the terrestrial and
marine environments. Thus, the idea in this work to study the
performances of the methods used in these latters in inland
environment in order to ensure a safe navigation of an
autonomous vessels.

Specially, the object detection module of autonomous ves-
sels plays an essential role in safe maritime navigation. The
vessel needs to detect and avoid other nearby vessels and
infrastructure. The current research trend is employing deep
learning algorithms to learn useful features instead of hand-
designing them. In fact, since the rise of Convolutional Neural
Networks (CNNs) within the ImageNet [9] challenge, they have
gotten to be the foremost prevalent arrangement for com-mon
question acknowledgment issues such as classification,
localization, and location. They accomplished lower blunder
rates than the past state-of-the-art results. For this reason,

CNNs have been widely adopted in object recognition
systems in almost all domains in [2], [5] and [14].
The objective of the current work is to compare and
identify the most appropriate algorithm for object
detection in a fluvial environment in terms of accuracy,
run-time and resources consumption. The novelties of
this paper, compared to the state of art, consist of:

We produce a unique dataset for training deep visual de-
tection models for object detection in inland environment,
since there is no public dataset is available,
We evaluate the accuracy and performance of six
state-of-the-art object detection algorithms for the
problem of object detection in inland environment.

The rest of this paper is structured as follows. Section II
gives an overview on the object detection problem and
existing public datasets. In Section III, we detail the
characteristics of our proposed dataset. Then, we
describe the training process implementation in Section
IV. Finally, discussion on results and performance
evaluation are drawn in Section V and Section VI.

II. RELATED WORKS

In this section, object detection models, datasets and areas
of application are reviewed. We mainly focus on the suitability
of integrating the existing approaches to our problematic.

1) Object Detection: Computer vision has been especially a
curiously intrigue field in later a long time since self-driving
vehicles have taken centre stage. Generic object detection
aims at locating and classifying existing objects in any one
image and labeling them with rectangular bounding boxes to
show the confidences of existence. Nowadays, the
performance of object detection has been improved with the
Deep CNNs methods which have recently come to dominate
object recognition re-search due to their excellent performance
on many challenging datasets harvested from the web, such
as ImageNet [9]. They achieved top-1 and top-5 error rates of
37.5% and 17.0%, respectively, which is impressively superior
than the past state-of-the-art [9]. Among these methods,
Faster R-CNN, SSD and YOLO show a better performance of
detecting objects with different sizes in other application
domains such as recognizing the types of marine vessels in
sail [2], detecting people, cars, and roads [5], [13] and
detecting marine litter [14].

1

2) Public datasets: One of the biggest problems of
artificial intelligence, in general and image processing, is
having a good dataset that properly relates to the problem.
Besides that, the dataset has to be processed in a way that
the model can make sense of the information. That way the
model can successfully learn from that dataset. Scientific
datasets are, at least, intermediate results in many
scientific research projects. For some time, datasets were
not even published and even if they were published it was
mostly as a not re-usable by-product of the publication.
In maritime environment, we find public datasets VAIS (Visible
and Infrared Spectrums) and Marvel [10], used essentially for
classification in [18], [21] and [6]. Details of the VAIS dataset,
the most used dataset, are collected in Table I.

TABLE I: VAIS dataset.

Total images 2865
IR Images 1242
Visible Images 1623
Night IR Images 154
Number of classes 6

Among popular datasets used for Image detection, we
men-tion Pascal Visual Object Classes (Pascal VOC) [17]
dataset which contains 17 125 annotated images with 20
classes at the time of writing the article. This dataset was
created within a challenge in visual object recognition
funded by PASCAL network of excellence and then used to
test and evaluate the performance of different models.
However, there is not a public dataset annotated
destined for fluvial environment with its different
challenges that we detail below.

3) Object Detection in Maritime Environments: Target de-
tection in maritime environments has a place to the investigate
points that pick up small consideration in the field of computer
vision. Some applications exist such as collision avoidance for
autonomously operating vessels [3] or object detection in
general in [12] and [1].However, these results can not be
adapted to the fluvial environment since the two environments
are different as we will detail in the following section.

III. DATASET AND GROUND TRUTH LABELLING PROCESS

The characteristics of the fluvial environment are different
from those of the maritime environment. There are differences
in natural features (rocks, waterfalls, rapids, etc). Seas are
wider than rivers. So, the canal size is smaller that the
waterway in the maritime environment. In addition, there are
other differences related to the infrastructure. In fact, the river
ships are smaller, the itineraries are more port-intensive and
the ships are closer to the land. In addition, locks and bridges
do not exist in the maritime environment and limit of the canal
is not marked by a physical infrastructure, but generally with
trees. Consequently, rules of inland navigation differ from the
rules of maritime navigation.

So, to evaluate the performances of Neural Networks, we
need a specific dataset that meets these requirements.

Since no public dataset exists as described above, we make
our own dataset1 following a data model we propose and
provide annotated images in two formats, as detailed below.

A. Data Model
The objects we aim to detect are divided in five categories:

Riverside: As there is no lane markings in rivers, spec-
ifying the exact location of a lane marking in a camera
image may be very ambiguous. So, in this category, we
try to get as close as safely possible to the riverside,
Vessel: In this category, we added different types of
vessels that can be found in a river,

Person: We added this category to detect fishermen or
other persons on the river’s waters or persons in the

riverside, since ships could be very close to the riverside,
Infrastructure: In this category, we find two types of

infrastructure that are locks and bridges,
Road signals: As for cars as for boats, vehicles
follow the traffic code by respecting the road
signals. So, in this category we collect road signals
we can find in real situations.

Other versions of this data model were tested: one including a
label for waves (rejected due to lack of data of this class and in
consequence they present a lower accuracy) and models with
multiple classes for different infrastructure and ships (rejected
for lack of data on some classes and lower detection
performance overall). Both versions achieved lower accuracy
than this model on all networks. Examples of images
annotated to have class-labels and bounding boxes from this
data model can be seen in Fig. 1.

Fig. 1: A sample from the training dataset are shown.
Multiple rectangular bounding boxes are drawn to delimit
objects with corresponding corresponding class labels.

Although following a single object is the most common
object-following scenario, detecting multiple objects is
neces-sary for our application. As shown in Fig. 1, we add
multi-object detection capabilities by drawing multiple
bounding boxes for multiple objects in the same image.

B. Dataset Construction
Our dataset is composed of 2 488 images. The number of

annotations for each class is detailed in the Table II. In order to
get close to real conditions, we selected images with different
backgrounds, camera positions, weather conditions and day
time. This allows us to create a dataset for training which

1The dataset and trained models will be made available for
academic research purposes

2

TABLE II: Proposed dataset.

Total images 2488
Riverside 28084
Vessels 3496
Persons 1545
Infrastructure 2051
Road signals 193
Number of classes 5

closely conforms to real-world conditions, unlike
previous works, which mostly rely on internally
generated datasets with simulation software.
C. Annotation

We annotated our dataset using the LabelImg. This
open source graphical image annotation tool can be
downloaded on GitHub 2. It was selected because it
saved the annotation files to the PASCAL VOC format
XML and annotation files are saved separately for each
image in the source folder. So, it will be easier for future
users of this dataset to reuse the annotations.
Unfortunately, right now there seems to be no standard on
how to represent this information. In other words, each of
the object detection systems expect a different format to
represent the bounding box and class of each object:

Darknet uses a text file, with the following format:
[category number] [object center in X] [object center in Y]
[object width in X] [object width in Y]

Darkflow expects the annotations in the same format of the
PASCAL VOC dataset in xml files with the following format:

<width>width</width>
<height>height</height>
<depth>depth</depth>

<bndbox>
<xmin>xmin</xmin>
<xmax>xmax</xmax>
<ymax>ymax</ymax>

</bndbox>

Then we change XML files to text files using these
equations:

* Object center in X= (xmin+xmax)=2
width

* Object center in Y= (ymin+ymax)=2

height
* Object width in X= (xmax xmin)=2

width
* Object width in Y= (ymax ymin)=2

height
So, as we explained above, we build an annotated

dataset where each image has two separate files (text
file and XML file) in the two formats.

IV. NETWORKS CONFIGURATION AND TRAINING

This section explains the neural network architectures
se-lected, the pre-processing alterations done and the
training process suggested.

2https://github.com/tzutalin/labelImg

A. Network Architectures
We choose for this project some network architectures from

the most popular and successful object detection networks
used today. Each one has its own benefits and drawbacks,
with varying levels of accuracy and run-time speeds.
In this section, we will briefly discuss their
methodologies and the related design choices.

1) Faster R-CNN: It is a project created by Shaoqing Ren,
Kaiming He, Ross Girshick and Jian Sun [8]. Similar to Fast R-
CNN, the image is provided as an input to a convolutional
network which provides a convolutional feature map. Instead
of using selective search algorithm on the feature map to
identify the region proposals, Faster R-CNN is a very accurate
region-based deep detection model which improves Fast R-
CNN by introducing the Region Proposal Networks. The
predicted region proposals are then reshaped using a Region
of interest (ROI) pooling layer which is then used to classify
the image within the proposed region and predict the offset
values for the bounding boxes.

2) Single Shot Multibox Detector (SSD): It is a popular
algorithm in object detection [15]. It’s generally faster than Faster
RCNN. It uses some middle layers, called feature maps,
in the network to detect objects of different sizes instead of
predicting using the last layer, as done in traditional
networks. Single deep learning network can significantly
reduce computation time and improve inference accuracy.

3) Four versions of YOLO and Tiny-YOLO: The You only
look once (YOLO), first proposed in [22], is an object detec-
tion system targeted for real-time processing, which performs
the region proposal and classification in one pass over the
input image. It leads to a significant speed-up when compared
to two-stage methods like Faster R-CNN. Two updates to the
original YOLO method are described in [20], [21] with some
modifications to increase the detection precision and speed.
In this project, we use the improved versions of the
models which are Yolo v2, Tiny-Yolo v2 [20], Yolo v3
and Tiny-Yolo v3 [21].

B. Training Process
To train all the supervised deep models, we use an

NVIDIA GeForce GTX 2080 Ti GPU with 11GB of GPU
memory on a Linux machine (ubuntu 18.04). In addition we
used CUDA Deep Neural Network library (cuDNN) which is
a GPU-accelerated library created by NVIDIA to improve
deep neural network performance. CuDNN provides
optimized implementations for common routines such as
forward and backward convolution, pooling, normalization,
and activation layers. TensorFlow [16] and Darknet [23]
libraries are used for implementation.
Collecting labeled data is expensive. However, training a
large neural network on a relatively small dataset, such
as our dataset, would lead to over-fitting. So, to
overcome this issue, we applied two methods:

3

Data augmentation: This technique has been shown to
produce promising ways to increase the accuracy of
detection tasks. We made some alterations to our
existing dataset with rotation (angle=30 and angle=45)
in order to increase the amount of training data. Neural
network models consider additional as distinct images
without concerning about the orientation.

Fine tuning: This technique means taking weights of a
trained neural network and use it as initialization for a
new model being trained on data from the same
domain. It is used to both speed up the training and
overcome small dataset size. In our implementations,
we initialize our models with weights of the same
trained models on Pascal VOC dataset.

Since the objects we aim to detect are different in term of
size and shape, we calculated correctly tuned anchor
boxes [11] to improve the detection of irregular objects. We
stop the training when the loss no longer decreases.

V. EVALUATION CRITERIA

We evaluate the different networks mentioned above
using the following standard metrics:

mAP (mean Average Precision): It is the first popular
metric used for evaluating detection algorithms. Average
precision computes the average precision value for recall
value over 0 to 100. The mAP metric is the product of
precision and recall of the detected bounding boxes. A
higher value in mAP indicates a better performance. The
mAP can be computed by calculating average pre-cision
(AP) separately for each class, then calculating the
average over the class. A detection is considered a true
positive only if the Intersection over Union (IoU) is above
0.5. AP summarizes a precision-recall curve as the
weighted mean of precisions achieved at each threshold,
using the increase in recall from the previous threshold
as the weight:

∑
AP= n(Rn-Rn 1) Pn,

where Pn and Rn are the precision and recall at the nth

threshold.
IoU (Intersection over Union): It is the second
popular metric used for evaluating detection
algorithms. It is given by the ratio of the area of
intersection and the area of union of the predicted
bounding box and the ground truth bounding box.

IoU= AreaofOverlapAreaofUnion
These two metrics concisely describe the accuracy
and the quality of object detections. Adding to that,
we measure the runtime speed of the algorithms
using a third metric.
FPS (Frame per Second): It is the third important
metric used for evaluating detection algorithms. It
measures the number of frames processed by second.

VI. PERFORMANCE EVALUATION AND RESULTS ANALYSIS

Detection results are obtained on a test set, with
images that do not appear in the train set. Our test set
contains examples of every object mentioned in the data
model with different background and camera position, to
provide a realistic evalu-ation.

A. Metrics
To evaluate the performance of the models in terms of

accuracy, we use the mAP. We set the IoU threshold to
0.5, as suggested in [4]. If the classification of prediction
matches the ground truth and IoU meets the threshold,
the detection is considered as a correct prediction.
Morevoer, to evaluate the performance of the models in
terms of resource consumption, we use the FPS.
In Table III and Table IV, we illustrate the results obtained on
the test set of the different models in terms of accuracy (mAP)
and runtime speed (FPS). As we can see, all the six network
architectures have similar behavior in detecting overall
classes; the best predicted object is the vessel and the worst
one is the riverside class. In Table III, we notice that YOLO
and Tiny-YOLO have lower mAP when compared to Faster R-
CNN and SSD. Conversely, Faster R-CNN and SSD have
higher processing times, as shown in Table IV.
In one hand, the Faster R-CNN model achieves much better
detection performances compared to the other models
although it is the slowest in terms of running time. In the other
hand, YOLO v3 and SSD provide comparable detection perfor-
mances. Although Tiny-YOLO provides fast running time, its
detection performance is not as good as the other models.

TABLE III: Detection metrics in mAP and AP.

Model mAP Person Riverside Vessel Infrastructure Road signals
YOLO v3 60.36 64.87 27.53 80.16 68.08 61.14
Tiny-YOLO v3 45.42 45.24 12.69 68.65 52.36 48.19
YOLO v2 43.65 43.84 13.33 65.36 38.59 54.13
Tiny-YOLO v2 40.95 41.89 14.07 60.98 43.61 44.20
Faster R-CNN 72.14 76.2 49.67 92.96 76.35 65.52
SSD300 50.31 62.63 29.65 56.9 56.15 46.21

A model is said to be acting is real-time if its time
response is less than the time response of a vessel.
Then, to confirm whether the models are acting in real
time conditions, we need to calculate the time a vessel
make to stop, in real conditions.
The navigation authority responsible for the management of
the inland waterways network [19] indicates that "unless
otherwise specified, signposts indicate limited speed on
canals at 6 or 8 km/h and between 10 and 15 km/h in
rivers". The type of ship, dimensions, mass and velocity are
the parameters of greatest importance for the stopping
distance and time of the ship. So, to calculate the minimum
value of the stopping time (tmin), we should consider the
maximum value of stopping distance (dmax) [7].
dmax= (loadmax * speedmax2/ (2* brake force) = 5.9 meters,
tmin = dmax = 1.41 seconds

vessels′ sspeed

4

Hence, the results demonstrate that all the models, except
the Faster R-CNN, validate their applicability in real-time
object detection applications for inland navigation.

TABLE IV: Detection metrics in FPS.

Model FPS
YOLO v3 96
Tiny-YOLO v3 240
YOLO v2 120
Tiny-YOLO v2 160
Faster R-CNN 0.48
SSD300 4.54

B. Prediction Results
In this section, we draw the predictions of the six models

for the same two images. Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9
and Fig. 10 show the predictions of Faster R-CNN model,
YOLO v3 model, Tiny-YOLO v3 model, YOLO v2 model,
Tiny-YOLO v2 and SSD model, respectively.
The result images reveal a correlation between detections in
images and values in the Table III below. It is noticeable that
all the models can detect almost all the classes with error
percentages that differ from model to model and from image to
image. By analyzing these results, we consider that Faster R-
CNN is the best method from a standpoint of accuracy, but it
requires much more resources than other models in terms of
run-time speed. Tiny-YOLO v3 is the fastest method and Yolo
v3 has the ideal balance of accuracy and run-time speed.
Hence, we confirm that despite the differences, the selected
state-of-art models perform as well as in other domain appli-
cations since we have achieved similar results.

Fig. 2: A sample of predicted images where the
rectangles and text overlaid on the figures are the
outputs generated by YOLO v3 at test time.

Fig. 3: A sample of predicted images where the
rectangles and text overlaid on the figures are the
outputs generated by Tiny-YOLO v3 at test time.

Fig. 4: A sample of predicted images where the
rectangles and text overlaid on the figures are the
outputs generated by YOLO v2 at test time.

Fig. 5: A sample of predicted images where the
rectangles and text overlaid on the figures are the
outputs generated by Tiny-YOLO v2 at test time.

Fig. 6: A sample of predicted images where the
rectangles and text overlaid on the figures are the
outputs generated by Faster-RCNN at test time.

Fig. 7: A sample of predicted images where the
rectangles and text overlaid on the figures are the
outputs generated by SSD at test time.

C. Detection of Particular Objects: riverside
The six models show encouraging performance in general

object detection. However, it still cannot identify and precisely
localize particular objects, such as riverside in our case. As we
notice in the Table III, the riverside class has the highest error
values. In fact, this is due to the complexity of the class in
terms of variations of its appearances, variations of the type of
river, variations of the day time, for instance illumination
appears to be totally different in the night, the presence of
shadows of trees and vessels. Such situations are difficult
even with human intervention.
In Fig. 8, we evaluate the detections predicted by the Tiny-

5

YOLO v3 model, which has the worst performance in
de-tecting the riverside class, on an image with only this
class. We find some bounding boxes along the river,
showing the edges. So, we conclude that even with this
model, we can find useful results. Besides the results
shown in Fig. 7, we confirm that these bounding boxes
can be sufficient for the purpose of autonomous vessels,
since it can detect almost all the near objects.

Fig. 8: Detections generated by Tiny-YOLO v3 on a particular
image with a complicate environment (shadow of trees).

VII. CONCLUSION AND DISCUSSION

Real-time object detection plays a crucial role in au-
tonomous vehicles as the information obtained using
this concept can be used to direct the vehicle along the
safest possible path by avoiding obstacles.
In this work, we addressed the challenges involved in real-time
inland navigation. We exploited the existing deep con-
volutional neural network architectures, specifically, we tested
Faster RCNN, YOLO v3, Tiny-YOLO v3, YOLO v2, Tiny-YOLO
v2 and SSD to solve this problem. To accrately represent the
specific needs of fluvial environment and since no dataset is
available in litterature, we made a dataset of 2488 images with
openly accessible for the community working on this area. We
annotated it with a data model that contains five classes:
vessel, person, riverside, road signals and infrastructure. The
first comparative results demonstrate the effectiveness of
these models in the fluvial domain.
In the future, in order to improve the performance of the
detection, we consider increasing the size of the dataset by
adding new annotated images and videos. In addition, we
will apply a mathematical method to mark the edge of the
river by a shape that accurately maps the navigation area.

ACKNOWLEDGMENT

This work is achieved as part of a project partially
funded by BFC region (Bourgogne-Franche-Comté).

REFERENCES

[1] S. Moosbauer, D. Koenig, J. Jaekel and M. Teutsch. "A
Benchmark for Deep Learning Based Object Detection in
Maritime Environments". In IEEE PBVS (June 2019)

[2] Aiswarya S Kumar and Elizabeth Sherly, “A convolutional neural net-
work for visual object recognition in marine sector” in 2nd International
Conference for Convergence in Technology (I2CT), 2017

[3] T. Statheros, G. Howells, and Klaus McDonald Maier. "Autonomous
ship collision avoidance navigation concepts, technologies and tech-
niques". in The Journal of Navigation, 61(1):129–142, 2008.

[4] Cai, Z., Vasconcelos, N. “Cascade r-cnn: Delving into high quality
object detection.“ In: IEEE CVPR (June 2018)

[5] Yu-Ho Tseng and Shau-Shiun Jan, ” Combination of Computer Vision
Detection and Segmentation for Autonomous Driving” , in IEEE/ION
Position, Location and Navigation Symposium (PLANS), 2018.

[6] Atmane Khellal, Hongbin Ma and Qing Fei “Convolutional Neural
Network Based on Extreme Learning Machine for Maritime Ships
Recognition in Infrared Images” in mdpi sensors (2018).

[7] Jean Sommet and François Parthiot ”Distances d’arrêl des
grands navires en canal” in La Houille Blanche, 2009

[8] Shaoqing Ren, Kaiming He, Ross Girshick and Jian Sun, “Faster
R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks,” NIPS, 2015.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li and Li Fei-Fei,
“ImageNet: A large-scale hierarchical image database”, in IEEE
Conference on Computer Vision and Pattern Recognition, 2009.

[10] E. Gundogdu, B. Solmaz, V Yucesoy, and A. Koc. "Marvel: A
large-scale image dataset for maritime vessels". In ACCV, 2016

[11] Tong Yang, Xiangyu Zhang, Zeming Li, Wenqiang Zhang and
Jian Sun, "MetaAnchor: Learning to Detect Objects with
Customized Anchors", in NIPS, 2018.

[12] Dilip K. Prasad1, C. Krishna Prasath, Deepu Rajan, Lily Rachmawati,
Eshan Rajabally, and Chai Quek, "Object Detection in a Maritime Envi-
ronment: Performance Evaluation of Background Subtraction Methods" in
IEEE Transactions on Intelligent Transportation Systems (July 2018)

[13] Petru Soviany, Radu Tudor Ionescu "Optimizing the Trade-off between
Single-Stage and Two-Stage Deep Object Detectors using Image Diffi-
culty Prediction" In: Proceedings of SYNASC, pp. 1–6, (2018)

[14] Michael Fulton, Jungseok Hong, Md Jahidul Islam, Junaed
Sattar, “Robotic detection of marine litter using deep visual
detection models” , in IROS, 2018.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. E. Reed. "SSD:
single shot multibox detector". CoRR, abs/1512.02325,2015.

[16] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, et al., "Tensorow:
Large-scale machine learning on heterogeneous distributed
systems," arXiv preprint arXiv:1603.04467, 2016.

[17] Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C.,
Winn, J., and Zisserman, A. “The Pascal visual object classes
challenge: A retrospective “. IJCV, 111(1):98–136, 2015.

[18] Mabel M. Zhang, Jean Choi, Kostas Daniilidis, Michael T. Wolf and
Christopher Kanan, “VAIS: A dataset for recognizing maritime imagery in
the visible and infrared spectrums,” in IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2015

[19] Voies navigables de France, "http://www.vnf.fr/vnf/", Accessed:
05-04-2019.

[20] J. Redmon and A. Farhadi. YOLO9000: Better, faster,stronger. In
CVPR, 2017

[21] J. Redmon and A. Farhadi. "Yolov3: An incremental
improvement". Technical report, CoRR, abs/1804.02767, 2018.

[22] Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: "You only look
once: unified, real-time object detection". In: CVPR (2016)

[23] J. Redmon and A. Farhadi, "yolo."
https://pjreddie.com/darknet/yolo/, 2017. Accessed: 04-04-2019.

6

