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ABSTRACT OF THE THESIS

Age of Information in Multiple Sensing

By

Alireza Javani

Master of Science in Electrical Engineering & Computer Science

University of California, Irvine, 2021

Professor Zhiying Wang, Chair

Having timely and fresh knowledge about the current state of information sources is critical

in a variety of applications. In particular, a status update may arrive at the destination much

later than its generation time due to processing and communication delays. The freshness of

the status update at the destination is captured by the notion of age of information. In this

study, we first analyze a network with a single source, n servers, and the monitor (destina-

tion). The servers independently sense the source of information and send the status update

to the monitor. We then extend our result to multiple independent sources of information in

the presence of n servers. We assume that updates arrive at the servers according to Poisson

random processes. Each server sends its update to the monitor through a direct link, which

is modeled as a queue. The service time to transmit an update is considered to be an ex-

ponential random variable. We examine both homogeneous and heterogeneous service and

arrival rates for the single-source case, and only homogeneous arrival and service rates for the

multiple sources case. We derive a closed-form expression for the average age of information

under a last-come-first-serve (LCFS) queue for a single source and arbitrary n homogeneous

servers. For n = 2, 3, we derive the explicit average age of information for arbitrary sources

and homogeneous servers, and for a single source and heterogeneous servers. For n = 2 we

find the optimal arrival rates given fixed sum arrival rate and service rates.

vii



Chapter 1

Introduction

Widespread sensor network applications such as health monitoring using wireless sensors [1]

and the Internet of things (IoT) [2, 3], as well as applications like stock market trading and

vehicular networks [4], require sending several status updates to their designated recipients

(called monitors). Outdated information in the monitoring facility may lead to undesired

situations. As a result, having the data at the monitor as fresh as possible is crucial.

In order to quantify the freshness of the received status update, the age of information(AoI)

metric was introduced in [5]. For an update received by the monitor, AoI is defined as the time

elapsed since the generation of the update. AoI captures the timeliness of status updates,

which is different from other standard communication metrics like delay and throughput.

It is affected by the inter-arrival time of updates and the delay that is caused by queuing

during update processing and transmission.

The AoI has been applied to different network models as a performance metric for various

communication systems that timeliness of data is critical , e.g., trust-aware resource allo-

cation schemes [6, 7], source nodes powered by energy harvesting [8–12], wireless erasure

networks and coding [13–17], scheduling in networks [18–22], and unmanned aerial vehicle
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(UAV)-assisted communication systems [23–26].

In [5], authors considered the single-source single-server and first-come-first-serve (FCFS)

queue model and determined the arrival rate that minimizes AoI. Different cases of multiple-

source single-server under FCFS and last-come-first-serve (LCFS) were considered in [27]

and the region of feasible age was derived. In [28,29], the system is modeled as a source that

submits status updates to a network of parallel and serial servers, respectively, for delivery to

a monitor and AoI is evaluated. The parallel-server network is also studied in [30] when the

number of servers is 2 or infinite, and the average AoI for FCFS queue model was derived.

Authors in [31] formulated a discrete-time decision problem in order to find a scheduling

policy for minimizing the expected weighted sum of AoI. A multi-source multi-hop setting

in broadcast wireless networks was investigated in [32] and a fundamental lower bound on

the average AoI was derived. Different scheduling policies with throughput constraints were

considered in [33] to minimize AoI. Another age-related metric of peak AoI was introduced

in [34], which corresponds to the age of information at the monitor right before the receipt of

the next update. The average peak AoI minimization in IoT networks and wireless systems

was considered in [35, 36]. The problem of minimizing the average age in energy harvesting

sources by manipulating the update generation process was studied in [37, 38]. Maximizing

energy efficiency of wireless sensor networks that include constraints on AoI is investigated

in [39].

We consider AoI in a multiple-server network. We assume that a number of shared sources

are sensed and then the data is transmitted to the monitor by n independent servers. For

example, the sources of information can be some shared environmental parameters, and

independently operated sensors in the surrounding area obtain such information. For another

example, the source of information can be the prices of several stocks which is transmitted

to the user by multiple independent service providers. Throughout this thesis, a sensor or a

service provider is called a server, since it is responsible to serve this update to the monitor.
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We assume that status updates arrive at the servers independently according to Poisson

random processes, and the server is modeled as a queue whose service time for an update is

exponentially distributed. We assume information sources are independent and are sensed

by n independent servers.

In this thesis we study the average age of information as in [5]. We mainly consider LCFS

with preemption in service (in short, LCFS) queue model, namely, upon the arrival of a new

update, the server immediately starts to serve it and drops any old update being served. We

derive a closed-form formula of the average AoI for LCFS and a single source. For multiple

sources, AoI formula is derived for arbitrary number of sources and n = 2, 3 servers. In

addition, the heterogeneous network with a single source is considered. To obtain the AoI,

we use the stochastic hybrid system (SHS) analysis similar to [27,28].

This thesis is organized as follows. Section 1.1 formally introduces the system model of

interest, and provides preliminaries on SHS. In subsection 2.1, we derive the average age of

information formula by applying SHS method to our model when we have a single information

source and the network is homogeneous. In subsection 2.2 we derive AoI for arbitrary number

of information sources when n = 2, 3. In section 3.1, we investigate the heterogeneous

network when we have a single source and n = 2, 3 and find the optimal arrival rate at each

server when n = 2. At the end, the conclusion follows in section 3.2.

1.1 Background

Notation: we use boldface for vectors, and normal font with a subscript for its elements. For

example, for a vector x, the j-th element is denoted by xj. For non-negative integers a and

b ≥ a, we define [a : b] , {a, . . . , b}, [a] , [1 : a]. If a > b, [a : b] = ∅.

In this section, we first present our network model, and then briefly review the stochastic
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hybrid system analysis from [27]. The network consists of m information sources that are

sensed by n independent servers as illustrated in Figure 1.1. Updates after going through

separate links are aggregated at the monitor side. The interest of this thesis is the average AoI

at the monitor. Server j collects updates of source i following a Poisson random process with

rate λ(i)j and the service time is an exponential random variable with average 1
µj
, independent

of all other servers, j ∈ [n], i ∈ [m]. A network is called homogeneous if λ(i)j = λ(i), µj = µ, for

all j ∈ [n], i ∈ [m], otherwise, it is heterogeneous. In case of a single source in a homogeneous

network, we denote λ(1) simply by λ.

Consider a particular source. Suppose the freshest update at the monitor at time t is gen-

erated at time u(t), the age of information at the monitor (in short, AoI) is defined as

∆(t) = t − u(t), which is the time elapsed since the generation of the last received update.

From the definition, it is clear that AoI linearly increases at a unit rate with respect to

t, except some reset jumps to a lower value at points when the monitor receives a fresher

update from the source. The age of information of our network is shown in Figure 1.2. Let

t1, t2, . . . , tN be the generation time of all updates at all servers in increasing order. The

black dashed lines show the age of every update. Let T1, T2, . . . , TN be the receipt time of

all updates. The red solid lines show AoI.

We note a key difference between the model in this work and most previous models. Updates

come from different servers, therefore they might be out of order at the monitor and thus

a new arrived update might not have any effect on AoI because a fresher update is already

delivered. As an example, from the 6 updates shown in Figure 1.2, useful updates that change

AoI are updates 1, 3, 4 and 6, while the rest are disregarded as their information when arrived

at the monitor is obsolete. Thus among all the received updates for AoI analyses, we only

need to consider the useful ones that lead to a change in AoI.

The average AoI is the limit of the average age over time ∆ , limT→∞
∫ T
0

∆(t)
/
T , and

for a stationary ergodic system, it is also the limit of the average age over the ensemble
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Figure 1.2: AoI for a network with n servers.
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∆ = limt→∞ E[∆(t)].

We view our system as a stochastic hybrid system (SHS) and apply a method first introduced

in [27] in order to calculate AoI. We can thus obtain the average AoI under LCFS with

preemption in service, or in short, LCFS.

In SHS, the state is composed of a discrete state and a continuous state. The discrete

state q(t) ∈ Q, for a discrete set Q, is a continuous-time discrete Markov chain (e.g., to

represent the number of idle servers in the network), and the continuous-time continuous

state x(t) = [x0(t), x1(t), . . . , xn(t)] ∈ Rn+1 is the stochastic process for AoI. We use x0(t)

to represent the age at the monitor, and xj(t) for the age at the j-th server, j = 1, 2, . . . , n.

Graphically, we represent each state q ∈ Q by a node. For the discrete Markov chain q(t),

transitions happen from one state to another through directed transition edge l, and the

time spent before the transition occurs is exponentially distributed with rate λ(l). Note that

it is possible to transit from the same state to itself. The transition occurs when an update

arrives at a server, or an update is received at the monitor. Thus the transition rate is the

update arrival rate or the service rate λ(l) ∈ [λ
(1)
1 , ..., λ

(m)
n , µ1, ..., µn]. Denoted by L′q and

Lq the sets of incoming and outgoing transitions of state q, respectively. When transition

l occurs, we write that the discrete state transits from ql to q′l. For instance, if we have 2

states and considering the transition l from state 1 to state 2, we have ql = 1 and q′l = 2

which shows that state 2 is an outgoing transition for state 1 and state 1 is an incoming

transition for state 2. For a transition, we denote that the continuous state changes from x

to x′. In our problem, this transition is linear in the vector space of Rn+1, i.e., x′ = xAl,

for some real matrix Al of size (n + 1) × (n + 1). Note that when we have no transition,

the age grows at a unit rate for the monitor and relevant servers, and is kept unchanged

for irrelevant servers. Hence, within the discrete state q, x(t) evolves as a piece-wise linear

function in time, namely, ∂x(t)
∂t

= bq, for some bq ∈ {0, 1}n+1. In other words, the age

grows at a unit rate for the monitor and relevant servers; and the age is kept unchanged for
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irrelevant servers. For our purpose, we consider the discrete state probability

πq̂(t) , E[δq̂,q(t)] = P [q(t) = q̂], (1.1)

and the correlation between the continuous state x(t) and the discrete state q(t):

vq̂ = [vq̂0(t), . . . , vq̂n(t)] , E[x(t)δq̂,q(t)]. (1.2)

Here δ·,· denotes the Kronecker delta function. When the discrete state q(t) is ergodic,

πq(t) converges uniquely to the stationary probability πq, for all q ∈ Q. We can find these

stationary probabilities from the following set of equations knowing that
∑

q∈Q πq = 1,

πq
∑
l∈Lq

λ(l) =
∑
l∈L′

q

λ(l)πql . q ∈ Q

A key lemma we use to develop AoI for our LCFS queue model is the following from [27],

which was derived from the general SHS results in [40].

Lemma 1. [27] If the discrete-state Markov chain q(t) is ergodic with stationary distribution

π and we can find a non-negative solution of {vq, q ∈ Q} such that

vq
∑
l∈Lq

λ(l) = bqπq +
∑
l∈L′

q

λ(l)vqlAl, q ∈ Q, (1.3)

then the average age of information is given by

∆ =
∑
q∈Q

vq0. (1.4)
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Chapter 2

AoI in Homogeneous Networks

2.1 Single Source and Multiple Servers

In this section, we derive AoI with the LCFS queue for the single-source n-server homoge-

neous network with arrival rate λ and service rate µ at all servers. Note that to compute

the average AoI, Lemma 1 requires solving |Q|(n + 1) linear equations of {vq, q ∈ Q}. To

obtain explicit solutions for these equations, the complexity grows with the number of dis-

crete states. Since the discrete state typically represents the number of idle servers in the

system for homogeneous servers, |Q| should be n + 1. In what follows, we introduce a

method inspired by [28] to reduce the number of discrete states and efficiently describe the

transitions.

We define our continuous state x at a time as follows: the first element x0 is AoI at the

monitor, x1 is the freshest update among all updates in the servers, and x2 is the second

freshest update in the servers, etc. With this definition, we have x1 ≤ x2 ≤ .... ≤ xn, for

any time. Note that the index i of xi does not represent a physical server index, but the i-th

smallest age of information among the n servers. The physical server index for xi changes

8



Figure 2.1: SHS for a single source and n homogeneous servers.

with each transition. We say that the server corresponding to xi is the i-th virtual server.

A transition l is triggered by the arrival of an update at a server, or the delivery of an

update to the monitor. Recall that we use x and x′ to denote AoI continuous state vector

right before and after the transition l.

When one update arrives at the monitor and the server for that update becomes idle, we

put a fake update to the server using the method introduced in [28]. Thus the number of

discrete states is reduced to one, indicating that all servers are virtually busy. We denote

this state by q = 0. In particular, we put the current update that is in the monitor to an

idle server until the next update reaches this server. This assumption does not affect our

final calculation for AoI, because even if the fake update is delivered, AoI at the monitor

does not change.

When an update is delivered to the monitor from the k-th virtual server, the server becomes

idle and as previously stated, receives the fake update. The age at the monitor becomes

x′0 = xk, and the age at the k-th vitual server becomes x′k = x′0 = xk. In this scenario,

consider the update at the j-th virtual server, for j > k. Its delivery to the monitor does

not affect AoI since it is older than the current update of the monitor, i.e., xj ≥ xk = x′0.

Hence, we can adopt a fake preemption where the update for the j-th virtual server, for

all k ≤ j ≤ n, is preempted and replaced with the fake current update at the monitor.

Physically, these updates are not preempted and as a benefit, the servers do not need to

cooperate and can work in a distributed manner.

By utilizing virtual servers, fake update, and fake preemption, we reduce SHS to a single

9



l λ(l) x′ =xAl
0 λ [x0, 0, x2, x3, x4, ..., xn]
1 λ [x0, 0, x1, x3, x4, ..., xn]
2 λ [x0, 0, x1, x2, x4, ..., xn]

...
...

n− 1 λ [x0, 0, x1, x2, x3, .., xn−1]
n µ [x1, x1, x1, x1, ..., x1]

n+ 1 µ [x2, x1, x2, x2, ..., x2]
n+ 2 µ [x3, x1, x2, x3, ..., x3]

...
...

2n− 1 µ [xn, x1, x2, x3, ..., xn]

Table 2.1: Table of transitions for a single source and n homogeneous servers.

discrete state with linear transition Al. In Figure 2.1, we illustrate our SHS with discrete

state space of Q = {0}. The stationary distribution π0 is trivial and π0 = 1. We set

bq = [1, ..., 1] which indicates that the age at the monitor and the age of each update in

the system grows at a unit rate. The transitions are labeled l ∈ [0 : 2n − 1], and for each

transition l we list the transition rate and the transition mapping in Table 2.1. For simplicity,

we drop the index q = 0 in the vector v0, and write it as v = [v0, v1, . . . , vn]. Because we

have one state, xAl and vAl are in correspondence. Next, we describe the transitions in

Table 2.1.

Case I. l ∈ [0 : n − 1] : When a fresh update arrives at virtual server l + 1, the age at the

monitor remains the same and xl+1 becomes zero. This server has the smallest age, so we

take this zero and reassign it to the first virtual server, namely, x′1 = 0. Accordingly, virtual

server l+1 becomes virtual server 1, and virtual server 1 becomes virtual server 2, ..., virtual

server l becomes virtual server l+ 1. The transition rate is the arrival rate of the update, λ.

Case II. l ∈ [n : 2n − 1] : When an update is received at the monitor from virtual server

l+ 1− n, the age at the monitor changes to xl+1−n and this server becomes idle. Using fake

updates and fake preemption we assign x′j = xl+1−n, for all l+ 1−n ≤ j ≤ n. The transition

rate is the service rate of a server, µ.

10



Below we state our main theorem on the average AoI for the single-source n-server network.

Theorem 2.1. The average age of information at the monitor for homogeneous single-

source n-server network where each server has a LCFS queue is:

∆ =
1

µ

 1

nρ

n−1∑
j=1

j∏
i=1

ρ(n− i+ 1)

i+ (n− i)ρ
+

1

nρ
+

1

n2

n−1∏
i=1

ρ(n− i+ 1)

i+ (n− i)ρ

 , (2.1)

where ρ = λ
µ
.

Proof. Recall that v denotes the vector v0 for the single state q = 0. By Lemma 1 and the

fact that there is only one state, we need to calculate the vector v as a solution to (1.3), and

the 0-th coordinate v0 is AoI at the monitor. As mentioned before, vAl is in correspondence

with xAl, so we have:

(nλ+ nµ)v = [1, 1, 1, 1, 1, 1, 1, ..., 1]

+ λ[v0, 0, v2, v3, v4, ..., vn]

+ λ[v0, 0, v1, v3, v4, ..., vn]

+ λ[v0, 0, v1, v2, v4, ..., vn]

...
...

+ λ[v0, 0, v1, v2, v3, ..., vn−1]

+ µ[v1, v1, v1, v1, v1, ..., v1]

+ µ[v2, v1, v2, v2, v2, ..., v2]

+ µ[v3, v1, v2, v3, v3, ..., v3]

...
...

+ µ[vn, v1, v2, v3, ..., vn−1, vn]. (2.2)

11



From the 0th coordinate of (2.2), we have (nλ+ nµ)v0 = 1 + nλv0 + µ
∑n

j=1 vj, implying

v0 =
1

nµ
+

∑n
j=1 vj

n
. (2.3)

From the 1st coordinate of (2.2), it follows that v1 = 1
nλ
. Then, to calculate v0, we have to

calculate vi for i ∈ [2 : n]. From the i-th coordinate of (2.2),

((n− i+ 1)λ+ (i− 1)µ)vi = 1 + µ
i−1∑
j=1

vj + λ(n− i+ 1)vi−1. (2.4)

For i ∈ [2 : n− 1], from (2.4), we obtain

(iµ+ (n− i)λ)(vi+1 − vi) = λ(n− i+ 1)(vi − vi−1).

Hence, wi+1 , vi+1 − vi = λ(n−i+1)
(iµ+(n−i)λ)wi. Setting i = 2 in (2.4), we have

((n− 1)λ+ µ)v2 = 1 + µv1 + λ(n− 1)v1. (2.5)

Simplifying (2.5), we obtain w2 = v2 − v1 = 1
(n−1)λ+µ . Therefore, we write

wj =
1

nλ

j−1∏
i=1

λ(n− i+ 1)

iµ+ (n− i)λ
, 2 ≤ j ≤ n. (2.6)

Finally, setting i = n in (2.4),

(λ+ (n− 1)µ)vn = 1 + µ

n−1∑
j=1

vj + λvn−1,

12
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Figure 2.2: AoI versus the number of servers, for fixed total arrival rate. For each server,
the service rate µ = 1 and the total arrival rate nλ is shown in the x-axis.

implying µ
∑n

i=1 vi = µ
∑n−1

j=1 vj + µvn = (λ+ (n− 1)µ)vn + µvn − 1− λvn−1. Hence,

1

n

n∑
i=1

vi =
λ

nµ
wn + vn −

1

nµ
. (2.7)

Combining (2.3) and (2.7), we obtain the average AoI as

∆ = v0 = vn +
λ

nµ
wn =

n∑
j=2

wj +
1

nλ
+

λ

nµ
wn,

which is simplified to (2.1) using (2.6).

Figure 2.2 shows AoI when the total arrival rate nλ is fixed and n = 1, 2, 3, 4, 10. We

observe that for up to 4 servers, a significant decrease in AoI occurs with the increase of n.

However, increasing the number of servers beyond 4 provides only a negligible decrease in

AoI. In Figure 2.3, LCFS (with preemption in service), LCFS with preemption in waiting,

and FCFS queue models are compared numerically. As can be seen from the figure, LCFS

outperforms the other two queue models, which coincides with the intuition that exponential

service time is memoryless and older updates in service should be preempted. Moreover, we

observe that the optimal arrival rate for FCFS queue is approximately 0.5 for all n ≤ 50.
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Figure 2.3: Comparison of LCFS, FCFS, and LCFS with preemption in waiting (LCFS-W).
The number of servers is n = 4 and µ = 1 for each server.

2.2 Multiple Sources and Multiple Servers

In this subsection, we present AoI calculation with the LCFS queue for the m-source n-

server homogeneous network. The arrival rate of source i at any server is λ(i)j = λ(i), for all

i ∈ [m], j ∈ [n]. The arrival rate of the sources other than source i is λ(i) ,
∑

i′ 6=i λ
(i′), i ∈ [m].

The service rate at any server is µ. Let ∆i denote the average AoI at the monitor for source

i ∈ [m]. Without loss of generality, we calculate ∆1 for Source 1 under LCFS.

The continuous state x represents the age for Source 1, and similar to the single-source case,

it is defined as follows: x0 is AoI of source 1 at the monitor, xi is the age of the i-th freshest

update among all updates of source 1 in the servers. Therefore x1 ≤ x2 ≤ .... ≤ xn, for any

time. Using fake updates and fake preemption as explained in Section 2.1, we obtain an SHS

with a single discrete state and 3n transitions described below:

Case I. l ∈ [0 : n− 1]: A fresh update arrives at virtual server l from source 1. This update

is the freshest update, so x′1 = 0. Now, the previous freshest update becomes the second

freshest update, that is x′2 = x1, and so on. Then x′ = [x0, 0, x1, . . . , xl, xl+2, . . . , xn]. The

transition rate is λ(1).

Case II. l ∈ [n : 2n− 1]: A fresh update arrives at virtual server l′ , l + 1− n from source

i 6= 1. The age at the monitor does not change, namely, x′0 = x0. The l′-th freshest update

is preempted. Moreover, if the virtual server l′ does complete service, it does not reduce the
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age of the source of interest. Thus, the l′-th virtual server becomes the n-th virtual server

with age x0. Therefore, we have x′ = [x0, x1, . . . , xl′−1, xl′+1 . . . , xn, x0]. The transition rate

is λ(1).

Case III. l ∈ [2n : 3n−1]: the update of source 1 in virtual server h , l+1−2n is delivered.

The age x0 is reset to xh and the virtual server h becomes idle. Using fake update and fake

preemption, we reset x′l = xh, h ≤ j ≤ n. The transition rate is µ.

Dropping the index q = 0 and denoting v0 = v = [v0, v1, . . . , vn], the system of equations for

the model is

nµv0 = 1 + µ
n∑
i=1

vi,

v1(λ(1) + nλ(1)) = 1 + λ(1)v2,

n(λ+ µ)vi = 1 + (i− 1)λ(1)vi + (n− i+ 1)λ(1)vi−1

+ iλ(1)vi+1 + (n− i)λ(1)vi

+ µ
i−1∑
j=1

vj + (n− i+ 1)µvi, 2 ≤ i ≤ n, (2.8)

where vn+1 , v0 and λ = λ(1) + λ(1) =
∑n

i=1 λ
(i).

The theorems below state the average AoI for n = 2, 3 servers, and determine the optimal

arrival rate given the sum arrival rate.

Theorem 2.2. For m information sources and n = 2 homogeneous servers, the average

AoI at the monitor for source i, 1 ≤ i ≤ m, is

∆i =
1

2(λ+ µ)
+
λ+ µ

2µλ(i)
. (2.9)
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Proof. From (2.8), we write

n(λ+ µ)[v0, v1, v2] = [1, 1, 1]

+λ(1)[v0, 0, v2]

+λ(1)[v0, 0, v1]

+λ(1)[v0, v2, v0]

+λ(1)[v0, v1, v0]

+µ[v1, v1, v1]

+µ[v2, v1, v2]

From the 0-th coordinate, we have

n(λ+ µ)v0 = 1 + nλv0 + µ(v1 + v2)

nµv0 = 1 + µ(v1 + v2)

v0 =
1

nµ
+
v1 + v2
n

From the 1-st coordinate, we have

2(λ+ µ)v1 = 1 + λ(1)(v1 + v2) + 2µv1

2λv1 = 1 + λ(1)v1 + λ(1)v2

(λ+ λ(1))v1 = 1 + λ2v2

v1 =
1

λ+ λ(1)
+

λ(1)v2
λ+ λ(1)
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From the 2-nd coordinate, we have

2(λ+ µ)v2 = 1 + λ(1)(v1 + v2) + 2λ(1)v0 + µ(v1 + v2)

2(λ+ µ)v2 = 1 + (λ(1) + µ)v1 + (λ(1) + µ)v2 + 2λ(1)v0

(λ+ λ(1) + µ)v2 = 1 + (λ(1) + µ)v1 + nλ(1)v0

v2 =
1

λ+ λ(1) + µ
+

(λ(1) + µ)v1

λ+ λ(1) + µ
+

nλ(1)v0

λ+ λ(1) + µ

Solving these equations followed by algebraic simplifications results in (2.9).

Theorem 2.3. For homogeneous m sources and n = 3 servers,

∆i =
1

3µ

(5ρ(1) + 2(ρ+ 1)2)(ρ+ 1)

2ρ3 + 5ρ(1)ρ+ 2ρ(1)
, 1 ≤ i ≤ m,

where ρ = λ
µ
and ρ(i) = λ(i)

µ
.

Proof.

n(λ+ µ)[v0, v1, v2, v3] =[1, 1, 1, 1]

+λ(1)[v0, 0, v2, v3]

+λ(1)[v0, 0, v1, v3]

+λ(1)[v0, 0, v1, v2]

+λ(1)[v0, v2, v3, v0]

+λ(1)[v0, v1, v3, v0]

+λ(1)[v0, v1, v2, v0]

+µ[v1, v1, v1, v1]

+µ[v2, v1, v2, v2]

+µ[v3, v1, v2, v3].
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At the 0-th coordinate

n(λ+ µ)v0 = 1 + nλv0 + µ(v1 + v2 + v3)

nµv0 = 1 + µ(v1 + v2 + v3)

v0 =
1

nµ
+
v1 + v2 + v3

3

At the 1-st coordinate

3(λ+ µ)v1 = 1 + λ(1)v2 + 2λ(1)v1 + 3µv1

3λv1 = 1 + λ(1)v2 + 2λ(1)v1

(λ+ 2λ(1))v1 = 1 + λ(1)v2

v1 =
1

λ+ 2λ(1)
+

λ(1)

λ+ 2λ(1)
v2

At the 2-nd coordinate

3(λ+ µ)v2 = 1 + λ(1)v2 + 2λ(1)v1 + 2λ(1)v3 + λ(1)v2 + µv1 + 2µv2

(3λ+ 3µ− λ(1) − λ(1) − 2µ)v2 = 1 + (2λ(1) + µ)v1 + 2λ(1)v3

(2λ+ µ)v2 = 1 + (2λ(1) + µ)v1 + 2λ(1)v3

At the 3-rd coordinate

(3λ+ 3µ)v3 = 1 + 2λ(1)v3 + λ(1)v2 + 3λ(1)v0 + µ(v1 + v2 + v3)

(3λ+ 3µ− 2λ(1) − µ)v3 = 1 + µv1 + (λ(1) + µ)v2

(λ+ 2λ(1) + 2µ)v3 = 1 + µv1 + (λ(1) + µ)v2
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Then, we have

v0 =
(λ+ µ)(2λ2 + 4λµ+ 2µ2 + 5λ(1)µ)

6λ3µ+ 15λ(1)λµ2 + 6λ(1)µ3
(2.10)

The age is

v0 =
(λ+ µ)(2(λ+ µ)2 + 5λ(1)µ)

3µ(2λ3 + 5λλ(1)µ+ 2λ(1)µ2)

=
(λ+ µ)(2(λ+ µ)2 + 5λ(1)µ)

3µ(2λ(1)(λ+ µ)2 + 2λ2λ(1) + λλ(1)µ)

=
1

3µ

(5ρ(1) + 2(ρ+ 1)2)(ρ+ 1)

2ρ3 + 5ρ(1)ρ+ 2ρ(1)

Theorem 2.4. Consider homogenous m sources and 2 servers. The optimal arrival rate

λ(i)
∗ minimizing the weighted sum of AoIs, i.e., w1∆1+w2∆2+ ...+wn∆n for wi ≥ 0, subject

to the constraint λ(1) + λ(2) + ...+ λ(m) = λ, is given by

λ(i)
∗

=
λ
√
wi∑m

i=1

√
wi
, i ∈ [m].

Proof. The objective function that we are trying to minimize is convex (it is obvious from

the second derivative matrix) and therefore we just have to put the derivative with respect

to each λ(i) equal to zero.

∂

∂λ(i)
(w1∆1 + w2∆2 + ...+ wn∆n + a(

n∑
i=1

λ(i) − λ)) = 0, (2.11)

for i ∈ [m]. Simplifying (2.11) results in:

w1

(λ(1))2
=

w2

(λ(2))2
= · · · = wn

(λ(n))2
= a. (2.12)
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Knowing the fact that λ(1) + λ(2) + ...+ λ(m) = λ, we obtain the result in theorem 2.4.
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Chapter 3

AoI in Heterogeneous Networks

3.1 Heterogeneous Networks with a Single Source

In this section, we consider a single source and assume that the arrival and service rates of

the servers are arbitrary. We denote by λ
(1)
j , λj the arrival rate of the single source at

server j, and µj the service rate of server j ∈ [n]. For this setting, we can no longer use

the same technique used in the homogeneous case to reduce the state space and derive AoI.

In particular, we need to keep track of the age of updates at the physical servers as well as

their ordering, resulting in n! number of states. In the following, we illustrate the steps for

deriving AoI in the case of n = 2 servers.

Theorem 3.1. Consider m = 1 source and n = 2 heterogeneous servers. The average AoI

is given by

∆ = (3.1)

1

µ1 + µ2
+

1

λ1 + λ2
+

1

µ1 + µ2

1

λ1 + λ2
(
µ1λ2
λ1 + µ2

+
µ2λ1
λ2 + µ1

).

Proof. We define state 1 as the state that server 1 contains a fresher update compared to
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l λ(l) Transition x′ =xAl vqlAl
1 λ1 1→ 1 [x0, 0, x2] [v10, 0, v12]
2 λ1 2→ 1 [x0, 0, x2] [v20, 0, v22]
3 λ2 1→ 2 [x0, x1, 0] [v10, v11, 0]
4 λ2 2→ 2 [x0, x1, 0] [v20, v21, 0]
5 µ1 1→ 1 [x1, x1, x1] [v11, v11, v11]
6 µ1 2→ 2 [x1, x1, x2] [v21, v21, v22]
7 µ2 1→ 1 [x2, x1, x2] [v12, v11, v12]
8 µ2 2→ 2 [x2, x2, x2] [v22, v22, v22]

Table 3.1: Table of transitions for n = 2 heterogeneous servers.

server 2 and state 2 as the state that server 2 has the fresher update. Upon arrival of an

update at each server or receipt of an update at the monitor, we observe some self-transition

and intra-state transitions. Transitions rate and mappings are illustrated in Table 3.1.

Steady states probabilities are found knowing that π1 + π2 = 1 and π1λ2 = π2λ1. Therefore,

we will have π = [ λ1
λ1+λ2

, λ2
λ1+λ2

].

(λ1 + λ2 + µ1 + µ2)v1 = b1π1 + λ1(v10, 0, v12) + λ1(v20, 0, v22)

+ µ1(v11, v11, v11) + µ2(v12, v11, v12) (3.2)

(λ1 + λ2 + µ1 + µ2)v2 = b2π2 + λ2(v10, v11, 0) + λ2(v20, v21, 0)

+ µ1(v21, v21, v22) + µ2(v22, v22, v22) (3.3)

Where v1 = (v10, v11, v12) and v2 = (v20, v21, v22). Therefore, we have six equations and six

unknowns here. We can easily see that v11 = π1
λ1+λ2

and v22 = π2
λ1+λ2

.

v12 =
π1

λ2 + µ1

+
λ1π2

(λ1 + λ2)(λ2 + µ1)
+

µ1π1
(λ1 + λ2)(λ2 + µ1)

= π1(
1

λ1 + λ2
+

1

λ2 + µ1

)
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v21 =
π2

λ1 + µ2

+
λ2π1

(λ1 + λ2)(λ1 + µ2)
+

µ2π2
(λ1 + λ2)(λ1 + µ2)

= π2(
1

λ1 + λ2
+

1

λ1 + µ2

)

(λ1 + λ2 + µ1 + µ2)v10 = π1 + λ1v10 + λ1v20 + µ1v11 + µ2v12

(λ1 + λ2 + µ1 + µ2)v20 = π2 + λ2v10 + λ2v20 + µ1v21 + µ2v22

We add this 2 equations together and simplify it. Age of Information at the monitor is equal

to v10 + v20 which is:

AoI =
1

µ1 + µ2

+
µ1(v11 + v21) + µ2(v12 + v22)

µ1 + µ2

=

1

µ1 + µ2

+
1

λ1 + λ2
+

1

µ1 + µ2

1

λ1 + λ2
(
µ1λ2
λ1 + µ2

+
µ2λ1
λ2 + µ1

)

For n = 2 servers, we also find the optimal arrival rates.

Theorem 3.2. For m = 1 and n = 2 heterogeneous servers, given µ1, µ2 and fixed λ1+λ2 =

λ, the optimal λ1∗ satisfies • if µ1 < µ2 and µ22 −
µ1(λ+µ1)(λ+µ2)

µ2
< 0:

λ1
∗ =
−(µ2 + c(λ+ µ1)) +

√
µ1(λ+ µ2)(2 + µ2

λ+µ1
+ λ+µ1

µ2
)

1− µ1(λ+µ2)
µ2(λ+µ1)

,

• if µ1 < µ2 and µ22 ≥
µ1(λ+µ1)(λ+µ2)

µ2
: λ1

∗ = 0, λ2
∗ = λ,

• if µ1 > µ2 and µ21 ≥
µ2(λ+µ1)(λ+µ2)

µ1
: λ1

∗ = λ, λ2
∗ = 0,
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Figure 3.1: Optimal value of λ1 as a function of µ1. λ1 + λ2 = λ, µ1 + µ2 = 100.

• if µ1 > µ2 and µ21 <
µ2(λ+µ1)(λ+µ2)

µ1
:

λ1
∗ = λ−

−(µ1 + (λ+µ2)
c ) +

√
µ2(λ+ µ1)(2 + µ1

λ+µ2
+ λ+µ2

µ1
)

1− µ2(λ+µ1)
µ1(λ+µ2)

,

where c = µ1(λ+µ2)
µ2(λ+µ1)

.

Proof. In order to find the optimal values of λ1 and λ2 for a given values of µ1, µ2, λ where

λ1 + λ2 = λ, we set the derivative of the following equation with respect to λ1, λ2 and a to

zero.

1

µ1 + µ2

+
µ1(v11 + v21) + µ2(v12 + v22)

µ1 + µ2

− a(λ1 + λ2 − λ)

∂AoI

∂λ1
=

−1

(λ1 + λ2)2
− µ1λ2(2λ1 + λ2 + µ2)

(λ1 + λ2)2(λ1 + µ2)2

+
(λ2 + µ1)(µ2λ2)

(λ1 + λ2)2(λ2 + µ1)2
− a = 0
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∂AoI

∂λ2
=

−1

(λ1 + λ2)2
− µ2λ1(2λ2 + λ1 + µ1)

(λ1 + λ2)2(λ2 + µ1)2

+
(λ1 + µ2)(µ1λ1)

(λ1 + λ2)2(λ1 + µ2)2
− a = 0

Also, we know that λ1 + λ2 = λ. With some algebraic simplification we reach to this 2nd

order polynomial in order to find the optimal value of λ1 and consequently λ2.

λ21(1− c) + 2λ1(µ2 + c(λ+ µ1)) + µ2
2 − c(λ+ µ1)

2, (3.4)

where c = µ1(λ+µ2)
µ2(λ+µ1)

.

When c = 1 it is equivalent to µ1 = µ2 and the equation 3.4 becomes a first order polynomial

which results in λ1 = λ2 = λ
2
. This polynomial has 2 real roots because of its positive

discriminant and therefore solving the equation 3.4 gives us 2 possible candidate for our

optimization problem. When µ1 < µ2 then c < 1. Knowing the fact that for 2 roots of 3.4

we have,

r1 + r2 =
µ2 + µ1(λ+µ2)

µ2

c− 1
,

r1r2 =
µ2
2 −

µ1(λ+µ1)(λ+µ2)
µ2

1− c
.

As a result, when µ1 < µ2 and µ2
2 −

µ1(λ+µ1)(λ+µ2)
µ2

≥ 0, the 2 roots are negative and

therefore in this regime our optimal values become λ1 = 0, λ2 = λ. When µ1 < µ2 and
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µ2
2 −

µ1(λ+µ1)(λ+µ2)
µ2

≥ 0, the positive root is the optimal rate which is equal to:

λ1 =
−(µ2 + c(λ+ µ1)) +

√
µ1(λ+ µ2)(2 + µ2

λ+µ1
+ λ+µ1

µ2
)

1− µ1(λ+µ2)
µ2(λ+µ1)

.

Similarly by writing the 2 − nd order polynomial for λ2, we reach to the conclusion that

when µ1 > µ2 , if µ2
1 ≥

µ2(λ+µ1)(λ+µ2)
µ1

the optimal rates are λ1 = λ, λ2 = 0. In the regime

that µ1 > µ2 and µ2
1 <

µ2(λ+µ1)(λ+µ2)
µ1

, the positive root is the optimal rate.

λ2 =
−(µ1 + (λ+µ2)

c
) +

√
µ2(λ+ µ1)(2 + µ1

λ+µ2
+ λ+µ2

µ1
)

1− µ2(λ+µ1)
µ1(λ+µ2)

.

The optimal λ1∗ is illustrated in Figure 3.1. When µ1 = µ2 the optimal rates that minimize

AoI are λ1∗ = λ2
∗ = λ

2
. As Figure 3.1 illustrates, for µ1 = µ2 = 50, optimal rates are λ1∗ = λ

2

and in the regimes that one of the service rates is much greater than the other one, AoI

minimizes when all the updates are sent to the server with the greater service rate.

3.2 Conclusion

In this thesis, we studied the age of information in the presence of multiple independent

servers monitoring several information sources. We derived AoI for the LCFS queue model

using SHS analysis when we had a homogeneous network and a single source. We also

provided the AoI formula for m sources and n = 2, 3 servers in a homogeneous network.

For a single-source heterogeneous network, the case of n = 2 servers were investigated.

Moreover, optimal arrival rates are obtained when the sum arrival rate and the service rates

are given. Future directions include deriving explicit formula of AoI for multiple sources in a
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homogeneous and heterogeneous sensing networks where the update arrival rate and/or the

service rate are different among the servers for any number of sources and servers.
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