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Abstract—HTTPS enhances end-user privacy and is often
preferred or enforced by over-the-top content providers, but
renders inoperable all intermediate network functions operating
above the transport layer, including caching, content/protocol
optimization, and security filtering tools. These functions are
crucial for the optimization of integrated satellite-terrestrial
networks. Additionally, due to the use of end-to-end and per-
session encryption keys, the advantages of a satellite’s wide-
area broadcasting capabilities are limited or even negated
completely. This paper investigates two solutions for authorized
TLS interception that involve TLS splitting. We present how
these solutions can be incorporated into integrated satellite-
terrestrial networks and we discuss their trade-offs in terms of
deployment, performance, and privacy. Furthermore, we design
a solution that leverages satellite broadcast transmission even in
the presence of TLS (i.e. with the use of HTTPS) by exploiting
application layer encryption in the path between the satellite
terminal and the TLS server. Our findings indicate that even
if no other operation than TLS splitting is performed, TLS
handshake time, which involves roundtrips through possibly
a Geosynchronous satellite, can be reduced by up to 94%.
Moreover, by combining an application layer encryption solution
with TLS splitting, broadcast transmissions can be exploited as
well as proactive caching, content pushing, request aggregation,
and other optimizations.

I. INTRODUCTION

It is evident that the Web is becoming encrypted. Initiatives
such as Let’s Encrypt allow hassle free and no-cost HTTPS
services. Therefore, it comes to no surprise that according
to Google, Chrome users spend two-thirds of their time in
HTTPS pages [1]. Similarly, HTTPS pages receive higher
ranking by search engines and browsers already mark plain
HTTP pages as non-secure. At the same time, privacy con-
cerns have led to the use of TLS even for transferring DRM
protected content (e.g., the case of Netflix [2]). Although
HTTPS improves significantly end-user security and privacy,
it comes with a cost: it prevents in-network functions, such
as network-based security services, application-level gateways
and fine-level differentiation of services, session controllers,
transcoders, proxies, and caches.

In-network content manipulation is not uncommon in wire-
less and mobile networks and it is mainly used for optimizing
network performance (as perceived by both the network
operators and the end-users). Naylor et al. [3] reported that a
transparent proxy used by a major European mobile carrier,
serving more than 20 million subscribers, contributes to a

2TB/day decrease of upstream traffic using caching and 28.5%
decrease of last-mile downstream traffic using compression.
Woo et al. [4] reported that standard Web caching can reduce
download bandwidth consumption up to 27.1%. Sivakumar et
al. [5] developed a proxy–code named PARCEL–for mobile
networks that pre-fetches and pre-processes Web content:
browsing 34 Web pages from the top 500 Alexa global pages
using PARCEL resulted in a 49.6% reduction in page load
time and 65% reduction in energy consumption. Similarly,
various publications (e.g., [6], [7]) report that the number of
middleboxes that manipulate network traffic in big enterprise
networks is almost equal to the number of L2 switches and
L3 routers. All these functions can be used for improving the
performance of integrated satellite-terrestrial networks, as well
as for decreasing the latency introduced by the satellite part of
those networks. However, the use of TLS/HTTPS affects all of
them. Additionally, end-to-end encryption, as well as the use
of per-session encryption keys (all imposed by TLS) render
broadcast communication useless, since a content encrypted
for a specific session is just “junk” for all other sessions.
This has a huge impact to satellite-terrestrial communications,
where broadcast is widely used for delivering content.

End-to-end encryption has been a problem for Content
Distribution Networks (CDNs) for a long time now. For this
reason CDN providers are using solutions, such as Custom
Certificates and Certificate sharing [8] that allow them to
intercept TLS connections. However, these solutions require
a long-term trust relationship between the content owner and
the CDN provider. Furthermore, these solutions assume that
CDN providers are trusted to stop intercepting TLS traffic
whenever requested by content owners. These requirements
can be hardly satisfied when it comes to TLS interception in an
integrated satellite-terrestrial network since satellite terminals
(i.e., the location where TLS split should take place) are not so
well protected (compared to a CDN node), and their operators
cannot always be trusted by content owners. Therefore, using
these solutions in such an architecture would create intolerable
security and privacy risks.

In this paper we leverage two solutions that allow autho-
rized TLS splitting by in-network devices and we use them in
the context of integrated satellite-terrestrial networks. These
solutions, namely Keyless TLS [9] and DANE with delegation
semantics [8], allow a content owner to temporarily authorize
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a device to (lawfully) intercept a specific TLS session. In
essence, these solutions split a TLS connection into two
parts: one between the TLS client and the device and another
between the device and the TLS server; we use these solutions
in order to split a TLS connection at the satellite terminals.
Additionally, we leverage the fact that due to this split in the
TLS connection, the algorithms and protocols for securing the
path between the satellite terminal and the TLS server are hid-
den from the TLS client; hence, we can apply application layer
security solutions in that part: these solutions, if configured
properly, do not impede satellite’s broadcasting capabilities.
The contributions of our work presented in this paper are:

• We design an integrated satellite-terrestrial network ar-
chitecture which incorporates TLS splitting mechanisms.

• We analyze the performance and security properties of
our architecture through analysis and simulation.

• We design an extension to our architecture that uses
application layer encryption in the path between the satel-
lite terminal and the service provider, enabling solutions
that take advantage of the broadcast capabilities of the
satellite network.

The structure of the remainder of this paper is as follows.
In Section 2 we present background information and we
introduce the selected solutions. In Section 3 we present how
the selected solutions can be used with integrated satellite-
terrestrial networks and we evaluate our approach in Section
4. Finally, in Section 5 we provide our conclusions and plans
for future work.

II. BACKGROUND

A. Transport Layer Security

The primary goal of the Transport Layer Security (TLS)
protocol is to provide privacy and data integrity between
two communicating endpoints; a client and a server [10].
TLS enables the establishment of a secure connection that
protects the confidentiality and the integrity of the transmitted
data. TLS is composed of two protocols: the Handshake
Protocol and the Record Protocol. The Handshake Protocol
allows a client and a server to authenticate each other and
to negotiate security algorithms, as well as the corresponding
cryptographic keys. The TLS Record Protocol is then used
for securing application layer data using the agreed keys and
algorithms. The Handshake protocol is critical when it comes
to TLS splitting; for this reason we provide some more details
about it next.

A TLS Handshake is completed in 3 steps. The first step
is the cipher suite negotiation. In this step the client and
server exchange “Hello” messages and choose the cipher suite
that will be used throughout a session. The second step is
authentication. In TLS, a server proves its identity to the client
and a client may also prove its identity to the server. Digital
certificates (and their corresponding private keys) are the basis
of this authentication whereas the exact method used for
authentication is determined by the cipher suite negotiated. In
any case, the authentication process involves the private key of

Client
HTTPS server

Hello

Hello, Server Certificate

Client Key,Finished

Signature request

Signature

Server Key, Signature, Finished

Middlebox

Fig. 1. Keyless TLS.

a public-private key pair, owned by the authenticating entity.
The final step is key exchange where the client and server
exchange random numbers which combined with additional
data permit the secure calculation of the session-specific
shared keys.

B. Keyless TLS

Keyless TLS allows authorized devices to intervene in a
secured connection, but without having access to any private
key, hence they cannot be authenticated without the “help” of
the TLS server. In particular, the intercepting device performs
the TLS handshake and responds on behalf of the server,
but all handshake operations requiring the private key (of the
server) are relayed to the server over a dedicated secured chan-
nel: the server authenticates the intercepting device, performs
the private key operations, and returns the result through the
same secured channel. This process is illustrated in Figure 1.
Cloudflare [11] and Akamai [12] are offering keyless TLS as
a service.

Keyless TLS has two significant advantages: intercepting
devices do not learn private keys and TLS servers participate
in all session establishments, hence they can prevent at any
time a device from intervening in an encrypted connection.
Moreover, keyless TLS requires no modification to TLS
clients. Of course, keyless TLS does not come without dis-
advantages. Its main drawback is the weakening of end-to-
end security since, in reality, a TLS connection is split into
two independent connections that involve two different TLS
handshakes; one of them may result in a weak cipher which
reduces the security of the end-to-end connection. According
to a study [8] performed across many major CDN services
that use similar techniques this phenomenon is common and
there were even cases where the connection between the
intercepting CDN node and the server was not secured at all:
sensitive information was transferred using plain HTTP, yet
clients were under the impression they were using an end-to-
end encrypted connection.



C. DANE with delegation semantics

DNS-Based Authentication of Named Entities (DANE)
(originally proposed in RFC 6698 [13] and further refined
in RFC 7671 [14]), allows binding a domain name to a
certificate. This binding is implemented by including certifi-
cates in DNS records.1 In particular, a special type of DNS
record, referred to as TLSA DNS, is used for associating
certificates with domain names, allowing DANE-enabled TLS
clients to validate TLS server certificates. The resolution
of TLSA records is secured using DNSSEC. DANE with
delegation semantics [8] leverages DANE, allowing servers
to add intermediate certificates to their TLSA records, which
can be used by intercepting devices. This way a client may
obtain a list of certificates that can be used for a particular
TLS connection. Figure 2 illustrates an example of a TLS
handshake interception supported by DANE. As it can be ob-
served, the intercepting device responds to the client “Hello”
message with its own certificate (as opposed to the Keyless
TLS case, where the intercepting device responds with the
certificate of the server). Subsequently, the client performs
a TLSA record resolution and validates that the received
certificate is “pinned” to the server’s domain name, therefore
it is approved. Finally, the client proceeds with the subsequent
TLS handshake messages.

With this solution, certificate revocation is completely con-
trolled by the origin server and can be performed by simply
altering the corresponding TLSA record. Furthermore, an
interesting property of this solution is that a handshake can
be completed without any involvement of the original TLS
server. Deploying this solution requires DNSSEC along with
modifications to the certificate validation process performed
by TLS clients. Of course, this approach suffers from the
DNSSEC inherent problems, for example, an attacker may
replay a TLSA record response related to a certificate that is
not valid any more. Overhead is also added due to the extra
DNS round trip.

III. TLS INTERCEPTION FOR INTEGRATED
SATELLITE-TERRESTRIAL NETWORKS

In this section we describe our solution for supporting
TLS interception in integrated satellite-terrestrial networks.
We consider a typical integrated satellite-terrestrial network
architecture where a satellite terminal and a satellite gate-
way are responsible for connecting client applications with
server applications over a satellite network (see for example
Figure 3). In the following we consider that clients and
servers wish to communicate over TLS and we propose two
approaches that allow terminals to perform TLS interception
so as (i) to accelerate the TLS handshake–which under normal
circumstances has to be performed over the satellite network,
and (ii) to perform content transmission optimizations (e.g.,
content caching, aggregation of content requests, etc.).

Our two approaches are based on the TLS interception so-
lutions presented in the previous sections. With both solutions,

1 In particular digitally signed hashes of the certificates.
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Fig. 2. DANE with delegation semantics.

whenever a terminal receives a client “Hello” TLS message
(i.e., the first message of the TLS handshake) it should be able
to tell (i) if it is allowed to intercept this TLS handshake, and
(ii) which certificate to use. Both these problems can be solved
using the Server Name Indication TLS extension [15]. With
this extension a TLS client includes in its “Hello” message the
domain name of the service with which it wants to interact.
We consider that satellite terminals are pre-configured with the
domain names of the services they are authorized to intercept,
therefore they can examine the client “Hello” message and
decide whether to intercept the handshake or to forward the
message to the intended recipient.2

A. Integration with Keyless TLS

Keyless TLS is integrated in our architecture by imple-
menting the Keyless TLS protocol at the terminals and the
TLS servers; no modification is required to TLS clients (these
components are depicted with a green box in Figure 3).
Furthermore, a secure communication channel is established
between the terminal and the server. This channel, which in
our implementation is secured using TLS, can only be used
by terminals authorized to intervene in a TLS handshake and
its purpose is to protect the confidentiality of the Keyless
TLS specific messages transmitted between the terminal and
the server. In order to assure that only authorized terminals
can access this channel TLS client authentication with cer-
tificates [11] is used i.e., for each authorized terminal, a
TLS server generates a certificate, which is installed using
out-of-band mechanisms and it is used by the terminal to
authenticate itself to the server when setting up the channel.
The channel setup takes place only once and the same channel
is used for forwarding Keyless TLS specific messages for all
subsequent handshakes intercepted by the same terminal. With
all these components in place, a TLS client initiates the TLS
handshake, which is intercepted by the terminal and whenever

2This extension is well supported by all browsers since it is used for
connecting to a TLS server hosted in a shared (e.g., Cloud) environment.
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the terminal requires to perform an operation using the private
key of the server, it sends all necessary information to the
server through the secure channel; then the server performs
the necessary actions and responds back to the terminal, again
through the secure channel.

An interesting property of Keyless TLS is that the server
participates in all TLS handshakes. Although, this property
enhances the security of the scheme (we discuss security
properties in the following sections), it adds latency since the
satellite network has to be used once per TLS handshake. In
some cases, it is possible to compensate for this delay by
“abusing” the SNI TLS extension: since the domain of the
service in which the client is interested in is known, it may
be possible to push content to a terminal together with the first
Keyless TLS message. Then, when requested, this content can
be served to a client directly by the terminal (which in this
case acts as a transparent cache), hence the satellite link does
not have to be used.

B. Integration with DANE with delegation semantics

For the integration of DANE with delegation semantics,
clients implement TLS with DANE assisted certificate veri-
fication, i.e., they are able to verify the validity of a digital
certificate by retrieving the corresponding TLSA DNS record
(using DNSSEC). The components of this solution are de-
picted with a blue box in Figure 3. With this approach a secure
communication channel between the terminal and the server
is not required in order to complete the TLS handshake.

As already discussed, during the TLS handshake clients
should perform a DNS resolution in order to validate the
certificate of the terminal. In the general case, this resolution
will cross the satellite network. However, this can be easily
mitigated by installing DNS forwarders in satellite terminals
and by configuring clients to use these forwarders as the
default DNS server. The forwarders, which should implement
the DNSSEC validation processes, can then cache the cor-
responding DNS replies. Furthermore, and since these replies

concern the terminal operation, the forwarders have incentives
to periodically perform DNS requests to the authoritative DNS
server (even if they are not instructed by a client) in order to
keep their cache fresh and up to date.

C. Combination with application layer encryption

With both approaches the client ends up establishing a TLS
connection with the satellite terminal (the difference lies in
the fact that with Keyless TLS the client “thinks” that it
is communicating to the server, whereas with DANE with
delegation semantics the client knows that it communicates
with the terminal, acting on behalf of the server). Clients are
oblivious to the security mechanisms used for securing the
communication between the terminal and the server. A typical
approach would have been to use another TLS connection
between these two entities; alternatively an application layer
encryption mechanism can be used so that solutions that
leverage a satellite’s wide area broadcasting capabilities will
be able to function properly. The components of this approach
are illustrated with purple colors in Figure 3.

Our application encryption approach assumes that servers
and (authorized) terminals share a secret key. This key is
used for periodically exchanging content encryption keys. The
latter keys are used for encrypting transmitted content and
are common for all terminals. This is a typical mechanism
used for broadcasting protected content over satellites, e.g.,
as used by the Conditional Access system of the Digital
Video Broadcasting (DVB) standard. However, the content
encryption key is not related to the encryption key used in
the TLS connection between the client and the terminal. For
this reason the terminals have to decrypt the received items
and re-encrypt them with the corresponding TLS key.

IV. EVALUATION

A. TLS Handshake speed improvements

Compared to “vanilla” TLS, the discussed TLS interception
solutions require fewer message exchanges over the satellite
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network. Therefore, even if the satellite terminals implement
no additional content transmission optimization function, sig-
nificant gains can be achieved. Figure 4 illustrates the time
required to complete a TLS handshake in a network where
a terminal and a gateway are connected through a Geosyn-
chronous satellite. The roundtrip delay of the path between
the terminal and the gateway has been calculated to be 500
ms using the OpenSAND satellite network emulator [16].
Furthermore, the roundtrip delay of a terrestrial path has been
set to 20 ms. It can be observed that when a TLS interception
solution is used, the TLS handshake is completed much faster.
Especially, when DANE with delegation semantics is used
combined with cached DNS records, the satellite network does
not have to be used during a TLS handshake, hence the TLS
handshake time is reduced by 94%.

B. Content transmission optimizations

Here we discuss some content transmission optimizations
that become possible if the application layer encryption ap-
proach is used.

The application layer encryption solution used in our system
is Encrypted Content-Encoding for HTTP, specified in RFC
8188 [17]. This solution enables HTTP messages (request or
response) to be encrypted using a symmetric encryption key
distributed using out-of-band mechanisms. In the following
we give an example that illustrates how the combination of
application layer encryption with TLS interception can benefit
integrated satellite-terrestrial networks. In this example we
assume the architecture of Figure 3. In this architecture the
terminals and the servers share a symmetric encryption key.
Furthermore, the terminals include a cache and support TLS
interception.

Suppose an end-user requests a piece of static content over
TLS (e.g., a video file), its terminal intercepts the TLS session
and forwards the request to the server. The server encrypts
the requested content using the shared encryption key and
transmits it over plain HTTP. The terminal re-encrypts the
received content (to match the TLS encryption key) and trans-
mits it back to the client. All other terminals can cache this
piece of content (since it is being broadcast). Then, if another
client, connected to (the same or) another terminal, requests
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the same piece of content (using TLS), its terminal can re-
encrypt the cached content using the established (between
them) TLS key and send it back to the client. Therefore,
although there are two clients in this case, connected to
(potentially) different terminals, requesting the same piece
of content, there is a single content request, as well as, a
single content transmission (the bulk of the data) traversing
the satellite link. There are of course two separate (potentially
asynchronous) data transmissions traversing short terrestrial
links (using HTTPS). Nevertheless, and depending on the TLS
interception approach, the satellite link may have to be used
during the TLS handshake. Figure 5 shows the time required
to load a simple text-based Web page using HTTPS. In this
figure, the bars corresponding to the case where Encrypted
Content-Encoding (ECE) is used (i.e., the application layer
encryption approach), the page is retrieved from a cache,
otherwise it is retrieved directly from the server.

Additional advantages that can be gained, include: (i) if ter-
minals are connected using a terrestrial network, collaborative
caching solutions can be deployed, (ii) popular content (such
as OS updates) can be pushed to terminals, (iii) simultaneous
content requests can be batched or even aggregated, (iv)
solutions that achieve better performance by manipulating the
transmitted content (such as network coding) can be easily
deployed. Quantifying these advantages has been left as future
work.

C. Security considerations

The presented solutions are more secure compared to the
certificate-based solutions used by CDNs. With the solutions
presented in this paper TLS connections are intercepted only
for a specific session (with Keyless TLS), or only for a spe-
cific period of time (with DANE with delegation semantics).
Furthermore, with the presented solutions it is easier for a
content provider to revoke the access rights of an intercepting
device. Nevertheless, TLS splitting and the use of application
layer encryption security solutions create some security and
privacy concerns.

Intercepting devices are authorized to access content items
stored under a specific domain, hence they can easily modify
them. The integrity of the received items should be verified at



the application layer using tools such as the “Subresource In-
tegrity” HTML tag. Furthermore, application designers should
make sure that sensitive content, including user specific infor-
mation, session identifiers, cookies, etc. cannot be accessed
by third parties, even if the TLS session is intercepted. One
should make sure that sensitive information and less sensitive
content items are stored under different domains.

When it comes to DANE with delegation semantics, there
is a time frame during which a “de-authorized” device can
intercept a TLS session. This duration depends on the time-
to-live (TTL) of the corresponding TLSA record. Application
designers should consider this performance-security trade-off
and adapt TTL accordingly. Note that there is also such a time
frame with Keyless TLS, related to the TTL of a TLS session,
but in this case “de-authorized” devices can only intercept
already established sessions and not new ones.

Application layer encryption on the other hand creates
privacy concerns. Since two HTTP messages, between two
entities sharing the same key, are encrypting the same (secret)
information, it is possible for a malicious user that observes
the network traffic to discern if the content of these messages
is the same or not. Furthermore, all network fields below
the application layer are transmitted in plaintext. Application
designers should take special precautions in order to properly
anonymize transmitted messages.

V. CONCLUSIONS

Although end-to-end encryption enhances greatly end-user
security and privacy, there are cases where access to the
plaintext of the transmitted content by in-network devices
is beneficial. For this reason, various solutions for enabling
encrypted connection interception have been proposed. In
this paper, and in the context of integrated satellite-terrestrial
networks, we considered two of them, namely Keyless TLS
and DANE with delegation semantics. The former solution
is “pushed” by big CDN providers and requires no modi-
fication to TLS clients, whereas the latter solution is based
on a promising standard and it can achieve TLS session
establishment without any communication with the origin
server. Both solutions can be deployed using readily available
software and can co-exist with legacy TLS implementations.
Furthermore, both solutions exhibit better security properties
compared to the certificate-based solutions currently used by
CDN providers.

The presented transport layer solutions can be combined
with application layer encryption between a satellite terminal
and the origin TLS server (i.e., the network path that includes
the satellite network). The combination of the two approaches,
creates interesting opportunities. In particular by sharing the
application layer encryption key among the application server
and the satellite terminals, it becomes possible to broadcast
content to multiple terminals, enabling this way existing
satellite-based content distribution solutions to operate with
TLS clients and facilitating the deployment of novel optimiza-
tion solutions, such as opportunistic caching.
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