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Abstract—This work presents a new network optimization
framework for cellular networks using neighborhood-based opti-
mization. Under this optimization framework resources are allo-
cated within virtual cells encompassing several base-stations and
the users within their coverage areas. We form the virtual cells
using hierarchical clustering with a minimax linkage criterion
given a particular number of such cells. Once the virtual cells
are formed, we consider an interference coordination model in
which base-stations in a virtual cell jointly allocate the channels
and power to users within the virtual cell. We propose two
new schemes for solving this mixed integer NP-hard resource
allocation problem. The first scheme transforms the problem into
a continuous variables problem; the second scheme proposes a
new channel allocation method and then alternately solves the
channel allocation problem using this new method, and the power
allocation problem. We evaluate the average system sum rate of
these schemes for a variable number of virtual cells. These results
quantify the sum-rate along a continuum of fully-centralized
versus fully-distributed optimization for different clustering and
resource allocation strategies. These results indicate that the
penalty of fully-distributed optimization versus fully-centralized
(cloud RAN) can be as high as 50%. However, if designed prop-
erly, a few base stations within a virtual cell using neighborhood-
based optimization have almost the same performance as fully-
centralized optimization.

I. INTRODUCTION

The demand for increased capacity in cellular networks
continues to grow, and is a major driver in the deployment
of 5G systems. To increase cellular network capacity, the
deployment of small cells has been proposed and is currently
taking place [1]–[4]. The proximity of small cells to one
another combined with their frequency reuse can cause severe
interference to neighboring small cells and macrocells; this
interference must be managed carefully to maximize the over-
all network capacity. Thus, powerful interference mitigation
methods as well as optimal resource allocation schemes must
be developed for 5G networks. In this work we investigate
a flexible resource allocation structure for cellular systems
where, instead of each base-station serving all users within its
own cell independently, several base-stations act cooperatively
to create a virtual cell with joint resource allocation. In order
to design wireless networks that are composed of virtual cells
we address in this work the following two design challenges:
1) Creating the virtual cells, i.e., cluster the base-stations and
users into virtual cells. 2) Allocating the power and channels in
each virtual cell. In this work we address the uplink resource
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allocation problem for joint channel and power allocation for
the single user detection scenario. This resource allocation
problem is a non-convex NP hard problem even in non-
cooperative setups.

Base-station and user clustering as part of a resource al-
location is discussed in the Cooperative Multi-Point (CoMP)
literature, see for example [5]–[15]. The work [15] presents
an extensive literature survey of cell clustering for CoMP in
wireless networks in which the clustering of base-stations and
users is categorized as follows: 1) Static clustering which
considers a cellular network whose cells are clustered stat-
ically, and does not adapt to network changes. Examples
for static clustering algorithms are presented in [5]–[8]. 2)
Semi-dynamic clustering, in which static clusters are formed
but the cluster affiliation of users is adapted according to
changes in the network. Examples for such algorithms are
presented in [9]–[11]. 3) Dynamic clustering in which the
clustering of both base-stations and users adapts to changes
in the network. Examples for dynamic clustering algorithms
are presented in [12]–[14]. In addition, resource allocation in
virtual cells for cooperative multi-point decoding is closely
related to cloud radio access network design [16]–[20] in
which several base-stations act cooperatively. The coordination
between the base-stations can be divided into the following
categories: 1) Interference coordination in which only channel
states are available at the coordinated base-stations. 2) Full
cooperation in which base-stations share not only channel
states but also full data signals they receive. 3) Rate limited
coordination in which the base-stations are linked by limited-
capacity backhaul. 4) Relay-assisted cooperation in which
cooperation is carried by relays instead of dedicated backhaul
links. Our work [21] considers the full cooperation model in
which base-stations jointly decode their messages assuming
infinite capacity backhaul links between base-stations in the
same virtual cell. This manuscript considers a lower com-
plexity and lower backhaul capacity scenario than [21], such
that base-stations within a virtual cell share channel states via
interference coordination with single user detection rather than
joint detection of all users in the virtual cell.

Main Contributions: This work considers cooperation
across base-stations in a cellular network while preserving
desirable properties such as simple user association rules and
low-complexity coordination within virtual cells to suppress
interference. The virtual cell design and associated resource
allocation is aimed at 1) improving network performance while
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balancing computational complexity, 2) taking advantage of
both local and global network information, and, 3) ensuring
that local changes in the network do not cause a “butterfly
effect” in which the whole virtual cell design and resource
allocation must be recalculated. We propose using hierarchical
clustering to cluster base-stations since it enjoys the unique
property that decreasing or increasing the number of clusters
affects only the clusters that are being merged or separated,
leaving all other clusters unchanged. We also propose two new
resource allocation schemes for virtual cells with multiple BSs,
which is a mixed-integer NP-hard problem. The first scheme
converts the problem into a continuous variable problem,
whereas the second scheme proposes a new channel allocation
scheme and then alternates between allocating channels using
this new channel allocation scheme and allocating power.
Our numerical results show that our new resource allocation
schemes for virtual cells outperform previously proposed
resource allocation solutions in a fully centralized setup.

II. PROBLEM FORMULATION

We consider a communication network that comprises a
set of base-stations (BSs) B, a set of users U and a set of
frequency bands K. The users communicate with the BSs
and interfere with the transmissions of one another. Each user
u ∈ U has a power constraint of Pu dBm. The BSs and users
are clustered into virtual cells which must fulfill the following
characteristics.

A. Virtual Cells

Definition 1 (Virtual BS): Let b1, .., bn be n BSs in a
communication network, we call the set {b1, .., bn} a virtual
BS.

Definition 2 (Proper clustering): Let B be a set of BSs, U be
a set of users. Denote V = {1, . . . , V }. For every v, define the
sets Bv ⊂ B and Uv ⊂ U . We say that the set V is a proper
clustering of the sets B and U if Bv and Uv are partitions
of the sets B and U , respectively. That is,

⋃
v∈V Bv = B,⋃

v∈U Uv = U . Additionally, Bv1
∩Bv2 = ∅ and Uv1 ∩Uv2 = ∅

for all v1, v2 ∈ V such that v1 6= v2.
Definition 3 (Virtual cell): Let B be a set of BSs, U be a set

of users, and V be a proper clustering of B and U . For every
v ∈ V the virtual cell Cv is composed of the virtual BS Bv
and the set of users Uv .

This condition ensures that every BS and every user belongs
to exactly one virtual cell. This implies that all the transmis-
sion power of a user is dedicated to communicating with base-
stations in the same virtual cell, thus power allocation can be
optimized in a virtual cell.

Let V be a proper clustering of the set of BSs B and the
set of users U , and let {Cv}v∈V be the set of virtual cells
that V creates. In each virtual Cv we assume that the BSs that
compose the virtual BS Bv jointly allocate their resources.

B. The Uplink Resource Allocation Problem

In each virtual cell we consider the uplink resource allo-
cation problem in which the BSs in the virtual cell jointly

optimize the channel allocation and the transmission power of
the users within it. We consider single user detection in which
every BS b decodes each codeword associated with a given
user separately (i.e. there is no multiuser detection).

Recall that K is the set of frequency bands. Denote by hu,b,k
the channel coefficient of the channel from user u ∈ U to BS
b over frequency band k, and let Pu,k be the transmit power of
user u over frequency band k. Further, let σ2

b,k denote the noise
power at BS b over frequency band k, and let Wk denote the
bandwidth of band k. The uplink resource allocation problem
in a virtual cell Cv , ignoring interference from other virtual
cells, is given by:

max
∑
b∈Bv

∑
u∈Uv

∑
k∈K

γu,b,kWk log2

(
1 +
|hu,b,k|2Pu,k

σ2
b,k + Ju,b,k

)
s.t.: 0 ≤ Pu,k,

∑
k∈K

Pu,k ≤ Pu, ∀ u ∈ Uv, k ∈ K∑
ũ∈Uv,ũ6=u

|hũ,b,k|2Pũ,k = Ju,b,k, ∀u ∈ Uv, b ∈ Bv, k ∈ K∑
b∈Bv

γu,b,k ≤ 1, ∀ u ∈ Uv, k ∈ K

γu,b,k ∈ {0, 1}, ∀ u ∈ Uv, b ∈ Bv. (1)

This is a mixed-integer programming problem that is NP-hard.
We note that our approach mitigates interference in the

network by merging cells to create virtual cells. While cur-
rently we do not mitigate interference between virtual cells,
as their number is decreased, they become larger and the
interference inside the virtual cells becomes the dominant
interference. This interference is mitigated in (1) to improve
network performance. Numerical results presented in Section
VI indeed confirm the improvement in network average sum
rate that our method provides.

III. FORMING THE VIRTUAL CELLS

This section presents the clustering approaches that we
develop to create the virtual cells within which the resource
allocation schemes we present in Sections IV-V operate.

A. Base-Station Clustering

We propose using the hierarchical clustering algorithm with
minimax linkage [22] to cluster BSs since it enjoys the unique
property that decreasing or increasing the number of clusters
only affects the clusters that are being merged or separated.
Thus, the number of clusters can adapt efficiently to the current
state of the network without requiring a full clustering update.
By contrast, in other clustering methods such as K-means or
spectral clustering, even a small variation in the number of
clusters requires the recalculation of all the clusters in the
network. This is undesirable in wireless networks since it
inflicts a large setup time overhead for each reclustering that
is caused by the need for information acquisition and other
message passing.

The agglomerative hierarchical clustering algorithm using
the minimax linkage criterion is presented in Algorithm 1; it



gets a set of points S and produces the clusterings B1, . . . , Bn,
where Bm is the clustering of size m. The algorithm defines
the center of a cluster to be the member of the cluster with
the minimal maximal distance to all other members in the
cluster; this minimal maximal distance is the cluster radius.
Then, in every step the minimax linkage criterion merges the
two clusters that will jointly have the smallest radius out of
all merging possibilities.

Let d : R2 × R2 → R be the Euclidean distance function,
and let S be a set of points in R2. We then define the following:

Definition 4 (Radius of a set around point): The radius of
S around si ∈ S is defined as r(si, S) = maxsj∈S d(si, sj).

Definition 5 (Minimax radius): The minimax radius of S is
defined as r(S) = minsi∈S r(si, S).

Definition 6 (Minimax linkage): The minimax linkage be-
tween two sets of points S1 and S2 in R2 is defined as
d(S1, S2) = r(S1 ∪ S2).

Let S = {s1, . . . , sn} be the set of locations of the BSs
in B. We use Algorithm 1 below with the input S to create
the virtual BSs for each number of clusters m; this produces
the dendrogram which shows what clusters are merged as the
number of clusters is decreased.

We chose to use the minimax linkage criterion since inter-
ference tends to increase on average as the distance between
interferers is decreased. Thus, at each stage the minimax
linkage criterion merges the two clusters of base-stations that
maximize the smallest anticipated interference at the center of
the new cluster that is caused by base-stations in the cluster. In
addition, the minimax linkage criterion benefits from fulfilling
several desirable properties in cluster analysis as discussed in
[22].

Algorithm 1
1: Input: A set of point S = {s1, . . . , sn};
2: Set Bn = {{s1}, . . . , {sn}};
3: Set d({si}, {sj}) = d(si, sj), ∀si, sj ∈ S;
4: for m = n− 1, . . . , 1 do
5: Find (S1, S2) = argminG,H∈Bm+1:

G 6=H

d(G,H);

6: Update Bm = Bm+1

⋃
{S1 ∪ S2} \ {S1, S2};

7: Calculate d(S1 ∪ S2, G) for all G ∈ Bm;
8: end for

B. Users’ Affiliation with Clusters
To create the virtual cells, we consider two affiliation rules:

1) Closest BS rule in which each user is affiliated with its
closest BS. 2) Best channel rule in which each user is affiliated
with the BS to which it has the best channel (absolute value
of the channel coefficient). Then each user is associated with
the virtual BS that its affiliated BS is part of. This way every
virtual BS and it associated users compose a virtual cell.

It is easy to verify that this formation of the virtual cells
fulfills the requirement presented in Section II-A.

IV. JOINT CHANNEL AND POWER ALLOCATION

This section introduces the first resource allocation scheme
we propose. It is found by converting the problem (1) to an

equivalent continuous variable problem and then solving it via
an approximation.

A. An Equivalent Continuous Variable Problem

We can represent the problem (1) by an equivalent problem
with continuous variables. Suppose that instead of sending a
message to at most one single BS at each frequency band, a
user sends messages to all BSs. The signal of user u ∈ Uv over
frequency band k is then given by xu,k =

∑
b∈Bv

xu,b,k where
xu,b,k is the part of the signal of user u that is transmitted over
frequency band k and is intended to be decoded by BS b. Let
Pu,b,k be the power allocation of the part of the signal of user u
that is transmitted over frequency band k and is intended to be
decoded by BS b.; i.e. Pu,b,k = E

(
x2u,b,k

)
, where E

(
x2u,b,k

)
denotes the expected value of x2u,b,k. We next prove that (1)
can in fact be written in the following equivalent form:

max
∑
b∈Bv

∑
u∈Uv

∑
k∈K

Wk log2

(
1 +
|hu,b,k|2Pu,b,k

σ2
b,k + Ju,b,k

)
s.t.: 0 ≤ Pu,b,k,

∑
b∈Bv

∑
k∈K

Pu,b,k ≤ Pu,∑
(ũ,b̃)∈Uv×Bv,

(ũ,b̃)6=(u,b)

|hũ,b,k|2Pũ,b̃,k = Ju,b,k, ∀ u ∈ Uv, b ∈ Bv, k ∈ K.

(2)

Theorem 1: The mixed integer programming problem (1)
and the continuous variables problem (2) are equivalent.

Proof: The equivalence of (1) and (2) is argued as follows.
First, the solution of (1) can be achieved by the solution

of (2) by setting xu,b,k = 0 whenever γu,b,k = 0, and
E
(
x2u,b,k

)
= Pu,k whenever γu,b,k = 1; thus the maximal

sum rate that is found by solving (2) upper bounds the maximal
sum rate that is found by solving (1). On the other hand,
suppose that the optimal transmission power of user u using
frequency band k, given the transmission power of all other
users, is Pu,k, that is Pu,k =

∑
b∈Bv

Pu,b,k. It follows by the
duality between the multiple-access channel and the broadcast
channel that is proved in [23] that the optimal power allocation
(Pu,b,k)b∈Bv for user u in frequency band k, given the power
allocation of all other users, is to allocate all its transmission
power Pu,k over frequency band k to the transmission to the
BS with the highest SINR. It follows that the maximal sum
rate of (2) cannot be larger than that of (1). Thus, the two
problems (1) and (2) are equivalent.

B. Solving an Approximation of the Continuous Variable Re-
source Allocation Problem Optimally

In the following, we approximately solve the problem (2).
We note that since we solve a convex approximation of the
problem, we may achieve a suboptimal solution. Denote:

SINRu,b,k(P ) =
|hu,b,k|2Pu,b,k

σ2
b +

∑
(ũ,b̃)∈Uv×Bv,

(ũ,b̃) 6=(u,b)

|hũ,b,k|2Pũ,b̃,k

, (3)



where P = (Pu,b,k)(u,b,k)∈Uv×Bv×K is the matrix of the
transmission power. Using the high SINR approximation [24]

log(1 + z) ≥ α(z0) log z + β(z0),

α(z0) =
z0

1 + z0
, β(z0) = log(1 + z0)−

z0
1 + z0

log z0,

transforming the variables of the problem using Pu,b,k =

exp(gu,b,k), and noticing that the terms β(m)
u,b,k do not affect

the optimal power allocation, yield the following approximated
convex iterative problem:

g(m) = argmax
∑
b∈Bv

∑
u∈Uv

∑
k∈K

Wkα
(m)
u,b,k

· log2

 |hu,b,k|2 exp(gu,b,k)
σ2
b,k +

∑
(ũ,b̃)∈Uv×Bv,

(ũ,b̃) 6=(u,b)

|hũ,b,k|2 exp(gũ,b̃,k)


s.t.:

∑
b∈Bv

∑
k∈K

exp(gu,b,k) ≤ Pu, ∀ u ∈ Uv, (4)

where α(m)
u,b,k = α(SINRu,b,k(P

(m−1))) and α
(0)
u,b,k = 1, and

g = (gu,b,k)(u,b,k)∈Uv×Bv×K.
Since the problem (4) is convex, its solution can be found by

solving its dual problem using the gradient method following
the analysis presented in [24]. Furthermore, the convexity of
(4) implies that its KarushKuhnTucker (KKT) conditions are
sufficient, and a point that fulfills them is both primal and
dual optimal. Similar to the analysis presented in [24], if the
iterative update rule (5) converges then it must converge to a
KKT point, which in turn is globally optimal. While there is
no known proof that guarantees convergence, in practice the
following fixed point iteration converges:

P
(m,s+1)
u,b,k = (5)

Wkα
(m)
u,b,k

λ
(s+1)
u ln 2+Wk

∑
(ũ,b̃)∈Uv×Bv,

(ũ,b̃)6=(u,b)

α
(m)

ũ,b̃,k

SINRũ,b̃,k(P
(m,s))|hu,b̃,k|2

P
(m,s)

ũ,b̃,k
|hũ,b̃,k|2

where λ(s+1)
u = 0 if∑

b∈Bv

∑
k∈K

α
(m)
u,b,k∑

(ũ,b̃)∈Uv×Bv,

(ũ,b̃)6=(u,b)

α
(m)

ũ,b̃,k

SINRũ,b̃,k(P
(m,s))

P
(m,s)

ũ,b̃,k
|hũ,b̃,k|2,

|hu,b̃,k|2
≤ Pu,

otherwise, it is chosen such that
∑

b∈Bv,k∈K P
(m,s+1)
u,b,k = Pu.

V. SOLVING THE RESOURCE ALLOCATION PROBLEM VIA
ALTERNATING ALGORITHMS

A more traditional approach for solving the problem
(1) separates it into two subproblems: a channel allocation
problem that sets the value of γu,b,k, and a power allocation
problem that optimizes the transmission power. Then we
iteratively solve these two problems until a stopping criterion
is fulfilled. A resource allocation scheme of this type is
depicted in Algorithm 2.

Next we present three channel allocation schemes for sub-
problem 1 that we consider in this work.

Algorithm 2
1: Input: δ > 0, Nmax ∈ N.
2: Set n = 0, δ0 = 2δ, R0 = 0;
3: Set P (0)

u,k = Pu/|K| for all u ∈ Uv and k ∈ K;
4: while δn > δ and n < Nmax do
5: n = n+ 1;
6: Channel allocation: Given the power allocation
P

(n−1)
u,k , set γ(n)u,b,k to be either zero or one for every
u ∈ Uv , b ∈ Bv and k ∈ K.

7: Power allocation: Given (γ
(n)
u,b,k)(u,b,k)∈Uv×Bv×K,

calculate (P
(n)
u,b,k)(u,b,k)∈Uv×Bv×K by solving the iterative

problem (4) starting with the initial values α(0)
u,b,k = γ

(n)
u,b,k

for all (u, b, k) ∈ Uv × Bv ×K.
8: Calculate: P (n)

u,k =
∑

b∈Bv
P

(n)
u,b,k;

9: Calculate the sum rate

Rn=
∑
b∈Bv

∑
u∈Uv

∑
k∈K

γ
(n)
u,b,kWk log2

(
1 +
|hu,b,k|2P (n)

u,b,k

σ2
b,k + J

(n)
u,b,k

)
;

10: Calculate δn = Rn −Rn−1;
11: end while

A. User-Centric (UC) Channel Allocation

In addition to the previously-proposed channel allocation
schemes that we discuss in Section V-B, we propose in
Algorithm 3 a user-centric (UC) approach in which at each
frequency band every user chooses its receiving BS to be the
one with the maximal SINR for this user given an initial
power allocation. The motivation behind this approach is
allowing the power allocation stage more flexibility to choose
the users who transmit to a given BS. More specifically,
in previously proposed channel allocation schemes discussed
in Section V-B, at most one user is allocated to a BS at
each frequency band. However, in the UC approach at each
frequency band each BS has a list of users that chose it as
their receiving BS, then the power allocation stage chooses
the identity of the user in that list who actually transmits
to the BS by allocating to that user a positive transmission
power. Interestingly, numerical results show that as the number
of virtual cells decreases and their size increases, both the
UC channel allocation and the equivalent continuous problem
approach outperform both of the previously-proposed channel
allocation methods that we next discuss.

Algorithm 3
1: Input: Power allocation P = (Pu,k)u∈Uv,k∈K;
2: For every u ∈ Uv , b ∈ Bv and k ∈ K calculate

SINRu,b,k(P ) =
|hu,b,k|2Pu,k

σ2
b,k +

∑
ũ∈Uv,ũ6=u |hũ,b,k|2Pũ,k

;

3: For every u ∈ Uv and k ∈ K, calculate:
bu,k = argmaxb∈Bv

SINRu,b,k(P );
4: For every (u, b, k) ∈ Uv ×Bv ×K set γu,b,k = 1{b=bu,k};



B. Previously-Proposed Channel Allocation Schemes

We also consider the following two existing channel alloca-
tion methods. Due to space limitation we briefly discuss these
existing schemes and refer the reader to the relevant works
where they have been analyzed for more details.

1) BS-centric (BSC) Channel Allocation: In the BS-centric
(BSC) approach at each frequency band every BS chooses its
transmitting user to be the one with the maximal SINR; this
scheme is used in several works such as [25] and [26]. We
remark that we do not restrict BSs to choose from a designated
subset of users, that is, they can choose to communicate with
any user in the virtual cell. We remark that even though
theoretically in this approach several BSs can choose the same
user, it can be proved following the argument presented in the
proof of Theorem 1 that an optimal power allocation scheme
will allocate power only to the transmission of no more than
one BS. In practice, this behavior is observed using the high
SINR approximation.

2) Maximum Sum Rate Matching (MSRM) Channel Alloca-
tion: The second channel allocation approach is presented in
[27]. It allocates the channels in a virtual cell optimally for
a given power allocation by solving the maximum sum rate
matching problem. We note that, as stated in [27], given a
power allocation P , the maximum sum rate matching channel
allocation approach finds the optimal channel allocation that
maximizes the sum rate for that power allocation. However,
since the power allocation may not be optimal, the overall
solution is not necessarily optimal.

VI. NUMERICAL RESULTS

This section presents Monte Carlo simulation results for the
system model presented in this paper. There were 8 frequency
bands each of bandwidth 20 KHz. The noise power received
by each BS was −174 dBm/Hz, and the maximal power
constraint for each user was 23 dBm. In each frequency
band we considered Rayleigh fading, Log-Normal shadowing
with a standard deviation of 8 dB and a path loss model
of PL(d) = 35 log10(d) + 34 where d denotes the distance
between the transmitter and the receiver in meters (see [28]).
The network was comprised of 10 BSs and 80 users which
were uniformly located in a square of side 1000 meters. The
results were averaged over 1000 system realizations.

Fig. 1 evaluates the average system sum rate as a function of
the number of virtual cells for each of the resource allocation
schemes we present. Fig. 1 leads to several interesting insights
and conclusions. First, it confirms the expectation that as
the number of virtual cells decreases, the average sum rate
increases. Second, it shows that the best channel affiliation
rule outperforms the closest BS one when the number of
virtual cells is large. Third, it compares the performance of
the resource allocation schemes presented in this work. Fig. 1
shows that it is best to use the BSC or MSRM channel
allocation methods, which yielded similar performance, for
allocating channels and power in virtual cells except when
there is a single virtual cell (fully centralized optimization).
In this case the two new resource allocation techniques that

Fig. 1: Comparison of the average system sum rate as a function of the number
of virtual cells that are created by the hierarchical clustering algorithm. The
legend is written in the form X-Y where X and Y indicate the resource
allocation scheme and the user affiliation rule, respectively.

we propose outperform these other methods. This can be
explained by the fact that our new schemes provide more
freedom in the power allocation stage to choose which users
have a positive transmission power compared with existing
methods. However, since the power allocation problem is
solved approximately, its solution may not be optimal. When
the size of virtual cells is small, the channel allocation choice
of the existing methods is good whereas the new methods
suffer loss in performance due to the suboptimality of the
power allocation stage. However, as the size of the virtual
cells grows (as their number is decreased), the ability of the
new methods to consider in the power allocation stage more
channel allocation combinations improves the resource allo-
cation performance even though solution is only approximate.

We also compared the average system sum rate that several
BS clustering algorithms yielded, namely, hierarchical cluster-
ing with minimax linkage with that of the K-means clustering
algorithm and that of the spectral clustering algorithm [29]
for the choices σ =

√
1000 and σ = 1000. Fig. 2 depicts

the maximal average system sum rate achieved by each of the
clustering algorithms where the maximization is taken over the
resource allocation schemes considered in this work. Fig. 2
shows that the hierarchical algorithm outperforms both the K-
means and the spectral clustering algorithms. It also shows
that a proper choice of the clustering algorithm is crucial
for improving network performance; this is evident in the
plot of the spectral clustering algorithm in which the network
performance monotonically decreases as the number of virtual
cells is decreased from 10 to 5.

VII. CONCLUSION

This work addressed the role of resource allocation and
user affiliation within virtual cells to maximize the sum rate
of wireless networks. It proposed solutions for two design
aspects; namely, forming the virtual cells and allocating the



Fig. 2: Comparison of the average sum rate as a function of the number of
virtual cells. The legend is written in the form X-Y where X and Y indicate
the BS clustering algorithm and the user affiliation rule, respectively.

communication resources in each virtual cell effectively. We
presented two new resource allocation schemes, the first con-
verts the NP-hard mixed-integer resource allocation problem
into a continuous problem and then finds an approximate
solution, the second alternated between the power allocation
and channel allocation problems when the channel allocation
was carried out in a user-centric manner. We proposed the
use of hierarchical clustering of the base-stations to form the
virtual cells, since with this technique changing the number
of virtual cells only causes local changes and did not force a
recalculation of all the virtual cells in the network. Finally, we
presented numerical results for the sum rate of these different
techniques, and showcased where our newly proposed methods
outperform existing techniques.
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