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Abstract—Traffic prediction plays a vital role in efficient plan-
ning and usage of network resources in wireless networks. While
traffic prediction in wired networks is an established field, there
is a lack of research on the analysis of traffic in cellular networks,
especially in a content-blind manner at the user level. Here,
we shed light into this problem by designing traffic prediction
tools that employ either statistical, rule-based, or deep machine
learning methods. First, we present an extensive experimental
evaluation of the designed tools over a real traffic dataset. Within
this analysis, the impact of different parameters, such as length of
prediction, feature set used in analyses, and granularity of data,
on accuracy of prediction are investigated. Second, regarding the
coupling observed between behavior of traffic and its generating
application, we extend our analysis to the blind classification
of applications generating the traffic based on the statistics of
traffic arrival/departure. The results demonstrate presence of
a threshold number of previous observations, beyond which,
deep machine learning can outperform linear statistical learning,
and before which, statistical learning outperforms deep learning
approaches. Further analysis of this threshold value represents
a strong coupling between this threshold, the length of future
prediction, and the feature set in use. Finally, through a case
study, we present how the experienced delay could be decreased
by traffic arrival prediction.

Index Terms—Machine Learning, LSTM, ARIMA, Random
Forest, Cellular Traffic, Cognitive Network Management.

I. INTRODUCTION

A major driver for the fifth generation (5G) of wireless

networks and beyond consists in offering a wide set of cellular

services in an energy and cost efficient way [1]. Toward

this end, the legacy design approach, in which resource

provisioning and operation control are performed based on the

peak traffic scenarios, are substituted with predictive analysis

of mobile network traffic and proactive network resource

management [1, 2]. Indeed, in cellular networks with limited

and highly expensive time-frequency radio resources, precise

prediction of user traffic arrival can contribute significantly in

improving the radio resource utilization and moving towards

cognitive and autonomous wireless access networks [2]. As

a result, in recent years, there has been an increasing in-

terest in leveraging machine learning tools in analyzing the

aggregated traffic served in a service area for optimizing

the operation of the network [3–6]. Scaling of fronthaul and

backhaul resources for 5G networks has been investigated in

[3] by leveraging methods from recurrent neural networks

(RNNs) for traffic estimation. Analysis of cellular traffic for

finding anomaly in the performance and provisioning of on-

demand resources for compensating such anomalies have been

investigated in [6]. Furthermore, prediction of light-traffic

periods, and saving energy for base stations (BSs) through

sleeping them in the respective periods has been investigated

in [4, 5]. While one observes that analysis of the aggregated

traffic at the network side is an established field, there is

lack of research on the analysis and understanding at the

user level, i.e., of the specific users’ traffic arrival. In 5G-

and-beyond networks, the (i) explosively growing demand

for radio access, (ii) intention for serving battery- and radio-

limited devices requiring low-cost energy efficient service [7],

and (iii) intention for supporting ultra-reliable low-latency

communications (URLLC) [2], mandate studying not only the

aggregated traffic arrival from users, but also studying the

features of traffic arrival in each user, or at least for critical

users. A critical user could be defined as a user whose quality-

of-service (QoS) is at risk due to the traffic behavior of other

devices, or its behavior affects the QoS of other users, which

is usually the case in URLLC scenarios [2].

The traffic analysis and prediction problem could be ap-

proached as a time series forecasting problem, where for

example, the number of packet arrivals in each unit of time

could be defined as the value of the time series at each

point. While the literature on time series forecasting using

statistical and machine learning approaches is mature [8, 9],

understanding dynamics of cellular traffic and prediction of fu-

ture traffic/burst arrivals are complex problems. This is mainly

because of the vastly diverse set of parameters that shape the

traffic arrival process, from set of running applications in the

background to the communication system in use. Dealing with

cellular traffic prediction as a time series prediction, one may

categorize the state-of-the-art proposed schemes into three cat-

egories: statistical learning [8], machine learning [10, 11], and

hybrid schemes [9]. ARIMA and LSTM, as two well-known

statistical and machine learning approaches, respectively, for

forecasting time series, which have been compared in a

variety of problems, from economics to network engineering

[12]. A comprehensive survey on cellular traffic prediction

schemes could be found in [13, 14]. A deep learning-powered

approach for prediction of overall network demand in each

region of cities has been proposed in [15]. In [11, 16], the

spatial and temporal correlations of the cellular traffic in

different time periods and neighbouring cells, respectively,

have been explored using neural networks in order to improve

the accuracy of traffic prediction. In [17], convolutional and

recurrent neural networks have been combined in order to
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further capture dynamics of time series, and enhance the

prediction performance. In [10, 12], the aggregated network

traffic prediction using LSTM have been presented, while

the study on the feature sets used in the experiment and the

impact of different design parameters on the performance are

missing. Study of state-of-the-art reveals that there is a lack

of research on leveraging advanced learning tools for cellular

traffic prediction, selection of adequate features, especially

when it comes to each user with specific set applications,

which is covered here.

In this work, we present our preliminary results on gener-

ation, labeling, and analysis of cellular traffic captured from

a real user using deep machine learning as well as statistical

learning. The main contributions of this work include:

• Formulate the traffic analysis problem as a time series

classification/forecasting problem, design a set of fea-

tures based on traffic statistics, and leverage statistical

and deep learning for approaching this problem.

• Generate a real labeled traffic dataset, carry out a com-

prehensive set of traffic analysis, including: (i) perfor-

mance comparison of deep-learning predictor against

linear statistical-learning predictor, in terms of short-term

and long-term predictive performance; (ii) performance

analysis of adding extra features to the deep learning

predictors; (iii) analysis of tuning design parameters, e.g.

the length of previous observations and future prediction

on the prediction performance.

• Identify a threshold number of previous observations, be-

fore which, statistical learning outperform deep learning,

and identify the coupling between this threshold and the

length of future prediction and the feature set is use.

• Present the usefulness of traffic-aware radio resource

management through a case study, and investigate how

the experienced delay in communications could be de-

creased by predicting the arrival of bursts.

The remainder of this paper is organized as follows. The next

section presents the problem description and the structure of

proposed solution. Section 3 presents the set of methods used

in the solution. Section 4 presents the experimental results.

Finally, the concluding remarks are given in Section 5.

II. PROBLEM DESCRIPTION AND TRAFFIC PREDICTION

FRAMEWORK

A. Problem description

In this section, we first introduce the research problem

addressed in the paper. Then, we present the structure of the

proposed solution for addressing this problem. The system

model considered in this work consists of a set of wireless

devices connected to a cellular network, on which, a set of

applications are running. At a given time interval [t, t+τ ] with

length τ , each application could be in an active or inactive

mode, based on the user behavior, and traffic generation of

the application is dependent upon its activity mode. The aim

is to control the level of available network resources, e.g.

the amount of radio resources, and to allocate the available
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Fig. 1: The proposed intelligent module for enhanced decision

making in control of network resources for serving users

resources to the devices demanding service. The legacy ap-

proaches for network resource management usually provision

and allocate resources based on the buffer status report (BSR)

of users. However, here we put one step forward and seek

for opportunities to carry proactive resource provisioning and

allocation out. Then, given the current and past state of users’

traffic behavior, we aim at making decision for serving a

coexistence set of users. Towards this end, we need to carry

an in-depth analysis of individual user’s traffic behavior. Let

us denote the set of per-user features describing aggregated

cellular traffic in [t, t + τ ] by x(t). Furthermore, let Xm(t)
denote a matrix containing the latest m feature vectors of

traffic for m ≥ 0. For example, X2(t) = [x(t − 1), x(t)].
Further, denote by s an indicator vector, with elements either

0 or 1. Then, given a matrix Xm(t) and a binary indicator

vector s, we define Xs
m(t) the submatrix of Xm(t), such that

all respective rows, for which s indicates a zero value, are

removed. For example, let Xm(t) = [1, 2; 3, 4] and s = [1, 0],
then, Xs

m(t) = [1, 2]. Now, the problem is formulated as:

Given Xm(t-1); Minimize L
(

Xs
−n(t),Y(t)

)

, (1)

where m ≥ 0, n ∈ Z, n ≥ 0 is the length of the future

predictions, e.g., m = 0 for one step prediction, Y(t) is of

the same size as Xs
−n(t) and represents the predicted matrix

at time t, while L(·) is the desired error function, e.g., it may

compute the mean squared error between Xs
−n(t) and Y(t).

B. The overall structure of the proposed solution

The main challenges, as described in the previous section,

in the prediction of cellular traffic consists in dependency of

traffic arrival to user behavior and type of the application(s)

generating the traffic. Then, as part of the solution to this

problem, one may first predict the application(s) in use and

behavior of the user, and then extract extra features based

on the classification of users’ and applications mode, to be

leveraged in the traffic prediction. This approach for solving

(1) has been illustrated in Fig. 1. In order to realize such a

framework, it is of crucial importance to first evaluate the

traffic predictability and classficablity using only statistics of



traffic, and then, to investigate hybrid models for augmenting

predictors by online classifications, and finally to investigate

traffic-aware network management design. In the following

sections, predictability and classficablity of cellular traffic

is investigated, a case study of predictive traffic serving is

presented, and the other parts of the proposed framework are

left for the extended version of manuscript.

III. TRAFFIC PREDICTION-CLASSIFICATION: METHODS

A. Statistical learning: ARIMA

The first method we consider in our work is Autoregressive

integrated moving average (ARIMA), which is essentially a

statistical regression model. The predictions performed by

ARIMA are based on considering the lagged values of a

given time series, while at the same time accommodating non-

stationarity. An ARIMA model, ARIMA(p, d, q), is defined

by three parameters p, d, q [18], where p and q correspond to

the AR and MA processes, respectively, while d is the number

of differentiations performed to the original time series values,

that is Xt is converted to X
(d)
t = ∇dXt, with X

(d)
t being the

time series value at time t, with differentiation applied d times.

Consequently, the full ARIMA(p, d, q) model is computed as

follows: X
(d)
t =

∑p

i=1 αiX
(d)
t−i +

∑q

j=1 βjǫt−j + ǫt + c + µ.

In this study, ARIMA is used for traffic prediction, and the

ARIMA parameters, including p, d, and q, are optimized by

carrying out a grid search over potential values in order to

locate the best set of parameters.

B. Rule-Based Learning: Decision trees and random forests

A decision tree is a rule-based classifier, where each internal

node corresponds to a condition on a data attribute. The

outcome of the condition can be binary, categorical (nominal

or ordinal), or real-valued. Depending on the outcome of the

condition the test example follows the corresponding branch,

starting from the root node all the way down to a leaf node.

Leaf nodes contain a class label, which correspond to the final

classification outcome. A path from the root node to a leaf

node builds a decision rule. The idea of a single decision tree

is extended naturally to random forests (RAF)s and ensemble

learning, based on the key fact that using an ensemble of

many simple weak classifiers can lead to a much stronger

classifier, given that each individual weak classifier is slightly

stronger than random guessing and independent of all other

classifiers. To classify a new object, it is sent to each tree

in the forest, and each tree gives a result. The final class

label is determined by majority voting. More formally, let hi

be a single learner, i.e. in our case a decision tree. Given

a data example x, the RAF determines the final class label

as follows using a set of k independent decision trees, as

follows: R(x) = M⋆{h1(x), . . . , hk(x)}, where M⋆ denotes

the majority vote function of the set of individual learners. In

this study, RAF is used for traffic classification.

C. Deep learning: LSTM

The second method we consider in our study is a long

short-term memory (LSTM) architecture, which is based on a

Recurrent Neural Network (RNN), a generalization of the feed

forward network model for dealing with sequential data, with

the addition of an ongoing internal state serving as a memory

buffer for processing sequences. Let {X1, . . . , Xn} define the

set of n time series inputs of our RNN and {Y1, . . . , Yn}
be the set of outputs. For this study the internal state of the

network is processed by Gated Recurrent Units (GRU) defined

by iterating the following three equations:

rj=S([WrX ]j+[Urht−1]j); zj=S([WzX ]j+[Uzht−1]j));

ht
j=zjh

t−1
j +(1-zj)hnew;h

t
new=tanh([WX ]j+[U(r ◦ ht-1)]j),

where rj is a reset gate, ht−1 is the previous hidden internal

state ht−1, W and U contain weights to be learned by the

network, zj is an update gate, ht
j denotes the activation

function of hidden unit hj , S(·) denotes the sigmod function,

and ◦ is the Hadamard product. Finally, the loss function

we optimize is the squared error, defined for all inputs as

L =
∑n

t=1(Yt − Y ′

t )
2 . In this study, LSTM is used for both

traffic classification and prediction.

IV. EXPERIMENTAL EVALUATION

A. Traffic prediction and classification

1) Dataset, features, and feature sets: For setting up

any prediction tool, having access to a large and well-

representative dataset is of crucial importance. Reviewing the

state-of-the-art, as well as online resources, reveals that to

the best of authors’ knowledge, there are no public datasets

available representing cellular traffic to/from a user. Among

several other reasons, privacy is a major reason that results

in a lack of availability of cellular traffic records of users.

Then, in order to carry this research out, in this work we

generate our own dataset and made it available online [19]

for future works. In order to generate the dataset, we leverage

a packet capture tool, e.g. WireShark, at the user side. Using

these tools, packets are captured at the Internet protocol (IP)

level. One must note that the cellular traffic is encrypted in

layer 2, and hence, the payload of captured traffic is neither

intended for our blind prediction/classification, nor accessible

for analysis. In the following, we describe a set of 6 features,

considered in this study, where all of them are defined over a

time interval of τ , as follows: f1: number of uplink packets;

f2: number of downlink packets; f3: size of uplink packets;

f4: size of downlink packets; f5: radio of number of uplink to

downlink packets; f6: the communication protocol used in the

transfer, e.g. TCP or UDP. Based on these features, we define

6 different feature sets (FSs), each containing a subset of fea-

tures, as follows: FS-1=[1,1,1,1,1,0], FS-2=[1,0,0,0,1,0], FS-

3=[1,0,0,0,0,0], FS-4=[1,1,0,0,1,0], FS-5=[1,1,0,0,0,0], and

FS-6=[1,1,0,0,0,1], where a one (res. zero) at position i of

FS-k represents that fi is present (res. absent) in FS-k.

2) Experiment setup: The experimental results in the fol-

lowing sections are presented in 3 categories, including i)

prediction of number of packet arrivals in the future time

intervals, ii) prediction of burst occurrence in the future

time intervals, and iii) classification of applications which



are generating the traffic. In the first two categories, we

carry out a comprehensive set of Monte Carlo MATLAB

simulations [20], over the dataset, for different lengths of the

training sets, length of future prediction, feature sets used in

learning and prediction, and etc. The notations of schemes

presented in the experiments are as follows: (i) AR(1), which

represents predicting the traffic based on the last observation;

(ii) optimized ARIMA, in which the number of lags and

coefficients of ARIMA are optimized using a grid search for

RMSE minimization in prediction of traffic for the next time

interval; (iii) RAF, which combines the results of 50 decision

trees for classification, and (iv) LSTM(FS-x), in which FS-x

for x ∈ {1, · · · , 6} represents the feature set used in the RNN,

and the RNN itself consists of one LSTM layer with 100

hidden elements and one fully connected layer. The training

of LSTM has been done over 100000 of time intervals of

length τ .

Reproducibility All experiments could be reproduced using

the dataset available at the supporting Github repository [19].

3) Empirical results: Prediction and classification

Prediction of traffic arrival First, we investigate the per-

formance impacts of traffic type and employed feature sets

on the RMSE performance of predictors. Fig. 2 represents

the RMSE results for LSTM predictor with different feature

sets, ARIMA with optimized parameters, and AR(1), when

the number of uplink packets in the next time intervals, i.e.

10 seconds, is to be estimated. Towards this end, the right y-

axis represents the absolute RMSE of AR(1) scheme, the left

y-axis represents the relative performance of other schemes

versus AR(1), and the x-axis represents the standard deviation

(SD) of the test dataset. The results are insightful and shed

light to the regions in which ARIMA and LSTM perform

favorably, as follows. When the SD of traffic from its average

value is more than 30% of the long-term SD of the dataset,

which is almost the case in the active mode of phone usage

by human users, LSTM outperforms the benchmark schemes.

On the other hand, when there is only infrequent light back-

ground traffic, which is the case on the right-end side of Fig.

2, ARIMA outperforms the benchmark schemes. When we

average the performance over a 24-days dataset, we observe

that LSTM(FS-6), LSTM(FS-5), LSTM(FS-3), and optimized

ARIMA outperform the AR(1) by 16%, 14.5%, 14%, and

12%, respectively, for τ=10 sec. Recall that LSTM(FS-6)

keeps track of the number of uplink and downlink packets,

as well as statistics of the communication protocol used by

packets in each time interval, while LSTM(FS-5) does not care

about the protocol used by packets. The superior performance

of LSTM(FS-6) with regards to LSTM(FS-5), as depicted

in Fig. 2, represents that how adding features to the LSTM

predictor can further improve the prediction performance in

comparison with the linear predictors.

Now, we investigate strengths of different predictors in

medium to long-term traffic prediction. Fig. 3 represents the

RMSE results for 3 different lengths of future predictions,

i.e. 50 seconds (top), 200 seconds (middle), and 600 sec-

onds (down). The x-axis represents the length of previous

observations, i.e. it represents the number of observations just

before the test window, which are available to be used by

the trained model. The square-marked curve represents the

results for AR(1), i.e. the case in which estimation is made

based on the last observation. One observes that for medium-

range future prediction, AR(1) outperforms the others when

the number of previous observations is less that a threshold

value, e.g. approximately 15 observations for 5τ -length future

observations. Beyond this threshold value, we observe that

LSTM outperforms the AR(1). Furthermore, we observe that

this threshold value is dependent on the length of future

prediction because in the middle and bottom figures, the

LSTM predictor outperforms the others with the threshold

value of 4 and 1 previous observations, respectively. The

results further indicate that the optimized ARIMA, which has

been optimized for traffic prediction in next interval, loses

its performance in longer ranges of future prediction, i.e.

it is worse than AR(1) in some circumstances. Finally, as

observed in Fig. 2, the relative performance of LSTM to

AR(1) and ARIMA is highly dependent on thr feature set used

in training, an hence, the threshold value for LSTM decreases

by incorporating further features.
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Fig. 2: The impacts of traffic type and employed feature sets

on the RMSE performance of predictors (τ=10 sec)

Prediction of burst events For the following experiments, we

label a subset of time intervals as burst based on the intensity

of traffic in each interval, where the intensity could be due to

the number or size of packets. Then, based on this training

dataset, we aim at predicting if a burst will happen in the

next time interval(s) or not. As a benchmark to the LSTM

predictor, we compare the performance against AR(1), i.e. we

estimate a time interval as burst if the previous time interval

had been labeled as burst. Fig. 4 represents the recall of bursts

and non-bursts for two different burst definitions. The first

(second) definition treats the time intervals with more than 90

(900) uplink packet arrivals as burst, when the SD of packet

arrivals in the dataset is 90. The LSTM predictor developed

in this experiment returns the probability of burst occurrence

in the next time interval, based on which, we need to set a

threshold probability value to declare the decision as burst
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or non-burst. The x-axis of Fig. 4 represents the decision

threshold, which tunes the importance of recall and accuracy

of decisions. In this figure, we observe that the probability of

missing a burst is very low in the left side, while the accuracy

of decisions is low (it could be inferred from the recall of

non-bursts). Furthermore, on the right side of this figure, the

probability of missing bursts has been decreased, however, the

accuracy of decisions has been increased. The crossover point,

where the recall of bursts and non-burst match, could be an

interesting point for investigating the prediction performance.

In this figure for burst definition of type (1 SD), one observes

that when the decision threshold is 0.02, 91% of bursts could

be predicted, while only 9% of non-bursts are labeled as burst

(false alarm).
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Fig. 4: Performance evaluation of prediction of bursts as a
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Classification of traffic Finally, we investigate leveraging

machine learning schemes for classification of the application

generating the cellular traffic in this subsection. For the

classification purpose, a controlled experiment at the user-side

has been carried out in which, 4 popular applications including

surfing, video calling, voice calling, and video streaming have

been used by the user. Fig. 5 represents the accuracy of

classification for different feature sets used in classifiers, i.e.

LSTM and RAF. For the case of LSTM, one observes that

the LSTM(FS-5) outperform the others significantly in the

accuracy of classification, and the accuracy increase in τ . On

the other hand, one observes that the RAF scheme achieves

the best performance for FS-1, i.e., when it has full access

to all features, and it performance decreases by an increase

in τ . The reason for the former difference in behavior (best

accuracy in FS-1 or FS-5) consists in the fact that LSTM(FS-

1) suffers from over-fitting, while the RAF can compensate

this problem by averaging over many decision trees. Then,

if a few number of features are available, LSTM performs

preferably, and vice versa. On the other hand, as τ increases,

due to practical problems with short τ values, the ambiguity

in making decision for RAF increases, while the LSTM can

make a better decision thanks to its sophisticated design.
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Fig. 5: Accuracy of classification by LSTM and RAF as a

function of the feature set used in the experiment

TABLE I: Parameters for performance evaluation

Parameters Value

Service area Cell of radius 500m, BS at center

Average service rate 45 Mbps

BS transmit power Adaptive to user channel to fulfill

on-average 45 Mbps, Max: 40 W

Type-1 traffic SPP(0.2,20,10,1), Size: 3Mb

Type-2 traffic PP(2), Size: 2Mb

Number of users 5 of type-1; 3 of type-2

Resource management Round robin scheduling

B. Traffic-aware resource management

In this section, we conduct a case study to investigate the

performance impact of prediction of burst arrivals on the

experienced delay in communications. Consider a service area,

with one BS at the center, serving two types of bursty and

non-bursty downlink service requests, modeled by Switched
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Fig. 6: The impact of burst prediction and predictive buffering

on the QoS in terms of service delay for type-2 traffic

Poisson Process (SPP) and Poisson Process (PP), respectively

[21]. The type-1 and type-2 traffic models aim at representing

simplified models of surfing/on-demand file downloading and

streaming applications, respectively, where the later is more

sensitive to delay in communications. The parameters for

SPP in Table I represent traffic arrival in light and heavy

traffic periods, and the average lengths of light and heavy

traffic periods, respectively. For the PP model, the parameter

represents the traffic arrival rate. In our Matlab simulator, once

a burst in type-1 traffic is predicted, the BS starts filling the

buffer of users which are served by type-2 traffic, and hence,

in order to prevents QoS degradation for type-2 traffic at the

time of arrival of burst for type-1 traffic. Fig. 6 represents the

impact of burst prediction in type-1 traffic on the experienced

delay by users requesting type-2 traffic. The x-axis in this

figure represents the percentage of predicted burst, as per

the results of Fig. 4. One observes that the expected service

delay in for type-2 traffic could be significantly decreased

by predicting burst in type-1 traffic. One further observes

that burst prediction also significantly decreases the standard

deviation of delay, i.e. the severe impact of occurrence of

bursts, are compensated. These promising results motivate

jointly formulating the radio resource allocation and user

traffic prediction, and driving probabilistic schedulers, which

are skipped here.

V. CONCLUSIONS

In this work, the feasibility of per-user traffic prediction for

cellular networks has been investigated. Towards this end, a

framework for cellular traffic prediction has been introduced,

which leverages statistical/machine learning tools for traffic

classification and prediction. A comprehensive comparative

analysis of traffic prediction based on statistical and deep

learning has been carried out, under different traffic circum-

stances and design parameter selections. The LSTM model,

when additional traffic statistic features are accessible or there

is access to a set of previous observations, exhibited demon-

strable improvement over the optimized ARIMA model for

short to long-term future predictions. The impact of number

of previous observations, length of future prediction, type

of features in use, and type of application(s) generating the

traffic on the accuracy of predictions have been investigated,

and it has been shown, and the circumstances in which

statistical, rule-based and deep learning approaches perform

favorably have been highlighted. Furthermore, usefullness

of the developed learning tools for classification of cellular

traffic has been investigated, where the results represent high

sensitivity of accuracy and recall of classification to the feature

set in use. Our simulations, for a radio resource management

problem, have shown a considerable decrease in experienced

delay, when the decision making module is augmented by

burst traffic arrival estimation.
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