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Abstract—Accurate location information is indispensable for
the emerging applications of Internet of Vehicles (IoV), such as
automatic driving and formation control. In the real scenario,
vision-based localization has demonstrated superior performance
to other localization methods for its stability and flexibility. In
this paper, a scheme of cooperative vision-based localization with
communication constraints is proposed. Vehicles collect images
of the environment and distance measurements between each
other. Then vehicles transmit the coordinates of feature points
and distances with constrained bits to the edge to estimate their
positions. The Fisher information matrix (FIM) for absolute
localization is first obtained, based on which we derive the
relative squared position error bound (SPEB) through subspace
projection. Furthermore, we formulate the corresponding bit
allocation problem for relative localization. Finally, a variance-
based gradient descent (V-GD) algorithm is developed by consid-
ering the influence of photographing, distance measurements and
quantization noises. Compared with conventional bit allocation
methods, numerical results demonstrate the localization perfor-
mance gain of our proposed algorithm with higher computational
efficiency.

I. INTRODUCTION

The past decade has witnessed the tremendous development

of Internet of Vehicles (IoV) in both fundamental theories

and practical applications. As one of the most promising

development directions, automation is the goal that IoV ur-

gently pursues in the next generation. In the future, IoV will

enable a number of applications for vehicle networks such

as automatic driving, formation control and intelligent traffic

management systems, where accurate and real-time position

information is prerequisite for implementing high-level tasks

[1], [2]. However, the Global Positioning System (GPS),

which is usually used for localization in outdoor environment,

tends to be incapable of providing reliable localization service

for autonomous vehicles due to the high cost of deploying

sufficient base stations. Moreover, localization signals from

base stations are easily blocked by buildings around and

interfered by other non-line-of-sight (NLOS) links, which

further degrades the quality of localization service [3] [4].

Visual localization is an emerging area of research that

integrates 3D reconstruction techniques into network local-

ization. To obtain a more accurate mapping of surroundings

and locate sensors in harsh environment, intensive studies

have been conducted to design robust visual localization algo-

rithms to achieve the goals of environment reconstruction and
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Fig. 1. Cooperative reconstruction and localization in a mobile multi-vehicle
network: each vehicle transmits the coordinates of feature points in the image
and the distance measurements with limited bits to the edge.

localization simultaneously [5], [6]. These visual algorithms

take the advantage that the visual observations received by

cameras are not affected by multipath interference and can

provide adequate position information to locate objects in the

world coordinates. With the great advance in hardware and

feature extraction algorithms, the computational efficiency of

visual localization algorithms can be guaranteed to meet the

increasing localization demand in GPS-denied environment

[6]. This paper investigates the point-based reconstruction

algorithm for IoV, which extracts feature points from images

and represents the scene with the point cloud [6], [7].

To gain a better localization performance with limited obser-

vations, cooperation among sensors is profitable and deserves

further investigating [8]. In a real mobile scenario where the

communication bandwidth between sensors is severely limited,

it is impractical to transmit either all the feature points or

the entire image to the multi-access edge computing (MEC)

platform. Thus, an effective scheme of allocating bits among

different vehicles and information sources is required for en-

hancing the visual localization performance under bandwidth

constraints. However, little investigation has been carried out

to introduce this kind of cooperative mechanism to visual

localization.
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In this paper, a bit allocation scheme is proposed for visual

localization of vehicles. First, we introduce the system model

of visual localization with communication constraints. Then

the Fisher information matrix (FIM) of absolute positions of

vehicles and feature points is derived, based on which the

relative squared position error bound (SPEB) is further given

using the subspace projection method. On the basis of that,

the bit allocation among different vehicles and measurements

is formulated as an optimization problem by employing the

metric of SPEB. We propose a variance-based gradient descent

(V-GD) method to allocate bits with higher localization accu-

racy and computational efficiency compared to conventional

algorithms.

II. PROBLEM FORMULATION

A. Vision-based Localization Scheme

Consider there are Nv vehicle, each equipped with a monoc-

ular camera (See Fig. 1). To map the environment and derive

the relative position of themselves, each vehicles uses the

observed images to reconstruct the surroundings and measures

the time of arrival (TOA) to determine the distances between

itself and others [9]. During an observation period, each

camera extracts Nf most salient feature points in the current

image, whose gradient is large enough so that feature points

extracted by different vehicles can be shared among vehicles.

Vehicles will transmit the coordinates of feature points and the

measured distances between vehicles to the edge for estimating

the relative positions of feature points and vehicles.

B. System Model

The absolute position of the ith feature point is pi =
[xi, yi, zi]

T ∈ R3 (i = 1, ..., Nf ). The augmented position

vector of feature points is denoted by p = [pT
1 ,p

T
2 , ...,p

T
Nf
]T.

Similarly, the absolute position of the jth vehicle is xj =
[xj , yj, zj ]

T ∈ R3 (j = 1, ..., Nv) and the augmented position

vector of vehicles is denoted by x = [xT
1 ,x

T
2 , ...,x

T
Nv

]T. We

assume that the camera on every vehicle has the same cali-

bration matrix K, whose elements represent the information

about image resolution, coordinates of the principal point and

the skew factor. Then the image of the feature point pi at the

jth vehicle can be modeled as

[
yi

1

]
=

1

λij
K

[
Rj

T , −Rj
Txj

] [ pi

1

]
+




wij1

wij2

0




(1)

where yi is the coordinate vector of the feature point pi in

the image coordinate system. Rj indicates the Euler angles

of the jth vehicle, which can be obtained by the inertial

measurement unit (IMU) on each vehicle. The noise terms of

wij1 and wij2 represent the combined effect of photographing

and quantization for X and Y coordinates, whose variances

can be expressed as

σ2
ijk = σ′2

ijk + σ′′2
ijk , k = 1, 2

where σ′2
ijk denotes the variances of additive Gaussian noises

produced by the photographing process of the ith feature

point at the jth vehicle. Additionally, σ′′2
ijk is the variances of

quantization noises utilizing bijk bits. Due to the independence

between photographing noise and quantization noise [10], we

can derive σ2
ijk by summing the above two parts. We further

define the quantization bit allocation vector for X and Y

coordinates as

b1 = [b111, b121, . . . , bNfNv1, b112, . . . , bNfNv2]
T. (2)

Each pair of vehicles measure the distance between them

based on TOA. The measurement dij between the ith vehicle

and the jth vehicle can be modeled as

dij = ‖xi − xj‖+ wij3 (3)

where wij3 denotes the combination of measurement and

quantization noises. The corresponding noise variance can be

written as

σ2
ij3 = σ′2

ij3 + σ′′2
ij3

among which σ′2
ij3 is the measurement noise variance while

σ′′2
ij3 accounts for the quantization effect. We define the bit

allocation vector for measured distances as

b2 = [b123, b133, · · · , b(Nv−1)Nv3]
T. (4)

We adopt a probabilistic quantization method to quantize the

coordinates of feature points and the distance between vehicles

[11]. We suppose that the observed signal is bounded to

[0, 2W ], i.e. x = θ + n ∈ [0, 2W ]. W is decided by the

physical constraints of parameter θ. We first divide [0, 2W ]
into 2b− 1 equilong intervals with the spacing ∆ = 2W

(2b−1)
. If

n∆ ≤ x ≤ (n+ 1)∆ for 0 ≤ n ≤ 2b − 2, then x is quantized

to x̂(b) with b bits as

P (x̂(b) = n∆) = 1− x− n∆

∆

P (x̂(b) = (n+ 1)∆) =
x− n∆

∆
.

It can be proved that x̂(b) is an unbiased estimation of θ and

the variance of noise satisfies [11]

E{|x̂(b)− θ|2} ≤ σ2 +
W 2

(2b − 1)2
, ∀b ∈ N+

where σ2 is the variance of observation noise and W 2

(2b−1)2
is

introduced as quantization noise.

To guarantee the localization performance with communica-

tion constraints, we assume σ′′2
ijk =

W 2
k

(2bijk−1)2
for k = 1, 2, 3

where W1×W2 is the resolution of images and W3 is the size

of the scene which we set in advance.

To facilitate the following performance analysis in terms of

FIM, we further assume that the quantization noise follows a

Gaussian distribution as N (0, σ′′2
ijk) [12].



C. Performance Metric

In order to measure the performance of vision-based lo-

calization, we first need to determine a tractable metric for

3D reconstruction. However, a great number of works have

explored this topic but fail to reach a consensus. Among them,

point-based algorithms are frequently utilized as practical

solutions to this issue [5], [6], [7]. To evaluate the accuracy of

3D reconstruction, we employ the point-to-point distance as

the reconstruction performance metric, which is widely used

in image registration [13], [14], given by

ǫ =
∑

i

‖pi − p̂i‖2 (5)

where pi is the actual position vector of the ith feature

point and p̂i is the reconstructed position vector. On that

basis, we derive the overall performance metric for joint 3D

reconstruction and vehicle localization with communication

constraints in the following sections.

D. Relative Localization

We denote the position vector of feature points and vehicles

as p̃ = [pT,xT]T ∈ R3(Nf+Nv). Then the transformation of

the estimated position vector ˆ̃p can be defined as

Tα(ˆ̃p) = ˆ̃p+ xvx + yvy + zvz

vx = [1, 0, 0, 1, 0, 0, ..., 1, 0, 0]T ∈ R
3(Nf+Nv)

vy = [0, 1, 0, 0, 1, 0, ..., 0, 1, 0]T ∈ R
3(Nf+Nv)

vz = [0, 0, 1, 0, 0, 1, ..., 0, 0, 1]T ∈ R
3(Nf+Nv) (6)

where α = [x, y, z]T is the transformation parameter. The

optimal transformation parameter can be defined as

α0 = argmin
α

‖p̃− Tα(ˆ̃p)‖. (7)

The optimal solution can be derived as

α0 =
(p̃− ˆ̃p)T[vx,vy,vz]

vT
x vx

. (8)

The estimated position transformed by α0 can be written as
ˆ̃p0 = Tα0(

ˆ̃p). Then the total error ǫ can be expressed as the

sum of two parts, i.e.,

ǫ = ǫt + ǫr (9)

where ǫt = ‖[vx,vy,vz ]α0‖2 and ǫr = ‖p̃− ˆ̃p0‖2 denote the

transformation error and the relative error, respectively. Since

no position information is acquired from anchors, we focus on

the derivation and analysis of the relative error in this paper.

E. Performance Bound

In addition to approximating the distribution of the noise

term wijk by N(0, σ2
ijk), we further define the augmented bit

allocation vector as b = [bT
1 ,b

T
2 ]

T. Then we derive the FIM

of parameters p̃ as follow [15]

J(p̃,b) = J1(p̃,b1) + J2(p̃,b2). (10)

The first term of J1(p̃,b1) is generated by the observation

of feature points, which can be written as

J1(p̃,b1) =

[
A B

BT C

]
. (11)

The corresponding submatrices have the form

A = diag

{ Nv∑

j=1

G1j ,

Nv∑

j=1

G2j , · · · ,
Nv∑

j=1

GNfj

}
(12)

B =




−G11 −G12 · · · −G1Nv

−G21 −G22 · · · −G2Nv

...
...

. . .
...

−GNf1 −GNf2 · · · −GNfNv


 (13)

C = diag

{ Nf∑

i=1

Gi1,

Nf∑

i=1

Gi2, · · · ,
Nf∑

i=1

GiNv

}
(14)

where

Gij =

2∑

k=1

(fij3vkj − fijkv3j)(fij3vkj − fijkv3j)
T

σ2
ijk

(15)

fijk =
vT
kj(pi − xj)

[vT
3j(pi − xj)]2

, k = 1, 2, 3 (16)

with v1j ,v2j and v3j as the row vectors of KRT
j , i.e.,

KRT
j = [v1j ,v2j ,v3j ]

T. (17)

The second term of J2(p̃,b2) represents the information

from distance measurements between vehicles, given by

J2(p̃,b2) =

[
0 0

0T D

]
(18)

where

D =




∑
j S1j −S12 · · · −S1Nv

−S21

∑
j S2j · · · −S2Nv

...
...

. . .
...

−SNv1 −SNv2 · · · ∑
j SNvj


 (19)

and

Sij =
1

σ2
ij3

wijw
T
ij (20)

wij =
xi − xj

‖xi − xj‖
. (21)

As we only concern about the relative positions of vehicles

and feature points, we can simply determine the ”shape” of

the position of vehicles and feature points. It is proved that

J(p̃,b) is rank-deficient and can be decomposed as [16]

J(p̃,b) = [U Ũ]

[
Λ 0

0T 0

]
[U Ũ]T (22)

where Λ is the diagonal matrix whose diagonal elements are

the nonzero eigenvalues of J(p̃,b). U and Ũ are comprised of

eigenvectors corresponding to nonzero and zero eigenvalues,

respectively. Note that U captures all the relative position

information while Ũ provides no extra information for the



determination of relative errors. The rank of Ũ is 3 in most

circumstances1, given by

Ũ =

[
vx

‖vx‖
,

vy

‖vy‖
,

vz

‖vz‖

]
. (23)

Then we can derive the relative SPEB as

Pr(p̃,b) = trace{(U(UTJ(p̃,b)U)−1UT)} (24)

and we will employ it as the performance metric for optimiza-

tion in the following section.

III. BIT ALLOCATION ALGORITHMS

A. Optimization Problem Formulation

In this subsection, we formulate the bit allocation problems

for visual localization. The goal of bit allocation is to achieve

the minimum relative SPEB given a limited total bit number

B for vehicles. The problem is given as

P : min
{bijk}

Pr(p̃,b)

s.t.
∑

i,j,k

bijk ≤ B, bijk ≥ 0.

Lemma 1: f(x) =
1

1 + a2

(2x−1)2

is concave when x ≥ log2 a

for a ≫ 1.

Proof: We first calculate the second derivative of f(x)
with respect to x as

f ′′(x) = 2a2 ln 2

{
[2x(2x − 1) ln 2 + 22x ln 2]

[a2 + (2x − 1)2]2

− 22x+2(2x − 1)2 ln 2

[a2 + (2x − 1)2]3

}
. (25)

Let y = 2x, then

f ′′(x) = 0 ⇔ 2y3 − 3y2 − 2a2y + (a2 + 1) = 0. (26)

According to Cardano formula, the equation has three real

roots and the first root can be written as

y1 =
3

√

− q

2
+

√( q
2

)2

+
(p
3

)3

+
3

√

− q

2
−
√(q

2

)2

+
(p
3

)3

(27)

where p = −a2 − 3/4 q = 1/4. For a ≫ 1, we have

y1 ≈ 2 ·
√
3

2
6

√( q
2

)2

−
(q
2

)2

−
(p
3

)3

≈
√
3

a√
3
= a. (28)

Similarly, we have y2 ≈ −a and y3 ≈ 0. Since lim
x→∞

f ′′(x) ≤
0, then f ′′(x) ≤ 0 when x ≥ log2 a, i.e., y ≥ a. So f(x) is

concave when x ≥ log2 a.
Remark 1: In our problem, we choose the value of a as

Wk/σ
′
ijk . For k = 1, 2, Wk tends to be 1024 or 768 and σ′

ijk

is 40. For k = 3, Wk tends to be 300 while σ′
ijk is about 4.

Wk/σ
′
ijk ≫ 1 holds in our setting.

1A network consisting of two vehicles and one feature point will lead to a

special case of Ũ whose rank is 4.

Proposition 1: When bijk ≥ log2(Wk/σ
′
ijk), the relative

SPEB Pr(p̃,b) is convex with respect to bijk .

Proof: We define g : N2NvNf+
Nv(Nv−1)

2 →S3Nv+3Nf as

g(b) = J(p̃,b). (29)

From Lemma 1, g(b) is K-concave when bijk ≥
log2(Wk/σ

′
ijk). For J(p̃,b) � 0, [J−1(p̃,b)]m,m is a con-

vex and non-increasing function with respect to b [17].

Thus, Pr(p̃,b) is convex with respect to bijk when bijk ≥
log2(Wk/σ

′
ijk).

B. Variance-based Gradient Descent Algorithm

The objective function of bit allocation is non-convex due

to the nonlinearity of f(x). The complexity of the brute force

algorithm is too high to implement. The method of simulated

annealing (SA) is an alternative sub-optimal algorithm, which

needs to verify hundreds of trial solutions. In this subsection,

we present a V-GD method, which requires much less com-

putation time than the SA approach but can achieve better

performance when the bit number is larger than the number

of measurements.

To make full use of the acquired feature point and position

information, we allocate more bits to those vehicles with

more accurate observations. The accuracy of the measurement

depends on two factors: the range Wk and the variance of the

observation noise σ′2
ijk . The measurement which is bounded

in a shorter interval will provide more information than the

measurement bounded in a longer interval when allocated with

the same number of bits. The measurement whose variance of

observation noise is smaller will contain more information.

However, allocating all bits to the vehicle with the smallest

observation noise and range could not guarantee that the FIM

is positive definite and the total variance of this measurement

decreases little when allocated with more bits. For this reason,

we start with allocating bits among all the measurements and

then adopt an iterative algorithm to minimize Pr.

To set the initial solution, we need to allocate bits among

the coordinates of feature points and the distances between

vehicles. We first determine the ratio m between the number

of bits allocated to the feature points and the distances among

vehicles by grid search among [0, 1]. With a fixed ratio m, we

then derive the initial solution by distributing bits among dif-

ferent points or distances proportionally to 1/(σ′
ijk log2 Wk).

We take the logarithm of Wk because it is the numerator of
W 2

k

(2bijk−1)2
.

Then we adopt the gradient descent (GD) algorithm to find

the optimal solution in an iterative manner. When bijk exceeds

a threshold, we use the steepest descent (SD) algorithm to

accelerate the search process instead. The last step is to

discretize the allocation bit vector since the GD and SD

algorithms will generate the non-integer bit allocation solution.

As it is inefficient to search all the possible integer solutions,

we randomly allocate the sum of the fractional parts for a

number of times, followed by taking the one which has the

minimum value of Pr as the final allocation strategy.



Algorithm 1 Variance-based Gradient Descent Algorithm

Input: σ′
ijk , δ, B

Output: bijk
Procedure:

1: for m = 0 to 1 do

2: m = m+ δ

3: bijk =
mB/(σ′

ijk log2 Wk)
∑

i,j

(
1/(σ′

ij1 log2 W1)+1/(σ′

ij2 log2 W2)
) , k = 1, 2

4: bij3 =
(1−m)B/(σ′

ij3 log2 W3)
∑

i,j

(
1/(σ′

ij3 log2 W3)
)

5: repeat

6: P∗
r = Pr

7: if bijk ≥ log2(Wk/σ
′
ijk) then

8: k = argmink Pr

9: else

10: Generate k from U(0, 1)
11: end if

12: b = b+ k∇bPr

13: Update Pr with b

14: until

∣∣∣Pr−P∗

r

P∗

r

∣∣∣ ≤ 10−5

15: end for

16: Select b∗ from ⌊1/δ⌋ alternative solutions

17: Discretize b∗ to derive the optimal allocation vector

C. Decoupling Optimization Algorithm

Optimizing the number of bits allocated to all the mea-

surements simultaneously demands too much time as the

problem is not convex in the entire feasible domain. A natural

alternative is to first optimize the bit allocation among the

measurements of the same feature point, then optimize the

allocation among the measurements from the same vehicle.

The similar process can be implemented to optimize the bit

allocation among distance measurements. Since the number

of bits allocated to feature points or to distances is invariable

during the optimization, we adopt the grid search algorithm to

find the suboptimal ratio between these two parts.

D. Simulated Annealing Algorithm

The SA algorithm is a general algorithm to find the optimal

solution of a non-convex problem. It typically includes initial-

ization, generation of a new solution and Metropolis algorithm.

We set the initial solution by allocating bits randomly. The

process of generating a new solution is conducted by adding

one bit to a measurement and subtracting one bit from another

measurement randomly.

Remark 2: The above algorithms use precise position knowl-

edge of the vehicle network to derive the relative SPEB. In

our future work, the uncertainty of position parameters will

be taken into account for implementing robust optimization.

IV. NUMERICAL RESULTS

In this section, we present numerical results for the proposed

bit allocation method. The simulation scenario is a square re-

Algorithm 2 Decoupling Optimization Algorithm

Input: σ2
ijk , δ, B

Output: bijk
Procedure:

1: for m = 0 to 1 do

2: m = m+ δ

3: bijk = mB
2NvNf

, k = 1, 2

4: bij3 = 2(1−m)B
Nv(Nv−1)

5: Transform b into two matrices ANf×2Nv , BNv×Nv

6: N = 0
7: repeat

8: Optimize A row by row and column by column

9: Optimize B row by row and column by column

10: N = N + 1
11: until N ≥ N0

12: Transform A, B into b

13: end for

14: Select b∗ from ⌊1/δ⌋ alternative solutions

15: Discretize b∗ to derive the optimal allocation vector

gion [-25m, 25m] × [-25m, 25m]. Five vehicles are uniformly

placed at a circle whose radius is 5m. We set W3 as 250m.

Seventy feature points are randomly placed in the 5m × 5m

× 2m cuboid whose center locates at origin. The resolution of

images we use in the simulation is 3264× 2488. The scale of

the sensor in cameras is 36mm × 23.9mm. The focal length

of cameras is 600mm.

We compare our V-GD algorithm with the uniform allo-

cation scheme that assigns the total bits equally over all the

measurements as well as the SA algorithm.

Fig. 2 shows the SPEBs as a function of B. It can be

observed that the performance of all the algorithms reaches

the relative SPEB with infinite bits. The equal allocation

strategy has the poorest performance because it treats all the

observations with different noise variances fair. The SPEB

of decoupling optimization algorithm decreases slowly as it

does not take the coupling relation of different images and

distance measurements into account. In our simulation, b is

a 710 dimensional vector, which is too high for the SA to

find the optimal solution given the non-convex optimization

problem. The design of the initial point of the V-GD algorithm

makes it feasible to converge to the optimal solution, which

is indicated by the lower relative SPEB than that of the SA.

It can be seen that the relative SPEB can achieve the ideal

performance bound with infinite bits when B is larger than

1700.

In Fig. 3, the mean computation time of two suboptimal

bit allocation algorithms are compared with the V-GD. In

every iteration of the decoupling optimization algorithm, we

optimize over a Nf or Nv dimensional vector, so its mean time

is higher than that of the V-GD algorithm. The computation

time of SA depends on the product of the initial temperature

and the number of iterations at each temperature. To avoid
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Fig. 2. The root of relative SPEBs with respect to the number of bits.

the convergence to some local optimal solutions, the initial

temperature of the SA should be set high enough and a

sufficient number of iterations should be carried out at each

temperature. Conversely, the V-GD algorithm only needs to

implement the GD until it converges owing to its proper

initialization. It can be seen that the V-GD algorithm reduces

the mean time by around 50% compared with the SA. The

mean computation time of V-GD decreases a little on the range

of 1700 to 2700 for the reason that the optimization problem is

more likely to be convex as the number of bits increases. Since

the number of feature points is larger than that in the realistic

situation, V-GD only takes several seconds in the setting of

realistic situation.

V. CONCLUSION

In this paper, we developed a bit allocation scheme for

vision-based localization in vehicles networks. The absolute

SPEB for feature points and vehicles was first derived. We then

formulated the optimization problem for bit allocation in terms

of relative SPEB. The local convexity of the objective function

was proved. Based on that, a V-GD algorithm was proposed.

Numerical results show that the V-GD algorithm outperforms

the SA and the decoupling algorithms. Meanwhile, the V-GD

algorithm reduces the computation time by half compared with

the SA algorithm. Our work demonstrates the potential of

cooperative vehicle networks and provides a solution to bit

allocation for high-accuracy vision-based relative localization.

In the future, we will investigate the influence of the mobility

of vehicles and the bit allocation strategy in a harsh commu-

nication environment.
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