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Abstract—In this paper, we are interested in symbiotic
radio networks, in which an Internet-of-Things (IoT) network
parasitizes in a primary network to achieve spectrum-,
energy-, and infrastructure-efficient communications. Specifi-
cally, the BS serves multiple cellular users using time division
multiple access (TDMA) and each IoT device is associated
with one cellular user for information transmission. We focus
on the user association problem, whose objective is to link
each IoT device to an appropriate cellular user by maximizing
the sum rate of all IoT devices. However, the difficulty in
obtaining the full real-time channel information makes it
difficult to design an optimal policy for this problem. To
overcome this issue, we propose two deep reinforcement learn-
ing (DRL) algorithms, both use the historical information to
infer the current information in order to make appropriate
decisions. One algorithm, centralized DRL, makes decisions
for all IoT devices at one time with global information. The
other algorithm, distributed DRL, makes a decision only for
one IoT device at one time using local information. Finally,
simulation results show that the two DRL algorithms achieve
comparable performance as the optimal user association
policy which requires perfect real-time information, and the
distributed DRL algorithm has the advantage of scalability.

Index Terms—Symbiotic radio networks (SRN), ambient
backscatter communication (AmBC), user association, deep
reinforcement learning.

I. INTRODUCTION

The exponential growth in the number of Internet-of-
Things (IoT) devices will lead to an enormous demand
on wireless spectrum and network infrastructure [1]–[3].
To support massive IoT connections, it is highly desirable
to design spectrum-, energy-, and infrastructure-efficient
communication technologies. Symbiotic radio networks
(SRN) [4]–[6], in which an IoT network parasitizes in a
primary network, is envisioned as a promising technique
to achieve this goal. In addition, when ambient backscatter
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communication (AmBC) [7] is used for IoT transmission,
the IoT devices in SRN transmit their messages to theirs
destinations by reflecting the signals received from the pri-
mary transmitter without requiring active radio-frequency
(RF) transmitter chain. That means, the data transmission
of the IoT device uses the passive radio technology and
does not require dedicated spectrum and infrastructure. As
such, SRN has attracted increasing attention from both
academia and industry recently [8]–[15].

In AmBC-based SRN, the IoT network is an always
beneficial party, and thus there are three types of sym-
biotic relationships based on the interaction between the
two coexisting networks: parasitism, commensalism, and
mutualism. Consider a simple SRN model, which consists
of three nodes: an RF source, a backscatter IoT device,
and a reader. The IoT device backscatters the ambient
RF signal by changing its reflection coefficient, through
which the information of the IoT device is transmitted to
the reader. When the backscatter link is relatively strong
as compared to the direct link, and the IoT and primary
transmissions have the same baud rate, the IoT gains the
transmission opportunity, but it causes severe interference
to the primary transmission. Thus, the two networks form
the parasitism relationship [4], [15]. When the backscatter
link is very weak as compared to the direct link, the
effect of backscatter link on the primary transmission is
negligible. Thus, in this case, the two networks form the
commensalism relationship. Due to the weak backscatter
signal, in general, the IoT transmission is much slower
than the primary transmission to enhance the transmission
performance. Energy detector, which is simple and easy
to accomplish, is used in [7]–[10] to recover the IoT
message. However, since the direct link signal is treated
as interference in energy detector, the performance suffers
from degradation. The performance of the IoT transmission
can be improved through interference cancellation [11],
[13] or cooperative receiver [12], [14].

In fact, the backscatter link signal contains the RF
source signal and the IoT transmission rate is typically
much lower than the primary transmission rate. Thus, the
backscatter link can be seen as an additional path of the
primary transmission and the slowly changing reflection
coefficient of the IoT device introduces time variation for
the channel. This observation indicates that the existence
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of the IoT transmission can improve the performance of
the primary system. To achieve it, we need the cooperation
between the IoT transmission and the primary network. An
example of the cooperation is that the primary receiver and
the reader are integrated as a cooperative receiver, which
decodes the messages not only from the RF source, but also
from the IoT device. In [12], the signal detection problem
is considered for this scenario and the results show that
the existence of the backscatter link benefits the detection
of the RF source message based on the joint decoding.
Thus, the cooperative design can achieve a mutualism
relationship between the primary and IoT transmissions.

In this paper, we are interested in the user association
problem for AmBC-based SRN. The base station (BS) in
the primary network serves the cellular users through time
division multiple access (TDMA), and each IoT device is
associated with one cellular user for information transmis-
sion by reflecting the signals received from the BS, and
each cellular user decodes the messages from the BS and
the associated IoT devices using the successive interference
cancelation (SIC) strategy. For user association problem in
SRN, the BS determines which cellular user an IoT device
should be associated with in order to maximize the sum
rate of all IoT devices.

In order to obtain the optimal user association strategy,
the full real-time channel information is required. However,
it is impractical for the BS to obtain all channel information
since it involves a great amount of overhead. To overcome
this challenge, we use deep reinforcement learning (DRL)
approach to infer the real-time channel information by
using the historical channel knowledge1 based on the chan-
nel correlation between different frames. We propose two
DRL algorithms, referred to as centralized DRL algorithm
and distributed DRL algorithm, to make proper decisions
for the user association problem. The centralized DRL
algorithm uses the historical global information as the
current state to make decisions for all IoT devices at
one time, while the distributed DRL algorithm uses the
historical local information2 as the current state to make a
decision for one IoT device at one time. Compared with the
centralized DRL algorithm, the distributed DRL algorithm
has the advantage of scalability, though at the cost of a
slightly more information.

In a nutshell, the main contributions of this paper are
summarized as follows:

• We formulate the user association problem in SRN,
which is a challenging task especially for complicated
environment.

1When decoding messages, the cellular user needs to estimate the chan-
nel information, from which process, the historical channel information
is obtained.

2The local information represents the available information at one IoT
device.

• We propose two DRL-based user association algo-
rithms, namely, centralized DRL and distributed DRL,
without the requirement of the full real-time channel
information.

• The two DRL algorithms use the historical channel
information to infer the current information for deci-
sion making.

• We show that the two proposed DRL algorithms can
achieve a performance close to that of the optimal
policy with perfect real-time channel information.

• Finally, we show that the centralized DRL algorithm
needs less information to converge while the dis-
tributed DRL algorithm is scalable.

Related Works: Recently, DRL has been widely and
successfully applied in wireless communication systems,
see [16] for an excellent overview. In particular, in [17],
the authors study the time scheduling problem in RF-
powered backscatter cognitive radio systems using DRL
to maximize the total transmission rate. In [18], a DRL-
based access channel control problem is studied for the
uplink wireless system with limited access channels. A
DRL-based algorithm is proposed in [19] to select proper
modulation and coding scheme in cognitive heterogenous
networks by learning the interference patten. DRL is
adopted in [20] to schedule users in order to enhance the
sum rate in a caching network. In [21], DRL algorithm is
used to reduce the handover rate under a constraint of the
minimum sum rate. In [22], a distributed DRL multiple
access algorithm is proposed to enhance the uplink sum
rate in a multi-user wireless system. DRL approach is
used in [23] for user association and resource allocation in
heterogeneous networks to maximize the overall network
utility. Handoff policy in mmWave scenario is studied in
[24] by taking into account the mmWave channel char-
acteristics and the quality of service (QoS) requirements
of users. Distributed dynamic power control problem is
studied in [25] for wireless networks using DRL algorithm.

Organization: The rest of the paper is organized as
follows. In Section II, the SRN model is established in
detail. In Section III, we formulate the user association
problem and analyze the optimal policy. Section IV present
the two proposed DRL algorithms. Section V presents
substantial simulation results for demonstrating the per-
formance. Finally, the paper is concluded in Section VI.

II. SYSTEM MODEL

The system model for the SRN considered in this paper
is shown in Fig. 1, in which an IoT network parasitizes in
a primary network. In particular, the BS in the primary net-
work serves M cellular users through TDMA manner (see
Fig. 2), while N IoT devices in the IoT network transmit
their messages to the associated cellular users by reflecting
the received signals from the BS. Specifically, as shown in
Fig. 2, each IoT device only transmits information in one
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Fig. 1: System model.
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Fig. 2: Frame structure of: (a) the primary network; (b) IoT device n.

time slot corresponding to one associated cellular user. The
cellular user decodes the signals from both the BS and the
associated IoT devices using SIC strategy. In the following,
we provide the channel model, the signal model, and the
signal-to-interference-plus-noise ratio (SINR) model for
the SRN.

A. Channel Model

Here, each channel in the SRN consists of two com-
ponents: a large-scale fading component and a small-scale
fading component. Denote by hm the channel coefficient
from BS to User m with hm =

√
λmh̃m, by fn the channel

coefficient from BS to IoT Device n with fn =
√
λnf̃n,

and by gm,n the channel coefficient from IoT Device n
to User m with gm,n =

√
λm,ng̃m,n, where λm, λn,

and λm,n represent the corresponding large-scale fading
components, and h̃m, f̃n, and g̃m,n represent the corre-
sponding small-scale fading components. The large-scale
fading components remain unchanged for a fixed distance
between the two corresponding nodes, while the small-
scale fading components remain unchange in one frame,
but vary in different frames. We use Jakes’ model to
represent the variation of the small-scale fading component
for each channel in frame t, which yields [26]

h̃m(t) = ρh̃m(t− 1) + em(t), (1)

f̃n(t) = ρf̃n(t− 1) + en(t), (2)
g̃m,n(t) = ρg̃m,n(t− 1) + em,n(t), (3)

for m = 1, · · · ,M and n = 1, · · · , N , where h̃m(0) ∼
CN (0, 1), f̃n(0) ∼ CN (0, 1), and g̃m,n(0) ∼ CN (0, 1),
and em(t), en(t), and em,n(t) are the independent and
identically distributed random variables for any frame t
with distribution CN (0, 1−ρ2), and CN (µ, σ2) denotes the
complex Gaussian distribution with mean µ and variance

σ2. The variable ρ represents the correlation of channels
between different frames.

B. Signal Model

As shown in Fig. 1, the BS transmits message xm
with unit power to User m in one time slot during one
frame, while the IoT Device n backscatters the received BS
signals with its own message cn to one associated cellular
user. Suppose that the symbol period for each IoT device
covers K BS symbol periods [7]. The received signals at
User m can be written as

ym =
√
phmxm+

N∑
n=1

am,n
√
pαnfngm,nxmcn+um, (4)

where p is the transmitted power at the BS, αn denotes
the reflection coefficient of IoT Device n, um is the
complex Gaussian noise at User m with um ∼ CN (0, σ2),
and am,n ∈ {0, 1} is the user association indicator. If
am,n = 1, IoT Device n is associated with User m, i.e.,
IoT Device n transmits information when the BS serves
User m; otherwise am,n = 0.

C. SINR model

The cellular user adopts SIC strategy to decode the
messages for its own and the associated IoT devices. Due
to the double fading, the backscatter link is weaker than
the direct link. Thus, the cellular user needs to decode its
own message first. After that, the cellular user decodes the
messages of the associated IoT devices. When there are
multiple IoT devices are associated with the same cellular
user, the cellular user first decodes the message of the
strongest IoT device by treating other IoT devices’ signals
as interference. According to this strategy, we first define
hm,n , |αn|2|fn|2|gm,n|2, and use set Ĩn = {l|hm,l <
hm,n, l = 1, · · · , N} to indicate the identify numbers of
the IoT devices that may interfere with IoT Device n. Then,
the SINR of IoT Device n at User m is given by [27]

γm,n =
am,nKp|αn|2|fn|2|gm,n|2∑

l∈Ĩn am,lKphm,l + σ2
. (5)

III. OPTIMAL USER ASSOCIATION POLICY

In this section, we first formulate the user association
problem for the SRN, which associates each IoT device
with a suitable cellular user to maximize the sum rate of
the IoT devices. Then we present the optimal policy for
this formulated user association problem.

A. Problem Formulation

In SRN, the IoT transmission relies on the primary
cellular transmission. Hence, different association scheme
yields different IoT transmission rate, due to the differ-
ent channel gains. Specifically, based on (5), since each
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channel gain may vary in different frames, the IoT devices
may need to be associated with different cellular users in
different frames to achieve higher SINR, thereby higher
transmission rate. Meanwhile, if there are multiple IoT
devices associated with the same cellular user, there will
exist interference which affects the IoT transmission rate.
Thus, it is significantly important to design a suitable user
association policy. In what follows, we will formulate the
user association problem mathematically.

The achievable rate, Rm,n, for IoT Device n backscat-
tering the signals to User m is given by

Rm,n =
1

K
am,n log2(1 + γm,n). (6)

The sum rate for all IoT devices in the SRN can be written
as
∑M
m=1

∑N
n=1Rm,n. Thus, the user association problem

is expressed as

P1 : max
A

M∑
m=1

N∑
n=1

Rm,n (7)

s.t.

M∑
m=1

am,n = 1, (8)

where A represents the association index set composed by
am,n,m = 1, · · · ,M, n = 1, · · · , N , and (8) means each
IoT device only selects one time slot for information trans-
mission in one frame, which is consistent with Fig.2(b).

Note that the user association policy can be performed
either at the IoT devices or at the BS. In this paper, we
consider the user association policy is performed at the BS
since the BS has stronger computing capacity than the IoT
devices.

B. The Optimal Policy

To obtain the optimal index set A∗, it is clear that
three steps are required: 1) list all possibility index set A
satisfying (8); 2) calculate the sum rate of all IoT devices
for each possible index set A; 3) select the optimal index
set A∗ for maximizing

∑M
m=1

∑N
n=1Rm,n.

It is noted that to solve the optimization problem P1,
the complete real-time channel information is required to
calculate the real-time SINR in (5). However, according to
the frame structure in Fig. 2, each cellular user only re-
ceives the signals at its corresponding time slot, while each
IoT device transmits its message only in one chosen time
slot. Thus, the BS can only get the channel information
from the IoT device to its associated cellular user. In other
words, it is difficult for the BS to obtain the full real-time
channel information from the IoT devices to all cellular
users. Therefore, it is impractical for the BS to calculate
the optimal index set A∗ and derive the optimal policy.

IV. DEEP REINFORCEMENT LEARNING ALGORITHMS

In this section, we provide two DRL algorithms to solve
the user association problem in SRN without requiring the
full real-time channel information. One DRL algorithm,
referred to as centralized DRL, uses the globally available
information as the current states and obtains the user
association decisions for all IoT devices at one time. The
other DRL algorithm, referred to as distributed DRL, uses
the locally available information as the current local states
and obtains the user association decision only for one IoT
device at one time. In the following, we will elaborate
the basic principle, introduce the overview of DRL, and
present the two DRL algorithms in detail.

A. Basic Principle

As described in Section III-B, the optimal policy of
the user association problem requires the full real-time
SINR in (5), which means that the full real-time channel
information is needed. However, it is impractical for the
BS to obtain the full real-time channel estimation since in
one frame, the BS can only obtain the channel information
between the IoT device and its associated cellular user
instead of all channel information between all IoT devices
and all cellular users.

In fact, the channels between different frames are corre-
lated due to the following two reasons: 1) for the channels
in different frames, the large-scale fading component re-
mains constant if the location is unchanged; 2) the small-
scale fading component follows the first-order complex
Gauss-Markov process based on (1), (2), and (3). Thus,
if the BS can learn the correlation between the channels in
different frames by exploring and exploiting the historical
channel information, it is possible for BS to infer the
current channel information and associate each IoT device
with an appropriate cellular user to maximize the IoT sum
transmission rate in each frame.

DRL can effectively learn a hidden correlation by trial-
and-error and design its optimal policy from the interaction
with the environment [28]. Therefore, we can use DRL
to learn the channel correction and design a proper user
association policy to maximize the sum transmission rate.

B. Overview of DRL

In this section, we will present the overview of DRL
technology. For that, we first elaborate the RL framework.

1) RL Framework: In reinforcement learning process,
the agent learns its own best policy through interacting
with its environment over time [29], [30]. Here, we first
define the main elements of RL. Denote by S the set of all
possible environment states s, by A the set of all possible
actions a, by r(s, a) the immediate reward when adopting
action a ∈ A under the environment state s ∈ S, and
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by π the policy that the agent uses to map the current
environment state to the pending action.

As shown in Fig. 3, the agent first observes the current
state s ∈ S , and then takes action a ∈ A by the current
policy π. After taking an action, the environment state
changes from s to s′ ∈ S, and the agent gets an immediate
reward r(s, a). According to the observed information,
s′ and r(s, a), the agent repeatedly adjusts its policy to
approach to the optimal policy.

The agent adjusts its policy to maximize the long-
term reward. Notice that the maximization of the long-
term reward is not equivalent to that of the immediate
reward since for one state-action pair (s, a) with a high
immediate reward, its next state-action pair (s′, a′) may
suffer from a low immediate reward. Thus, the long-term
reward includes not only the immediate reward but also
the future reward, which can be expressed as

Q(s, a) = r(s, a) + γ
∑
s′∈S

∑
a′∈A

Ps,s′(a)Q(s′, a′), (9)

where γ ∈ [0, 1] is a discount factor indicating the impact
of the future reward and Ps,s′(a) denotes the transition
probability from the state s to the state s′ when taking
action a. In the RL process, the agent aims to take an
optimal action and find the optimal policy π∗(s) under the
current state s by maximizing the long-term reward. Thus,
based on (9), the optimal long-term reward Q∗(s, a) can
be written as

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

Ps,s′(a)max
a′∈A

Q∗(s′, a′). (10)

And the optimal policy π∗(s) is

π∗(s) = argmax
a∈A

Q∗(s, a). (11)

Actually, the optimal policy in (11) and the optimal
long-term reward in (10) are very difficult to be obtained
directly since the transition probability Ps,s′(a) is typically
unknown for the agent especially with the complicated
environment. The Q-learning algorithm is a well-known
model-free RL algorithm to obtain the optimal policy,
which does not require the transition probability Ps,s′(a).

Specifically, the Q-learning algorithm constructs a lookup
|S| × |A| Q-table, in which Q(s, a) as element indicates
the long-term rewards of all possible state-action pairs.
In addition, the agent takes actions through the ε-greedy
policy for each time step and obtains the corresponding ex-
perience (s, a, r, s′). After each experience (s, a, r, s′), the
Q-learning algorithm updates the corresponding element in
Q-table according to

Q(s, a)← (1−α)Q(s, a)+α

[
r(s, a) + γmax

a′∈A
Q(s′, a′)

]
,

(12)
where α is the learning rate. Note that the Q-table is
initialized randomly.

The ε-greedy policy implies that the agent takes a
random action from the action space A with probability ε,
whereas executes the action a∗ that makes the maximum
value in the Q-table given a current state s, i.e., a∗ =
argmaxa∈AQ(s, a), with probability 1 − ε [28]. The ε-
greedy policy can avoid falling into the local optimum. The
main reason is that the random action with a probability
of ε can explore more possible action and experience the
best action to update the Q-table.

In fact, when the state space and the action space are
small, the Q-learning algorithm can rapidly experience all
possible state-action pairs to update the Q-table, thereby
high performance. However, in practice, the size of the
state and action spaces are typically large, especially with
complicated environment. In this case, the performance of
the Q-learning algorithm is degraded since it is difficult to
experience all possible actions especially the best action
and it is unacceptable to storage the large Q-table. To
overcome the shortcoming of the Q-learning algorithm,
DRL is introduced to find the optimal policy under the
large state-action spaces. In the following, we will provide
the DRL framework.

2) DRL Framework: In DRL, a deep neural network,
referred to as deep Q-network (DQN), instead of the Q-
table is implemented to estimate the long-term reward
Q(s, a), as shown in Fig. 4. The DQN can be expressed as
Q(s, a;θ), where θ is the weights of the DQN. The input
of the DQN is one of the environment states, i.e., s ∈ S,
and the output is the long-term reward Q(s, a;θ) of each
possible action a in A for a given environment state s. In
fact, for DRL, to achieve an approximate value Q∗(s, a),
the agent needs to update the DQN weights θ, which is
equivalent to the update of Q-table in RL. Similarly, the
DRL uses each experience (s, a, r, s′) obtained by the ε-
greedy policy to train the DQN. The process of training
DQN aims to minimize the loss function L(θ), which can
be expressed as

L(θ) = E
[
|ytar − Q(s, a;θ)|2

]
, (13)
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where ytar is the target value, which is given by

ytar = r(s, a) + γmax
a′∈A

Q(s′, a′;θ−), (14)

where θ− is the old weights of the DQN, which is updated
once per Tu steps. We call Q(s, a;θ−) the target Q-
network, which updates its weights θ− frequently but
slowly. The target Q-network can stabilize the learning
algorithm by removing the correlations among the targets
and the estimated Q-values.

Note that in DQN, experience replay mechanism is also
used to overcome the instability of the learning algorithm
[28]. During the learning process, the agent not only uses
the current experience (s, a, r, s′), but also uses the old
experiences. In particular, the neural network is trained
by randomly sampling a minibatches of Z experiences
from the replay memory D. The replay memory D is
used to store the experiences (s, a, r, s′) with a first-in-
first-out principle. Once getting a new experience, the
agent puts it into the replay memory D. The size of this
replay memory D is NE . By using the experience replay
mechanism, the experiences used for learning are more like
independent and identically distributed, thereby reducing
the correlations among the observations. Therefore, the
experience replay mechanism increases the stability of the
learning process.

C. Centralized DRL-based User Association Algorithm

In this subsection, we present the centralized DRL-based
user association algorithm, in which the BS serves as the
agent. In this algorithm, the BS makes the user association
decisions for all IoT devices at one time for a given
environment state. To begin with, we introduce the action
space, the state space, and the immediate reward function
for this algorithm.

1) Actions: Since the centralized DRL algorithm aims
to associate each IoT device with a proper cellular user to
maximize the sum rate, the action space needs to include
all possible and available association schemes. Thus, the
action space is given by

Ac = {{b1, · · · , bN}1, · · · , {b1, · · · , bN}MN }, (15)

where bn ∈ {1, · · · ,M} denotes the index of the cellu-
lar user associated with the IoT Device n. The number
of possible actions is MN , i.e., the size of this action
space is MN . We take an example to understand this
action space. Assuming that there are M = 2 cellular
users and N = 2 IoT devices, the action space Ac is
Ac = {{1, 1}, {1, 2}, {2, 1}, {2, 2}}, which means there
are 22 = 4 possible actions.

2) States: Since the DRL agent trains the DQN based
on each experience (s, a, r, s′), it is important for the DRL
agent to collect a proper and available state to provide
useful knowledge for decision making. In Section III-B,
we have stated that the full real-time channel information
is difficult to be obtained. However, the channels between
different frames are correlated, which has been discussed
in Section IV-A. As such, we can use the historical channel
information as the state to optimize the policy.

Here, we denote by HL = {hm,n} the historical channel
information of all backscatter links. After each interaction
with environment, HL will be update. In particularly, at the
end of frame t, User m transmits the backscatter channels
information hm,n(t) from IoT Device n associated with it
to the BS. Then the BS updatesHL(t) with the information
hm,n(t) and considers the updated HL(t) as the state for
the frame (t + 1). To summarize, the state in frame t is
given by

sc(t) = HL(t− 1). (16)

Note that before feeding sc(t) into DQN, we first normal-
ize it to guarantee the performance of the centralized DRL
algorithm.

3) Reward Function: The goal of this centralized DRL
algorithm is to maximize the sum rate of all IoT devices.
Thus the immediate reward function rc(t) in frame t shall
be the sum rate of all IoT devices. i.e.,

rc(t) =

M∑
m=1

N∑
n=1

Rm,n(t). (17)

Note that after taking action a by the observed state s, the
BS will obtain the immediate reward by the feedback from
the cellular users.

Fig. 5 shows the structure of the proposed centralized
DRL algorithm. In this algorithm, the agent delivers the
decision ac(t) made according to ε-greedy policy to the
IoT devices. The IoT devices access the associated cellular
user based on the decision from the BS. And the cellular
users decode the signals of the associated IoT devices and
feedback all useful and available information to BS for
the calculation and the update of rc(t) and sc(t+1). Then
the BS storages the experience (sc(t), ac(t), rc(t), sc(t +
1)) into the replay memory D, and randomly samples a
minibatch of experiences in D to train the DQN. The DQN
is used to make decision for the next frame according to ε-
greedy policy. In addition, the pseudocode of the proposed
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Fig. 5: The structure of the proposed centralized DRL-based user association
algorithm.

centralized DRL-based user association algorithm is shown
in Algorithm 1.

Algorithm 1 Centralized DRL-based User Association
Algorithm

1: Initialize the weights θc of the DQN randomly;
2: Initialize the weights θ−c of the target Q-network with

θ−c = θc;
3: Initialize the size of minibatch Z;
4: Initialize the target Q-network replacement frequency
Tu;

5: The agent takes actions randomly and storages the cor-
responding experience (sc, ac, rc, s

′
c) into the replay

memory D until there are Z experiences.
6: Repeat:
7: The agent selects an action ac(t) through ε-greedy

policy in frame t, (t > Z);
8: The agent calculates the immediate reward rc(t) after

taking action ac(t) in frame t;
9: The agent observes a new state sc(t + 1) in frame

(t+ 1);
10: The agent stores the new experience

(sc(t), ac(t), rc(t), sc(t + 1)) into the replay memory
D;

11: The agent randomly samples a minibatch of Z expe-
riences (sc, ac, rc, s

′
c) from the replay memory D to

train the DQN;
12: The agent updates the DQN weights θc;
13: The agent updates the target Q-network weights θ−c

once per Tu steps with θ−c = θc.

For the centralized DRL algorithm, when N is large,
the state-action space becomes very large. In this case, it is
difficult for this algorithm to train the DQN successfully. In
addition, if N increases, this algorithm can not work since
the state-action space changes, resulting in the inability
to use the designed DQN. In other words, the centralized
DRL algorithm is not a scalable algorithm. To overcome

the above challenges, we propose another algorithm called
distributed DRL-based user association algorithm. In the
following, we will present this algorithm.

D. Distributed DRL-based User Association Algorithm
In this subsection, we provide a distributed DRL-based

user association algorithm, in which the BS serves as the
agent and uses a centralized training and distributed exe-
cution framework [31]. In this algorithm, the BS allocates
N computing units to make decision for N IoT devices
individually. In other words, Unit n inputs the state of IoT
Device n and outputs the action of IoT Device n.

Here, we first introduce the action space, the state space,
and the immediate reward function.

1) Actions: In the distributed DRL algorithm, the com-
puting unit makes decision only for one IoT device at one
time with a given state of the corresponding IoT device.
Thus, the action space is given by

Ad = {1, 2, · · · ,M}. (18)

2) States: Since the units make the user association
decision individually, it is difficult to control the decision
of other unit in the distributed DRL algorithm. We notice
that the optimal user association policy for this algorithm
is not only related to the channel information but also
related to the interference information. This means that the
state requires not only the historical channel information,
but also the interference information. The interference
information includes two components: interferer informa-
tion and interfered information. In what follows, for the
distributed DRL algorithm, we describe the state snd (t) of
IoT Device n conditioned on associated with User m at
frame t, which is divided into three feature groups.
• Local Information: According to (5), the agent needs

to feed the channel information into the DQN to
provide useful knowledge for learning the optimal
policy. Since it is difficult to obtain the channel
information between IoT Device n and all cellular
users, the agent uses the historical information to
explore and infer the current channel information,
which is similar to Section IV-C2. Thus, the state is
designed to include the historical channel information
HnL(t− 1), where HnL(t− 1) is the historical channel
information between IoT Device n and all cellular
users updated in frame (t−1). Meanwhile, the state at
frame t includes the action taking by IoT Device n at
frame (t−1) to suggest the effect of historical action.
In addition, since the agent trains the DQN using all
environment experiences, in order to identify all IoT
devices, the state is designed to include the identity
number, i.e., n.

• Interferer Information: The state is designed to in-
clude the interferer information to observe the in-
terference from other IoT devices when decoding
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the message from IoT Device n. In particular, ac-
cording to (5), if IoT Device n is associated with
User m in frame (t − 1), User m will feedback
the interferer information when decoding the IoT
Device n message, In(t − 1), to the BS, where
In(t− 1) =

∑
l∈Ĩn(t−1) pa

d
m,l(t− 1)hm,l(t− 1) and

adm,l(t−1) ∈ {0, 1} indicates whether the IoT Device
l is associated with User m in frame (t− 1).

• Interfered Information: Finally, the agent uses the
feedback from User m to sense the interference
On(t − 1) from IoT Device n to other IoT de-
vices in frame (t − 1), where On(t − 1) =∑
l∈Õn(t−1) pa

d
m,l(t−1)hm,l(t−1) and Õn(t−1) =

{l|hm,l(t − 1) > hm,n(t − 1), l = 1, · · · , N} is
the identify number set of the IoT device that may
be interfered by IoT Device n at frame (t − 1).
And the state is designed to include the interference
information On(t− 1).

To summarize, the state snd (t) of IoT Device n at frame
t is given by

snd (t) = {HnL(t− 1), and (t− 1), n, In(t− 1), On(t− 1)},
(19)

where and (t − 1) is the action of IoT Device n at frame
(t − 1). Notice that snd (t) is normalized to guarantee the
performance of the distributed DRL algorithm.

3) Reward Function: The immediate reward function
should evaluate the effect of the action taken on the goal
of maximizing the sum rate. Here, the immediate reward
includes not only the current transmission rate of IoT
Device n, but also the interference with other IoT devices.
The main reason is that if the decision process for each
IoT device aims to maximize its own transmission rate, it
is difficult to converge to an optimal policy for maximizing
the sum rate.

To quantify the effect of interference, similar to [25],
the agent first calculates the transmission rate, R−nm,l(t),
without the interference from IoT Device n for IoT Device
l ∈ Õn(t), which can be expressed as

R−nm,l(t) =
1

K
adm,l(t)×

log2

(
1 +

adm,l(t)Kp|αl|2|fl|2|gm,l|2∑
i∈Ĩl(t),i6=n a

d
m,i(t)Kphm,i + σ2

)
,

(20)

Then, the agent computes the effect of IoT Device n on
the IoT devices in Õn(t) by

β−nl (t) = R−nm,l(t)−Rm,l(t). (21)

Thus the immediate reward function can be written as

rnd (t) = Rm,n(t)−
∑

l∈Õn(t)

β−nl (t). (22)

The reward in (22) consists of two components: its contri-
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Fig. 6: The structure of the proposed distributed DRL-based user association
algorithm.

bution to the sum rate and the penalty about interference
to other IoT device. This reward function ensures that the
agent considers not only the maximization of each IoT
device rate, but also the effect on other IoT devices, thereby
guaranteeing the optimal policy rapidly.

The structure of the proposed distributed DRL algorithm
is shown in Fig. 6. The information delivery between
cellular users, the IoT devices, and the BS is the same
with the centralized DRL algorithm, which is discussed in
Section IV-C. The difference between these two algorithms
is that the BS needs to allocate N computing units to
make decisions for N IoT devices individually in the
distributed DRL algorithm. In addition, in the distributed
DRL algorithm, after training the DQN, the BS delivers the
updated DQN weights θd to each computing unit. Then,
the N computing units make decisions, individually, for
the N IoT devices according to the ε-greedy policy. In
addition, the pseudocode of the proposed distributed DRL-
based user association algorithm is shown in Algorithm 2.

Note that if the number of IoT devices N changes,
the BS just changes the number of computing units to
execute the distributed DRL algorithm without redesigning
the DQN. In other words, this distributed DRL algorithm
has the advantage of scalability. In addition, here, we
consider the units at the BS make decisions for the IoT
devices due to the limited computing capability of the
IoT devices. If the IoT devices have enough computing
capacity, it is reasonable that each IoT device as the agent
makes its own decisions based on the proposed distributed
DRL algorithm.

V. PERFORMANCE EVALUATION

In this section, simulation results are presented to eval-
uate the performance of the two proposed DRL-based
user association algorithms. For comparison, we consider
two benchmark algorithms: random policy and optimal
policy. In the random policy, each IoT device is associated
with a cellular user randomly. For the optimal policy, we
assume that the BS knows full perfect real-time channel
information and obtains the optimal policy by the method
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Algorithm 2 Distributed DRL-based User Association
Algorithm

1: Initialize the weights θd of the DQN randomly;
2: Initialize the weights θ−d of the target Q-network with

θ−d = θd;
3: Initialize the size of minibatch Z;
4: Initialize the target Q-network replacement frequency
Tu;

5: The agent takes actions randomly and storages the
corresponding experience (snd , a

n
d , r

n
d , (s

n
d )
′) of each

IoT device into the replay memory D until there are
Z experiences.

6: Repeat:
7: Unit n selects an action and (t) through ε-greedy policy

in frame t, (t > Z) for IoT Device n, n = 1, · · · , N ;
8: Unit n calculates the immediate reward rnd (t) after

taking action and (t) in frame t for IoT Device n,
n = 1, · · · , N ;

9: The agent observes a new state snd (t + 1) in frame
(t+ 1) of IoT Device n, n = 1, · · · , N ;

10: The agent stores all new experiences
(snd (t), a

n
d (t), r

n
d (t), s

n
d (t + 1)), n = 1, · · · , N

into the replay memory D;
11: The agent randomly samples a minibatch of Z expe-

riences from the replay memory D to train the DQN;
12: The agent updates the DQN weights θd;
13: The agent updates the target Q-network weights θ−d

once per Tu steps with θ−d = θd;
14: The agent delivers the updated DQN weights θd to N

computing units.

proposed in Section III-B. Since it is impractical for the BS
to perfectly know the full real-time channel information,
the performance of the optimal policy is just the theoret-
ical upper bound. In the following, we will present the
simulation setup and the performance of the two proposed
DRL-based user association algorithms.

A. Simulation Setup

To begin with, we consider the locations of the BS, the
cellular users, and the IoT devices, are in a 100 meters
by 100 meters region. The BS is located at the center of
this region. And the IoT devices and the cellular users are
placed randomly based on a uniform distribution within a
distance of 10 ∼ 100 meters from the BS.

We set the transmit power of the BS to p = 40dBm
and the background noise power to σ2 = −114dBm. We
consider a distance-dependent path loss model, which is
32.45+20 log10(f)+20 log10(d)−Gt−Gr (in dB), where
f is the carrier frequency in Mhz, d is the distance in km,
Gt denotes the transmit antenna gain, and Gr denotes the
receive antenna gain. Here we set f = 2.4GHz, Gt =

TABLE I: Parameter Design for the Centralized DQN (C-
DQN) and the Distributed DQN (D-DQN).

Parameters Value
C-DQN: number of hidden layers 3

C-DQN: neuron network size 256× 128× 64
D-DQN: number of hidden layers 3

D-DQN: neuron network size 128× 64× 32
Activation function ReLU

Optimizer Adam
Learning rate 0.01

Mini-batch size (Z) 64
Replay memory size (NE) 800

Target-DQN updating frequency (Tu) 100

Gr = 2.5dB. We assume all IoT devices have the same
reflection coefficient αn = α = 0.8 for n = 1, · · · , N .
And the period ratio between the IoT device and the BS
is set to K = 50.

Next, we describe the design of the hyper-parameters for
the two DRL algorithms. First, the two DRL algorithms are
implemented using TensorFlow, and the parameters of the
two DQNs corresponding to the two DRL algorithms are
listed in Table I. Furthermore, we set the discount factor
to γ = 0.3. In addition, the ε-greedy policy is used to take
actions. At first, we set ε(0) = 0.2, which means a random
action is chosen with a probability of 0.2 to explore the
experiences. Then, to move from a more explorative policy
to a more exploitative policy, the probability ε follows ε(t+
1) = max{εmin, (1 − λε)ε(t)}, where εmin = 0.005 and
λε = 0.005.

B. Performance for the Proposed Algorithms

Fig. 7 illustrates the average sum transmission rate of
all IoT devices using different algorithms. In this figure,
we consider a quasi-static channel scenario by setting
ρ = 0.99, which means the channel changes slowly.
Meanwhile, we consider the number of the cellular users
is M = 3 and the number of the IoT devices is N = 3 in
this figure. It can be seen that both the centralized DRL
algorithm and the distributed DRL algorithm can almost
achieve the optimal sum transmission rate gradually in a
quasi-static scenario. This observation indicates that the
two DRL algorithms can learn almost perfect knowledge
and design almost optimal policy in a quasi-static scenario.
Meanwhile the average sum rate of the proposed two
DRL algorithms is around 0.45 bits/frame/Hz, while the
average sum rate of the random policy is around 0.25
bits/frame/Hz. That indicates the average sum rate of the
proposed two DRL algorithms is almost twice the average
sum rate of random policy.

Fig. 8 presents the average sum transmission rate for
different algorithms in a relative dynamic channel scenario
with ρ = 0.5. In this figure, we set M = N = 3. From
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Fig. 7: The average sum transmission rate comparison with ρ = 0.99. Each value
is a moving average of the pervious 200 frames.

this figure, we can see that the two DRL algorithms can
approach the performance of the optimal policy. Compared
with the quasi-static scenario, the two DRL algorithms in
this more dynamic scenario have a little gaps with the
optimal policy. The main reason is that when the channel
changes rapidly, it is more difficult to infer the next channel
state.

Fig. 9 shows the performance of the average sum trans-
mission rate for different algorithms in a highly dynamic
scenario with ρ = 0. In this scenario, the small-scale fading
component changes rapidly without correlation between
different frames. We set M = N = 3. From this figure, it
is seen that there exist gaps between the two proposed DRL
algorithms and the optimal policy. The main reason is that
when ρ = 0, the small-scale fading component is difficult
to be learnt from the historical channel information since
the channel changes without correlation between different
frames. However, the proposed algorithms can approach
the optimal policy. This is because the agent can learn the
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Fig. 8: The average sum transmission rate comparison with ρ = 0.5. Each value
is a moving average of the pervious 200 frames.
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Fig. 9: The average sum transmission rate comparison with ρ = 0. Each value is
a moving average of the pervious 200 frames.

large-scale fading information. These observations indicate
that the proposed two algorithms are effective even in a
highly dynamic scenario.

C. The Scalability of the Distributed DRL Algorithm

In this subsection, we present the scalability of the
proposed distributed DRL algorithm. When the number of
IoT devices changes, the centralized DRL algorithm can
not work effectively due to the change of the action space.
Fig. 10 shows the performance of the average sum rate
of different algorithms when the number of IoT devices
changes with ρ = 0 and M = 3. It is seen that regardless of
whether the number of IoT devices increases or decreases,
the distributed DRL algorithm can approach the optimal
policy, and always be better than the random policy. This
figure validates the scalability of the proposed distributed
DRL algorithm when the environment changes in a highly
dynamic way.
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(a) The number of IoT devices changes from N = 3 to
N = 2.
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Fig. 10: The average sum transmission rate comparison with ρ = 0. Each value is
a moving average of the pervious 200 frames.

Fig. 11 depicts the performance of the average sum
rate for different algorithms with ρ = 0.5, M = 8, and
N = 8. In this case, the size of action space for the
centralized DRL algorithm is 88 = 1.68 × 107. Thus, it
is impractical to use the centralized DRL algorithm to
make decisions. In addition, the optimal policy needs to
search 88 = 1.68 × 107 possible index sets to obtain the
optimal decision. Thus, it is too complicated to obtain the
performance of the optimal policy. Therefore, in Fig. 11,
we only show the performance of the proposed distributed
DRL algorithm and the random policy. From this figure,
we can see that the average sum transmission rate is
about 1.1 bits/frame/Hz for the proposed distributed DRL
algorithm, while the rate for the random policy is about 0.6
bits/frame/Hz. This observation indicates that the proposed
distributed DRL algorithm is effective when the number of
the IoT devices and the number of the cellular users are

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of frames

0.6

0.7

0.8

0.9

1

1.1

1.2

M
o
v
in

g
 a

v
e
ra

g
e
 t
ra

n
s
m

is
s
io

n
 r

a
te

 (
b
it
s
/f
ra

m
e
/H

z
)

Distributed DRL

Random

Fig. 11: The average sum transmission rate comparison with ρ = 0.5. Each value
is a moving average of the pervious 200 frames.

large.

VI. CONCLUSIONS

This paper has studied the user association problem in
AmBC-based SRN using the DRL approaches. Since it is
difficult to obtain the full real-time channel information,
we use the historical information to infer the current
information by the DRL approaches to make appropriate
decisions. In particular, we propose two DRL algorithms,
namely, centralized DRL and distributed DRL. The cen-
tralized DRL algorithm involves the globally available
information as current state and outputs one action that
involves decisions for all IoT device. While the distributed
DRL algorithm uses the locally available information as
current state and outputs decisions individually for each
IoT device. Finally, simulation results have demonstrated
that the two DRL algorithms can perform close to the opti-
mal policy with perfect real-time information. In addition,
the centralized DRL algorithm needs less information than
the distributed DRL algorithm, while the distributed DRL
algorithm has the advantage of scalability, which means it
can still work effectively even when the number of the IoT
devices changes.
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