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Abstract—Federated learning (FL) rests on the notion of
training a global model in a decentralized manner. Under this
setting, mobile devices perform computations on their local data
before uploading the required updates to the central aggregator
for improving the global model. However, a key challenge
is to maintain communication efficiency (i.e., the number of
communications per iteration) when participating clients imple-
ment uncoordinated computation strategy during aggregation of
model parameters. We formulate a utility maximization problem
to tackle this difficulty, and propose a novel crowdsourcing
framework, involving a number of participating clients with
local training data to leverage FL. We show the incentive-
based interaction between the crowdsourcing platform and the
participating client’s independent strategies for training a global
learning model, where each side maximizes its own benefit. We
formulate a two-stage Stackelberg game to analyze such scenario
and find the game’s equilibria. Further, we illustrate the efficacy
of our proposed framework with simulation results. Results show
that the proposed mechanism outperforms the heuristic approach
with up to 22% gain in the offered reward to attain a level of
target accuracy.

Index Terms—Decentralized machine learning,
learning, mobile crowdsourcing, stackelberg game.

federated

I. INTRODUCTION

With dedicated chipsets for Machine Learning (ML) appli-
cations and in-built sensors [1]-[2], smartphone makers will
achieve a significant market gain by offering cutting edge ap-
plications such as an ability to understand user behaviors, more
secured facial recognition system and predictive future. This
means on-device intelligence will be ubiquitous! However, the
growing possibilities of on-device intelligence is challenged
by data privacy concerns raised in a White House report
published on the principle of data minimization [3]. The direct
application of this report led to a ML technique in which
the training data remain distributed on the mobile devices,
called Federated Learning [2]-[4]. Unlike the conventional
approaches on distributed optimization [5]-[6], this technique
eliminates the mobility of distributed training data on local
users to build a learning model, and thereby protecting user
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data privacy. Thus, there exists a huge market potential of
untapped private data, and FL is a promising tool to explore
more personalized service oriented applications.

The mobile users (participating clients) perform compu-
tation for the updates on their local training data with the
current global model parameters, which are then aggregated
and broadcast-back by the centralized coordinating server. In
this way, FL decouples the training process to build a learning
model, and this iterative process undergoes until an accuracy
level of the learning model is maintained.

The processes of local computations at the devices and
their communication with the centralized coordinating server
to build a global learning model is interleaved in a complex
manner. Therefore, there exist several challenges for having a
communication efficient FLL framework [7], [8]. Most of the
existing works have focused on overcoming the challenges
related to convergence properties in training the model [7],
[9], and architecture design [8]-[10]. However, the difficulty
to ensure cooperation of a number of participating clients in
building the learning model, i.e., how can we motivate a num-
ber of participating clients to enable FL?, is still unaddressed.
To tackle these overlooked issues, we design a value-based
compensation mechanism for the participating clients, such as
a bounty (e.g., data discount package) in the crowdsourcing
framework. We characterize the level of participation in the
framework by a local accuracy level, i.e., prediction accuracy
that can protect the learning model against imperfect updates
by limiting compromising clients (for instance, clients with
the skewed data).

The goal of this paper is two-fold: First, we address the
challenge of maintaining communication efficiency while ex-
changing the model parameters with a number of participating
clients during aggregation; we develop a participatory method
to enable computation and communication cost effective FL,
and its criticality with a crowdsourcing structure. Second, we
design an incentive mechanism to reveal the iteration strategy
of the mobile clients to perform FL for improving the global
model.

The remainder of this paper is organized as follows. We
present the system model of our proposed crowdsourcing
framework in Section II. In Section III, we formulate an incen-
tive mechanism for the participating clients in the decentral-



ized learning framework with a two-stage Stackelberg game,
and investigate the Nash equilibrium of the game. Numerical
results are presented in Section IV. Finally, conclusions are
drawn in Section V.

II. SYSTEM MODEL

We consider a set of participating clients K =
{1,2,..., K}, associated with a base station with a coordinat-
ing server in the crowdsourcing framework. The crowdsourcer
(referred to as the Multi-access Edge Computing (MEC) server
hereafter) can interact with mobile clients via an application
interface, and aims at leveraging FL to build a global ML
model with distributed local training data. The interaction is
instantiated by an incentive mechanism to train a global model
with an accuracy level.

A. Federated Learning Background

In a typical FL setting [4], within each global iteration,
each participating client will iterate over its data samples to
solve the local subproblem and produces the model parameter
vector, commonly known as weights in ML. These local
parameters are aggregated at the MEC and the resulting global
parameter is broadcast-back to all the participating clients for
the next global iteration. This iterative process continues until
a global accuracy e is obtained. For the sake of brevity, in this
work, we will exclude the common details of FL algorithm
(also briefly defined in our earlier work [10]), and rather focus
on the constructed model with the perspective of economics
and incentive mechanism design for FL participating clients.

Each participating client can use arbitrary optimization
algorithm such as Stochastic Gradient Descent (SGD) or
Stochastic Variance Reduced Gradient (SVRG) [9], and take
multiple local iterations to attain a common threshold relative
accuracy 6 on local subproblem when solving the global
learning problem for e accuracy. Then, according to [5], a
general upper-bound on the number of global iterations for
strongly convex learning objectives is defined as

¢-log(z)
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Here, we have replaced O(log(1)) in the numerator with
¢-log(2) for a constant ¢ > 0. For the fixed iterations I¢, we
observe in (1) that a very high local accuracy (small 6) can
significantly improve the accuracy e. However, each client k
has to spend excessive resources in terms of local iterations,
I} to attain a small ), accuracy, which is upper bounded for
a wide range of iterative algorithms [5] as

1
1.(0r) = i log (9k>, ()

where v, > 0 is a constant that depends on the parametric
choice of client k£ based upon the data size and condition
number of the local subproblem [11]. Further, for a given e,
larger 6}, exerts more global iterations. Therefore, to strike
this discomfort, in each global iteration the MEC server can
incentivize the participating clients to increase the number of

local iterations for small 6 accuracy (more accurate). In this
scenario, the corresponding performance bound (1) for the
heterogeneous responses 6, can be modified by considering
the worst case response of the participating client as

I%(e,0) = ¢ log(%)

= k . 3
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In the following section, we will further discuss in details
about the proposed incentive mechanism, and present the
interaction between MEC server and participating clients as
a two-stage Stackelberg game.

B. Cost Model

Training on local data for a defined accuracy level incurs
two typical costs for the participating clients: the computing
cost and the communication cost.

Computing cost: In a single round of communication with
the MEC, each participating client strategically' iterates over
its local data to a relative accuracy 0. With (2), we define the
computing cost for client k.

Communication cost: This cost is incurred when client &
interacts with MEC server for parameter updates to maintain
0 accuracy. Intuitively, larger 6 will induce more rounds of
interaction between with the server until global convergence,
as formalized in (1).

Thus, with the inverse relation of global iteration upon
local relative accuracy in (1), we can characterize the total
communication cost as

Ty

T60) = 743" 4)
where T}, as the time required for the client k£ to communicate
with MEC server in each round of the model’s parameter
exchanges. Using first-order Taylor’s approximation, we can
approximate the total communication cost as T'(6) = Ty -
(1+6)). We assume that clients are allocated orthogonal sub-
channels so that there is no interference between them?2. Thus,
having evaluated T}, the increase in value of 6 (poor local
accuracy) will contribute for a larger communication cost.

Therefore, the participating client k’s cost for the relative
accuracy level 6y on the local subproblem is

Chl6) = (14 04) - <yk T+ (1= vg) - i log (é)) ,
(5

where 0 < v <1 is the normalized monetary weight for com-
munication and computing costs (i.e., $/ rounds of iteration).
A smaller value of relative accuracy 6 indicates a higher
local accuracy. Thus, there exists a trade-off between the
communication and the computing cost (5). A participating
client can adjust its preference on each of these costs with
weight metric vy.

Fewer iterations might not be sufficient to have an optimal solution [12].
2Note that the scenario of possible delay introduced can be mitigated by
adjusting maximum waiting time as in [13] at MEC.



III. INCENTIVE MECHANISM FOR THE CLIENT’S
PARTICIPATION IN THE DECENTRALIZED LEARNING
FRAMEWORK

In this section, firstly, we present our motivation to realize
the concept of FL by employing a crowdsourcing framework.
We next advocate for an effective incentive mechanism re-
quired to realize this setting of the decentralized learning
model with our proposed solution approach.

A. Incentive Mechanism: A Two-Stage Stackelberg Game Ap-
proach

The interaction scenario between MEC server and the
participating clients can be realized with a Stackelberg game
approach. We formulate our problem as a two-stage Stackel-
berg game between the MEC server (leader) and participating
clients (followers).

Clients (Stage II): The MEC server is a leader with the
first-move advantage in influencing the followers to participate
for the local consensus accuracy. At first, it will announce a
uniform reward rate® (e.g., a fair data package discount as
$/accuracy level) r > 0 for the participating clients. Given r,
at Stage II, a rational client k& will try to improve the local
model’s accuracy for maximizing its net utility by training
over the local data with global parameters. Note that the
proposed utility model incorporates the upper-bound cost for
the participating clients.

Client Utility Model: We use a valuation function vy (0%)
that characterizes the participating clients’ economic return on
response 6 in the crowdsourcing model for FL.
Assumption 1. The valuation function vy (6y) is a linear,
decreasing function with 0, > 0, i.e., vi(0r) = (1 — 6).

Given r > 0, each participating client k’s strategy is to
maximize its own utility as follows:

ognéi)% uk(r,ﬁk) :T(l —Gk) —Ck(ak),Vk e K. (6)

Also, we have C’,: (0x) > 0, which means Cy(0)) is a
strictly convex function. Thus, there exists a unique solution
05 (r), Vk.

MEC Server(Stage I): Knowing the response (strategy)
of the participating clients, the MEC can evaluate an optimal
reward rate 7* to maximize its utility. The utility U(-) of MEC
server can be defined in relation to the satisfaction measure
attained with respect to accuracy.

MEC Server Utility Model: We define z(e) as the number
of iterations required for an arbitrary algorithm to converge
to some e accuracy. We similarly define I%(e,f) as global
iterations of the framework to reach a relative 6 accuracy on
the local subproblems.

From this perspective, we require an appropriate utility
function U(-) as the satisfaction measure of the framework in

3In this work, we have considered a uniform pricing scheme, which is
meaningful in terms of fairness. Whereas, a differentiated pricing scheme is
more complicated to design, and further requires more personal information
of the clients.

reference to € accuracy. We use the definition of the number
of iterations for € accuracy in a device as

2(e) = ¢ -log (1)

Due to large values of iterations, we approximate x(¢) as a
continuous value, and with aforementioned relation, we choose
U(-) as a strictly concave function of z(¢) for € € [0,1]
i.e., with the increase in xz(¢), U(-) also increases. Thus, we
propose U(z(e)) as the normalized utility function bounded
within [0, 1] as

Ulz(e)) =1 — 10~ (@z(+b),

which is strictly increasing concave function of z(e) with
design parameters a and b.

As for the global model, there exists an acceptable value of
threshold accuracy correspondingly reflected by iy (€). This
suggests the possibility of near-zero utility for MEC server for
failing to attain such value.

Furthermore, in our setting, I%(e, §) can be elaborated with
a upper bound (maximum global iterations, §) as

a>0,0<0, (7

I¢(e,0) = f(_e)e < 6. ®)

(8) explains the efficiency paradigm of the proposed frame-
work in terms of time required for the convergence to some
accuracy e. If 7!(6) is the time per iteration to reach a
relative 6 accuracy at a local subproblem and T'(0) is the
communication time required during a single iteration for any
arbitrary algorithm, then we can analyze the result in (8) with
the efficiency of the global model as

I¥(e,0) - (T(0) 4 7'(0)). 9)

Because the cost of communication is proportional to the
speed and energy consumption in a distributed scenario [6],
the bound defined in (8) explains the efficiency in terms of
MEC server’s resource restriction for attaining e accuracy.

Therefore, the utility of the MEC server can be defined for
the set of measured best responses 0 as

Ua(e), r|6") = B (1 =107 C=OH) - 37 (1 - g:(r)),

keK

where 3 > 0 is the system parameter *, and r Y, _-(1—05(r))
is the cost spent for incentivizing participating clients in the
crowdsourcing framework for FL. Thus, for the measured 6,
the utility maximization problem can be formulated as follows:

U(x(e),r167),

e (10
— O B an

1 —maxy, 6;(r)
In constraint (11), maxy 6} (r) characterizes the worst case
response for the server side utility maximization problem.
Here, we can observe that with more accurate local solutions,
the MEC server can attain better utility due to corresponding
increment in value of x(e).

“Note that 3 > 0 characterizes a linear scaling metric to the utility function
which can be set arbitrarily and will not alter our evaluation.
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Fig. 1: Solution Analysis (15) (Left Y-axis: Relative accuracy, Right Y-axis: Communication cost): (a) impact of communication
adversity on local relative accuracy for a constant reward (b) normalized weight versus relative accuracy for a fair data
rate (quality communication channel), and (c) normalized weight versus relative accuracy for an expensive data rate (poor

communication channel).

Lemma 1. The optimal solution x*(€) for (10) can be derived
as (1 — maxy, 05(r)).

Proof: (by analyzing the KKT condition) Omitted due to
limited space. [ |
Therefore, for a given response 6*(r), we can formalize (10)
as
_1n—(az™(e)+b)\ _ _px
max 6(1 10 ) P> (- 6i(1) (12

kex

Stackelberg Equilibrium. With a solution to MEC server’s
utility maximization problem r*, we have the following defi-
nition.

Definition 1. For any values of r, and 0, (r*,0™) is a Stack-
elberg equilibrium if the following conditions are satisfied:

U(r*,0%) > U(r,0%),
ug (05, 7") > ugp (O, r*), Vk.

(13)
(14)

Next, we analyze the Stackelberg equilibria with the
backward-induction method: the Stage-II problem is solved at
first to obtain @, which is then used for solving the Stage-1
problem to obtain r*.

B. Stackelberg Equilibrium: Algorithm and Solution Approach

With measured responses 6 from the participating clients,
the server can design a proper incentive plan to improve
the global model while maintaining the worst case relative
accuracy maxy 65 as 6y, which is the consensus on the
maximum local accuracy. Note that the threshold accuracy 6,
can be adjusted by the MEC server as a client selection criteria
[see Remark 1.] to improve the overall performance of the
system.

For a scenario, where the offered reward r for the client k
is insufficient to motivate it for participation with improved
local relative accuracy, we might have maxy 65(r) = 1 ie.,
0y = 1, no participation.

Lemma 2. For a given reward rate r, and T} which is
determined based upon the channel conditions, we have the

unique solution 8} (r) for the participating client k satisfying
following relation:

gx(r) = log (el/az(T')HZ(T)),Vk e,

1}

Proof: (by first-order condition on (6)) Omitted due to

limited space. [ ]

We can therefore characterize the participating client k’s
best response under the proposed framework as

5)

Sor gi(r) > 1, where

gr(r) = {

r—+ vy
(1 —vi)ve

05 (r) = min {Qk(r) |gk(r):10g(el/§k(7‘)ék(T)), Qm} , Vk.

(16)
(16) represents the best response for the participating client &
under our proposed framework.

In Fig. 1, we briefly present the solution analysis to (15)
with the impact of channel condition (we define it as commu-
nication adversity) on the local relative accuracy for constant
reward. For this, in Fig. la, we consider a participating
client with the fixed offered reward setting r from uniformly
distributed values of 0.1 to 5. We use the normalized T}
parameter for a client & to illustrate the response analysis
scenario. In Fig. 1b and Fig. 1c, T} is uniformly distributed
on [0.1, 1], and vy is set at 0.6. Intuitively, as in Fig. la,
the increase in communication time 7}, for a fixed reward r
will influence participating clients to iterate more locally for
improving local accuracy than to rely upon the global model,
which will minimize their total cost. However, the trend is
significantly affected by normalized weights vy, as observed
in Fig. 1b and Fig. lc. For a larger value of T}, (poor channel
condition) as in the case of Fig. lc, increasing the value of vy,
i.e., clients with more preference on the communication cost in
the total cost model results to higher local iterations for solving
local subproblems, as reflected by the better local accuracy,
unlike in Fig. 1b. In both cases we observe the decrease in
communication cost upon participation. However, in Fig.lc
the communication cost is higher because of an expensive data
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Fig. 2: Case Study: impact of communication cost and offered reward rate r for different values of normalized weight

0.5 and (c) Sensitive,

v = 0.7. X-axis shows the increase in incentive (r) value from left-to-right, and the y-axis defines the increase in the value

of communication expenditure (top-to-bottom).

rate. Therefore, for a given r, client k can adjust its weight
metrics accordingly to improve the response 6.

To solve (12) efficiently, we introduce a new variable zj in
relation with the consensus on local relative accuracy 6y, as

o = {(1), if r> 7y, a7

otherwise,

P = [g,:l <1og(e1/9m9m))}

is the minimum incentive value required obtained from (16)
to attain the local consensus accuracy 6y, at client k for the
defined parameters vy, and T}.

This means, 05 (r) < 6y, when 2z, = 1, and Oy, < Ox(r) < 1
when z;, = 0. MEC server can use this setting to drop the
participants with poor accuracy. As discussed before, for the
worst case scenario we consider 0y, = 1.

Therefore, the utility maximization problem can be equiva-
lently written as

where

—(axz™(e)+b *
A S
(18)
st r>0 (19)
2 € {01}, Vk. (20)

The problem (18) is a mixed-boolean programming that may
require exponential-complexity effort (i.e., 2% configuration
of {zi}rex) to solve by the exhaustive search. To solve
this problem with linear complexity, we refer to the solution
approach as in Algorithm 1.

Proposition 1. Algorithm I can solve the Stage-1 equivalent
problem (12) with linear complexity.

Proof: As the clients are sorted in the order of increasing
71 (line 1), for sufficient condition r > 74 resulting z = 1,
the MEC’s utility maximization problem reduces to a single-
variable problem that can be solved using popular numerical
methods.

Remark 1. Algorithm 1 can maintain consensus accuracy by

Algorithm 1 MEC Server’s Utility Maximization

1: Sort clients as with 7y < 7 < ... < Tg

2R={},A=K,j=K

3: while 7 > 0 do

4: Obtain the solutions 7; to the problem

—(ax™(e)+b *

a3 (110 000) S, 00

S: if’l“j >fj,then R:RU{T]'};

6: end if

7: A= .A\],

8  Jj=j—1L

9: end while

10: Return r; € R with the highest optimal values in the
problem (4)

formalizing the clients selection criteria. This is because from
(17), zr, = 1 for Ox(r) < Oy, and z, = 0 for O, < Ok (r) < 1.
Thus, MEC server uses this setting to drop the participants
with 0y, (r) > 05 (r) = Oy

Theorem 1. The Stackelberg equilibria of the crowdsourcing
framework are the set of pairs {r*,0"}.

Proof: For any given 6, it is obvious that U(r*,0) >
U(r,0),¥r since r* is the solution to the Stage-I problem.
Thus, we have U(r*,0%) > U(r,0"). In the similar way,
for any given value of r and Vk, we have wug(r, 0};) >
ug(r, 0x), V0. Hence, uy(r*,05) > ug(r*,6;). Combining
these facts, we conclude the proof being based upon the
definitions of (13) and (14).

IV. NUMERICAL RESULTS

In this section, we analyze numerical simulations to il-
lustrate our results. First, we show the optimal solution of
Algorithm 1 (ALG. 1) and conduct a comparison of its
performance with two baselines. The first one, named OPT,
is the optimal solution of the problem (12) with exhaustive
search for the optimal response 8*. The second, called baseline
is an offered price that considers the worst response amongst
the participating clients to attain local consensus 6y, accuracy,
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Fig. 3: Comparison of (a) Reward rate and (b) MEC utility,
under three schemes for different values of threshold 0Oy
accuracy.

which is inefficient scheme but still enables us attain feasible
solutions. Finally, we analyze the system performance by
varying different parameters, and conduct a comparison on the
incentive mechanism with the baseline and their corresponding
utilities. In our analysis, the smaller values of local consensus
are of specific interest as it reflects the competence of FL.

1) Settings: For a close understanding and easy interpre-
tation, we fix the number of participating clients as 4, and
parameters 5 = 10, § = 10. The MEC’s utility U(-) model is
defined with parameters ¢ = 0.3, and b = 0. For each client
k, we consider vy, is uniformly distributed on [0.1, 0.5], which
can provide an interesting insight of the system’s efficacy as
presented in the case study Fig. 2. We also use the normalized
value of T}, for all participating clients.

2) Reward Rate: In Fig. 3 we observe a significant increase
in reward rate when the value of accuracy level is improved
(from 0.4 to 0.2). These results are consistent with the analysis
in Section III-B. The cost for attaining higher local accuracy
level requires more local iterations, and thus, participating
clients exerts more incentive to compensate their cost.

We also examine that the reward variation is prominent for
lower values of 6,, and the scheme ALG. 1 and OPT achieves
the same performance, while Baseline is not efficient as others.
Here, we can observe up to 22% of gain in the offered reward
against the Baseline by other two schemes. In Fig.3b, we see
the corresponding MEC utilities for the offered reward that
complements the competence of proposed ALG. 1. We observe
that the trend of utility against the offered reward goes along
with our analysis.

3) Client’s Response: A Case Study: In Fig. 2, we dig
for more details to explore the behaviors of the participating
client through the heatmap plot. To explain better, we define
three categories of participating clients based upon the value
of normalized weight vy, Vk, which is their individual pref-
erences upon the computation cost and the communication
expenditure for the convergence of the learning framework. (i)
Reluctant clients with a lower vy, Vk consumes more reward
to improve local accuracy, even though the value of T} is
larger (expensive), as observed in Fig. 2a. (ii) Sensitive clients
are more inflicted by the channel quality for larger vy, Vk,
and iterates more locally within a round of communication to

the MEC server for improving local accuracy, as observed in
Fig. 2c. (iii) Rational clients, as referred in Fig. 2b tend to
balance these extreme preferences (say vy = 0.5 for client k),
which in fact would be unrealistic to expect all the time due
to heterogeneity in participating client’s resources.

V. CONCLUSIONS

In this paper, we developed and analyzed a novel crowd-
sourcing framework to enable computation and communi-
cation cost efficient FL. An incentive mechanism has been
designed to enable the participation of several devices in
FL. In particular, we have adopted a two-stage Stackelberg
game model to jointly study the utility maximization of the
participating clients and MEC server interacting via an appli-
cation platform for building a high-quality learning model.
Further, we derived the best response solution and proved
the existence of Stackelberg equilibrium. We have examined
characteristics of participating clients for different parametric
configurations. Additionally, we have conducted numerical
simulations and presented several case studies to evaluate the
framework efficacy. For future work, we will consider the
scenario without a central coordinating server to enable self-
organizing FL. amongst participating clients.
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