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Abstract—A collaborative task is assigned to a multiagent
system (MAS) in which agents are allowed to communicate. The
MAS runs over an underlying Markov decision process and its
task is to maximize the averaged sum of discounted one-stage
rewards. Although knowing the global state of the environment
is necessary for the optimal action selection of the MAS, agents
are limited to individual observations. The inter-agent commu-
nication can tackle the issue of local observability, however, the
limited rate of the inter-agent communication prevents the agent
from acquiring the precise global state information. To overcome
this challenge, agents need to communicate their observations in
a compact way such that the MAS compromises the minimum
possible sum of rewards. We show that this problem is equivalent
to a form of rate-distortion problem which we call the task-based
information compression. State Aggregation for Information
Compression (SAIC) is introduced here to perform the task-based
information compression. The SAIC is shown, conditionally, to
be capable of achieving the optimal performance in terms of the
attained sum of discounted rewards. The proposed algorithm is
applied to a rendezvous problem and its performance is compared
with two benchmarks; (i) conventional source coding algorithms
and the (ii) centralized multiagent control using reinforcement
learning. Numerical experiments confirm the superiority and fast
convergence of the proposed SAIC.

Index Terms—Task-based information compression, machine
learning for communication, multiagent systems, reinforcement
learning.

I. INTRODUCTION

This paper considers a collaborative task problem composed
of multiple agents with local observations, while agents are
allowed to communicate through a rate limited channel. The
global state process of the environment, generated by a Markov
decision process (MDP), is controlled by the joint actions of
the agents. Moreover, the instantaneous reward signal to which
all agents have access, is influenced by the global state and
agents’ joint actions.

On one hand, maximizing the finite-horizon sum of dis-
counted rewards, considered to be the unique goal of the net-
work of agents, spurs them to act collaboratively. On the other
hand, limited observability of the environment encourages the
agents to effectively communicate to each other to acquire a
better estimate of the global state of the environment. Due to
the limited rate of the communication channel between the
agents, it is necessary for agents to compactly represent their
observations in communication messages in such a way that
it incurs minimal compromise on the cumulative rewards. As

such, this form of information compression which we call task-
based information compression is different from conventional
compression algorithms whose ultimate aim is to reduce the
distortion between the original and compressed data.

One potential area of application for the considered frame-
work can be object tracking by Unmanned Area Vehicle
networks or by multi-agent systems, e.g. [1]], [2], in which
multiple UAVs/agents collaboratively track one/several mov-
ing object(s), where inter-agent communication has a rate
budget. Another application for our problem is the rendezvous
problem, drawn from computer science community [3], [4],
where multiple agents, e.g. autonomous robots, want to get
into a particular location at precisely the same time. The
agents are unaware of the initial locations of each other but are
allowed to communicate through a rate limited communication
channel. The team of agents is rewarded if they achieve the
task of arrival to the goal point at the same time, and will be
punished if any of them arrives earlier.

The given examples fall in the general category of multi-
agent reinforcement learning, which is used in the literature
as an effective framework to develop coordinated policies [5]—
[9]. The distributed decision-making of multi-agent systems
has been addressed in [S[, [|6], while many other works are
focused on multi-agent (MA) communications to enhance the
joint action selection in partially observed environments [7]—
[10]. Here we elaborate on some papers with focus on multi-
agent communication. The work done in [7] has addressed
the coordination of multiple agents through a noise-free com-
munication channel, where the agents follow an engineered
communication strategy. Deep reinforcement learning with
communication of the gradients of the agents’ objective func-
tion is proposed in [8] to learn the communication among
multiple agents. In contrast to the above mentioned works, the
impact of channel noise in the inter-agent communications is
studied by [9] and the absence of dedicated communication
channels by [11].

In this work, we develop a state aggregation algorithm
which enables each agent to reduce the entropy of its generated
communication messages while maintaining their performance
in the collaborative task. Classical state aggregation algorithms
have been often used to reduce the complexity of the dynamic



programming problems over MDPs [12], [13]. To the best
of our knowledge, they have never been used to design a
task-based information compression algorithm over an MDP.
In our problem, agents’ observations stem from a generative
process with memory, an MDP. In contrast to the conventional
design of the communication systems, we demonstrate the
potential of considering the joint design of the source coding
(compression) together with the multi-agent action policy
design. Our particular approach is based on an indirect data-
driven design exploiting multi-agent reinforcement learning.

The contributions of this paper are as follows. Firstly, we
develop a general cooperative MA framework in which agents
interact over an MDP environment. Unlike the existing works
which assume perfect communication links [3]], [8]], we assume
the practical rate-limited communications between the agents.
Secondly, we decouple the decentralized cooperative multi-
agent problem to two decentralized problems of action policy
selection and communication policy selection. After trans-
forming the communications policy selection problem into a
so-called task-based rate distortion problem, we propose a state
aggregation information compression as the solution. SAIC
leverages centralized learning to find optimal communication
policy and converts the task-based rate distortion problem
to a K-median problem. Finally, the performance of the
SAIC and two benchmark schemes, namely centralized control
of the MAS and conventional information compression, are
compared in a rendezvous problem. Note that bold font will
be used for random variables and their realizations follows
standard font.

II. SYSTEM MODEL

We consider a two-agent system, where at any time step ¢
each agent ¢ € {1,2} makes a local observation o;(t) € 2 on
environment while the true state of environment is s(¢) € S.
The alphabets 2 and S define observation space and state
space, respectively. The true state of the environment s(t)
is controlled by the joint actions m;(t), m;(t) € M of the
agents, where each agent ¢ can only choose its local action
m;(t) which is selected from the local action space M. The
environment runs on discrete time steps t = 1,2, ..., M, where
at each time step, each agent ¢ selects its action m;(¢) upon
having an observation o;(t) of environment. State transition
of the environment, conditioned on the joint actions of the
MAS, are captured by a conditional probability mass function
T(s(t+1),s(t), m;(t), m;(t)), which is unknown to the agents.
We recall that domain level actions m;(¢) can, for instance,
be in the form of a movement or acceleration in a particular
direction or any other type of action depending on the domain
of the cooperative task. We consider a particular structure
for agents’ observations, referred to as collective observations
in the literature [10]. Namely, at all time steps ¢ agents’
observation processes 0;(t), 0;(t) follow eq. (1) and eq. (2).

H(o;(t)) < H(s(t)), 1i€{1,2}, (1)

H(oi(t),04(t)) = H(s(t)), j#1i. 2)
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Figure 1. An illustration of the decentralized cooperative MAS with rate-
limited inter-agent communications.

A deterministic reward function r(-) : & x M? — R indicates
the reward of both agents at time step ¢, where the arguments
of the reward function are the global state of the environment
s(t) and the domain-level actions m;(t), m;(t) of both agents.
We assume that the environment in which agents interact
can be defined in terms of an MDP determined by the tuple
{8, M?,r(-),7,T(-)}, where the scalar v € [0,1] is the
discount factor. The focus of this paper is on scenarios in
which the agents are unaware of the state transition proba-
bility function T'(-) and of the closed form of the function
r(-). However we assume that, further to the literature of
reinforcement learning [14]], a realization of the function
r(s(t), m;(t),m;(t)) will be accessible for both agents i and
7 at each time step t.

In what follows the decentralized problem of MA com-
munications and control is detailed. The main intention of
this paper is to address the decentralized control and inter-
agent communications for a system of multiple agents, Fig.
1. However, we keep comparing the results obtained by
solving the decentralized problem with those of the centralized
problem. These problems are the same in essence with the
caveat that in the centralized problem perfect communications
is assumed to be in place and joint actions are selected by
the central controller. The optimal solution to this problem
7*(-) : & x M2 — [0, 1] can be obtained by Q-learning [14].
Therefore, the cumulative discounted reward performance of
7*(+) can be considered as an upper-bound for the performance
of the decentralized policies.

A. Problem Statement

Here we consider a scenario in which the same objec-
tive function explained in Eq. (5) needs to be maximized
by the two-agent system in a decentralized fashion, Fig.

Namely, agents with partial observability can only select
their own actions. To prevail over the limitations imposed
by the local observability, agents are allowed to have direct
(explicit) communications. However, the communication is
done through a channel with limited rate C' = I(c;(t), €;()),

where c;(t) € C = {—1,1}¥ stands for the communication
message generated by agent ¢ before being encoded by error
correction codes and €;(t) € {—1,1}? corresponds to the
same communication message after it is decoded by the de-
coder of the same error correction code used at the transmitter,
at the agent j. Note that instead of the maximal achievable
rate of the channel, C' represents the channel maximal (non-
)asymptotic achievable rate with any known channel coding



scheme (of arbitrary code length). It should be noted that
the design of the channel coding and modulation schemes are
beyond the scope of this paper and the main focus is on the
compression of agents’ generated communication messages.
In this problem, the limited rate of the channel is accepted as
a constraint which is imposed by the given channel coding,
length of code-words, modulation scheme and the available
bandwidth. Here we assume, the achievable rate of information
exchange for both inter-agent communication channels to be
equal to C, i.e., the communication resources are split evenly
amongst the two agents. In particular we consider C' to be
time-invariant and to follow:

C<H (Oi (t)),
3)
C<H (Oj (t))

To have a more compact notation to refer to the system
trajectory, hereafter, we represent the realization of a system
trajectory at time ¢ by tr(¢) which corresponds to the tuple
(0i(t),0;(t),m;(t),m;(t)) and the realization of the whole
system trajectory by {tr(¢)}!=}. Also for the convenience

of our notation we define the function g(¢ ) as follows:

M
g(t) =" 7"r(0i(t), 0;(t), mi(t), m;(t)). (4

Note that g(t,) is random variable and a function of ¢ as well

as the trajectory {tr(t)}izy . Due to the lack of space, here

we drop a part of arguments of this function. Accordingly, the
decentralized problem is formalized as

Epwgn.wf({tr(t)}i{w){g(1)7} te LAy (
s.t. I(c;(t);¢;(1)) < C,

where in its general form, the action policy 7[* : M xCx§ —
[0,1] of each agent i is defined as

w7 (mi(8)]oi(t), &(t)) = p(mi(t)]oi(t), &;(t)),

and the communication policy 7¢ : C? x Q — [0,1] of each
agent ¢ can be defined similarly.

max
s

5)

i

As a result, the joint probability mass function of
tr(1),tr(2),...,tr(M) when each agent i € {1,2} follows the
action policy n"(-) and the communication policy 7f(:) is
shown as prm e ({tr(t)}{=]"). The initial state s(1) € S is
randomly selected by the environment. To make the problem
more concrete, here we assume the presence of an instanta-
neous communication between agents [9]. Fig. 2] demonstrates
this communication model. As such, each agent ¢ at any time
step t prior to the selection of its action m;(¢) receives a
communication message C;(t) that includes some information
about the observations of agent j at time ¢. Under the instanta-
neous communication scenario, the generation of the commu-
nication message c;(¢) by an agent ¢ cannot be conditioned on
the received communication message ¢;(t) from agent j, as
it causes an infinite regress. Moreover, for agent j there will

be no new information in &;(¢) ~ n¢ (ci(t) |oi(t),&; (t)) given

Ci(t) ~ mf (ci (t)|oi(t)), as agent j has already full access to
its own observation o, (t).

Ui(fo)? - \%ci(to) %@'(fo) m;(to)

-
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Figure 2. Illustration of instantaneous communication for a UAV object
tracking example, with 0 < ¢/ < ¢/ < ¢" < 1. At time ¢ = to agents
(UAVs) make local observations. At time ¢ = to + t' both agents select a
communication signal. At time ¢ = to + t” agents receive a communication
signal. At time ¢ = to + t”/ agents select an domain level action.

III. STATE AGGREGATION FOR INFORMATION
COMPRESSION IN MULTIAGENT COORDINATION TASKS

This section tackles the constraint on the rate of inter-
agent information exchange in the problem (5) by introducing
state aggregation for compression of agents observations. State
aggregation in this paper is applied as a method to carry out
a task-based information compression. We design the state
aggregation algorithm such that it can suppress a part of the
observation information that results in the smallest possible
loss in the performance of the multi-agent system, where this
loss is measured in terms of regret from maximum achievable
expected cumulative rewards. Similar to some other recent
papers with focus on multi-agent coordination [6]], [8], here a
centralized training phase for the two-agent system is required,
however, the execution can be done in a decentralized fashion.

Here we assume that the communication resources are split
evenly amongst the two agents, by considering the achievable
rate of information exchange of both communication channels
to be equal to C'. As such, both agents compress their obser-
vations to acquire communication messages of equal entropy.
For the current work also assume observations of both agents
to have equal entropy H (0;(t)) = H(0;(t)) and we postpone
the study of non-symmetric observations and communications
to the future works.

To solve problem @), we first solve

BB, (o) 80} i€ (120 (
S.t. I(C](t),éj(t)) S C,

max
m 6)

where we assume a general policy 7§(-) being followed by
each agent . Afterwards, the obtained solution for (@) can be
plugged into (5) which leaves us with only one policy function
7$(+) to be optimized. If both of the mentioned problems can
be solved optimally, then the problem (3) has been separable
and the obtained solutions are the optimal solutions of it.



Accordingly, the objective function of the decentralized
problem (5)) can also be written as

E, P me ({tr() = {g }:
Em;ﬂ,wgmi(l),ej(l)){Vw:ﬁ»wf (Oi(l)ia‘(l))} @)

where Vim nc(04(t),¢;(t)) is the unique solution to the
Bellman equation corresponding to the joint action and com-
munication policies 7}, w{ of both agents.

In light of eq. (7) the objective function of the problem (6]
can be expressed as

B (Oi(l)ij(l)){\/ﬁimﬂ,f (oi(l),éj(l))}, ie{1,2),i#4. 8

Lemma 1, lets us to obtain the solution of (§) by finding the
optimal value function Vym« rc(0;(1),€;(1)). This function
can be found either by applying Bellman optimality equations
for a sufficient number of times on Vym rc(0;(1),¢;(1)) or
by Q-learning. It is important, however, to note that the value
function Vo~ (0;(1),¢;(1)) obtained by Q-learning will
be optimal only if, the environment that can be explained by
the tuple {Q X C,Mz,r(-),%T’(~)} can be proven to be
an MDP. Accordingly, we assume that the aggregated MDP
denoted by {Q x C, M2 r(4), 7, T'(+)
by doing state aggregation on the original MDP denoted
by {QQ,MZ,T(-),%T(-) is an MDP itself. The proof of
theorems and lemmas are skipped due to the space limitation
and will be available in the extended version.

which is obtained

Lemma 1. The maximum of expectation of value function
Vi e (04(t),E;(t)), over the joint distribution of o;(t), &;(t)
is equal to the expectation of value function of optimal policy

n;lr% Epwgn,wic (01(1),51(1)) {Vﬂ;n’ﬂ’c (0 ! 1))} -

E ){vﬁn*,ﬁf (0s(1),&5(1)}  ©

Prm me (07:(1%5;'(1)

Remember that numerical methods such as value iteration
or Q-learning, cannot normally provide parametric solutions
which is in contrast to our requirements in SAIC, as explained
earlier in this section. Lemma 2, allows us to acquire a
parametric approximation of Vym« rc(04(1),€;(1)) by lever-
aging the value function V*(0;(t),0;(t)) corresponding to
the optimal solution of the centralized problem. Accordingly,
following lemma 2, we propose to derive an off-policy ap-
proximation of Vzm« rc(0;(t),€;(t)) having the knowledge
of policy 7*(-).

Lemma 2. The optimal value of V*(0;(t),&;(t)) can be
obtained using the solution 7*(-) and its corresponding value

Sunction V* (oi(t), 0;(t)) following
V* (04 (t) = Y V(oi(t),0;(t))p(0; (1)[E;(t)). (10)
0;(t)eQy

Based on the results of lemma 1 and lemma 2, theorem
3 is constructed such that it allows us to compute the com-

munication policies of agents independent from their action
policies. The proposed communication policy by theorem 3,
is conditionally the optimal communication policy.

Theorem 3. The communication policy that can maximize the
achievable expected cumulative rewards in the decentralized
coordination problem ) can be obtained by solving the k-
median clustering problem

win 3 > [vio) il

k=1 o;(t)eQ

(an

where P; corresponds to a unique {(-).

Theorem [3] allows us to compute a communication policy
¢ (+) by clustering values of V*(o;(t)), where this policy can
be the optimal communication policy under some conditions
which are further discussed later on in this section. One way
to obtain V*(0;(t)) is to solve the centralized problem by Q-
learning. By solving this problem Q*(o1,02, my, my) can be
obtained. Accordingly, following Bellman optimality equation,
we can compute V*(0;(t)) by
m) = V*(o1),

max Q" (or, (12)

where V*(01) can be expressed as

01) =En= {nyt_lr(s(t), m; (t), m;(t))]oi(t) = 01} (13)

and further to the law of iterated expectations, can also be
written as

Z max Q* (01,02, mi, ma)p(0;(t) = 02). (14)
OQGQ

In SAIC, detailed in Algorithm 1, we first compute the value
V*(o) for all o € . Afterwards, by solving the k-median
clustering problem (I1), an observation aggregation scheme
indicated by P; is computed. By following this aggregation
scheme, the observations o;(t) € € will be aggregate such
that the performance of the multi-agent system in terms of the
the objective function it attains is optimized. After obtaining
the exact communication/compression policy 7§ (-), an exact
action policy for both agents corresponding to 7 (-) will be
obtained by Q-learning. As such, the second training phase in
which the action Q-tables Q7*(-) for ¢ = {1,2} are obtained
as well as the execution phase of the algorithm can be done
distributively.

IV. NUMERICAL RESULTS

In this section, we evaluate our proposed schemes via
numerical results for the popular rendezvous problem, in
which the inter-agent communication channel is set to have
a limited rate. To find the details of the rendezvous problem,
please refer to [9]. The system operates in discrete time, with
agents taking actions and communicating in each time step
t=1,2,.... We consider a variety of grid-worlds sizes, with



Algorithm 1 State Aggregation for Information Compression
1: Input: v, a, ¢
2: Initialize all-zero table N;™ (0(t),&;(t), mi(t)), for i = 1,2
3: and Q-table Q7" (-) +— Q™ Y (.), fori = 1,2
and all-zero Q-table Q (0i(t),0;(t), mi(t), m;(t)).
Obtain 7w*(-) and Q*(+) by solving the centralized problem [[14].
Compute V*(0;(t)) following eq. , for Vo, (t) € Q.
Solve problem by applying k-median clustering to obtain
mi(+), for i =1,2.
8: for each episode k =1: K do

AR A

9: Randomly initialize local observation o;(t = 1), fori = 1,2
10: for tp, =1: M do

11: Select c;(t) following 7§ (-), for i = 1,2

12: Obtain message ¢;(t), fori =1,2 j #1

13: Update Q7" (oi(tf 1),&;(t—1),m;(t—1)) , fori=1,2
14: Selectm; (t) € M following UCB policy [14], fori = 1,2
15: Increment N;™ (Oi(t),&j (t), mi(t)), fori=1,2

16: Obtain reward 7 (0;(t), 0;(t), mi(t), m;(t)), for i = 1,2
17: Make a local observation o;(t), for 1 = 1,2

18: th =t +1

19: end
20: Compute Zﬁl ~'r; for the Ith episode
21: end

22: Output: Q7" (-) and 7}" (m;(t)]0:(t),E;(t))
23: and by following greedy UCB policy, for i = 1,2

different values for N for instance N = 4 means a 4 x 4
grid-world, and different locations for the goal-point w”. We
compare the proposed SAIC with (i) Centralized Q-learning
scheme and (ii) the Conventional Information Compression
(CIC) scheme. In CIC we first train the disjoint action policies
using distributed Q-learning, assuming presence of ideal inter-
agent communications. Subsequently, leveraging an estimated
distribution of agent 7’s observations o;(t), the observations
will be quantized using Lloyd’s algorithm.

A. Results

To perform our numerical experiments, rewards of the
rendezvous problem are selected as R = 1 and Ry = 10,
while the discount factor is v = 0.9. A constant learning
rate « = (.07 is applied, and the UCB exploration rate
¢ = 12.5. In any figure that the performance of each scheme
is reported in terms of the averaged discounted cumulative
rewards, the attained rewards throughout training iterations are
smoothed using a moving average filter of memory equal to
20,000 iterations. Regardless of the grid-world’s size and goal
location, the grids are numbered row-wise starting from the
left-bottom.

Fig. 3| illustrates the performance of the proposed scheme
SAIC as well as the two benchmark schemes centralized Q-
learning and CIC. The grid-world is considered to be of size
N = 8 and its goal location to be w? = 22. The rate budget of
the channel is C' = 2 bits per time step. Since the centralized
Q-learning runs with perfect communications, it achieves
optimal performance after enough training, 160k iterations.
The CIC, due to insufficient rate of the communication channel

never achieves the optimal solution. It is observed that the
SAIC by less than 1% gap achieves optimal performance and
does that remarkably fast. The yellow curve showing the per-
formance of the CIC with no communication between agents,
would show us the best performance that can be achieved if no
communication between agents is in place. Note that both the
CIC and SAIC require a separate training phase which is not
captured by Fig. [3] SAIC requires a centralized training phase
and CIC a distributed training phase with unlimited capacity
of inter-agent communication channels. The performance of
these two algorithms in Fig. 3] is plotted after the first phase
of training. To understand the underlying reasons for the

Objective function

—— Centralized
2t —4—SAIC C =2| {
——CICC =2

CICC=0

. . . . . . . . .
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Training iterations (K) %10°

Figure 3. A comparison between all four schemes in terms of the achievable
objective function with channel rate constraint C' = 2 bits per time steps and
number of training iterations/episodes K = 200k.

remarkable performance of the SAIC, Fig. [ is provided so
that the equivalence classes computed by the SAIC can be
seen, with all the locations of the grid shaded with the same
colour belonging to the same equivalence class. The SAIC is
extremely efficient, in performing state aggregation such that
the loss of observation information does not incur any loss of
achievable sum of discounted rewards. Fig. fi}(a), illustrates
the state aggregation obtained by the SAIC, for which the
achievable sum of discounted rewards is illustrated in Fig.
[l It is illustrated in Fig. @}(a) that how the SAIC performs
observation compression with ratio R = 3 : 1, while it leads
to nearly no performance loss for the collaborative task of
the MAS. Here the definition of compression ratio follows
R = [H(oi(t))]/[H(ci(t))].

We also investigate the impact of achievable bit rate C' on
the achievable value of objective function for the SAIC and
CIC, in Fig. 3] In this figure, the normalized value of achieved
objective function for any scheme at any given C' is shown.
The average of the attained objective function for the scheme
of interest is computed by Epwgn,wg({tr(t)}izf”){g(l)}’ where
7" (-) and 7§(-) are obtained by the scheme of interest after
solving (5). The attained objective function for the scheme of
interest is then normalized by dividing it to the average of
objective function Ep,,*({tr(t)}ii{”){g(l)} that is attained by



(a) ()

Figure 4. State aggregation for multi-agent communication in a two-agent
rendezvous problem with grid-worlds of varied sizes and goal locations. The
observation space is aggregated to four equivalence classes, C' = 2 bits, and
number of training episodes has been K = 1500k and K = 1000k for figure
(a) and (b) respectively. Locations with similar color represent all the agents’
observations which are grouped into the same equivalence class.

the optimal centralized policy 7*(-). Accordingly, when the
normalized objective function of a particular scheme is seen to
be close to the value 1, the scheme has been able to compress
the observation information with almost zero loss in the
achieved objective function. On one hand, it is demonstrated
that the SAIC soon achieves the optimal performance, while
it takes the CIC a rate of at least C' = 4 to have near optimal
performance. A whopping 40% performance gain is acquired
by the SAIC, in comparison to the CIC, at high compression
ratio R = 3 : 1, i.e., C = 2. This means 66% of data rate
saving with no performance drop in attaining the collaborative
objective function.
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Figure 5. A comparison between the performance of several multi-agent
communication and control schemes in terms of the achieved value of the
objective function under different achievable bit rates. All experiments are
performed on a grid-world of size N = 8, where the goal point is located
on the grid no. 22, similar to the one depicted on Fig. ] -a. The number of
training episodes/iterations for any scheme at any given value of C' has been
K =200K.

As was demonstrated through numerical experiments, the
weakness of conventional schemes for compression of agents’
observations is that they might lose/keep information regard-
less of how useful they are to achieve the optimal objective
function. In contrast, the task-based compression scheme
SAIC, for communication rates lower than the entropy of
the observation process, manages to compress the observation
information not to minimize the distortion but to maximize
the achievable value of the objective function.

V. CONCLUSION

This paper has investigated a collaborative MA reinforce-
ment learning problem. We have aimed at optimizing the
MAS’s objective function by means of distributed control
of agents enabled with inter-agent communication. Since we
consider a limited rate for the MA communication channels,
task-based compression of agents observations has been of
the essence. We designed SAIC with optimal performance
on maximizing the achievable objective function given the
constraint on the rate of communication. The proposed scheme
is seen to outperform conventional source coding algorithms,
by up to a remarkable 40% difference in the achieved objective
function. The introduced information compression scheme,
SAIC, can have a substantial impact in many communication
applications, e.g. device to device communications, where the
ultimate goal of communication is not a reliable transfer of
information between two ends but is to acquire information
which is useful to improve an achievable team objective.
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