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Abstract—We consider a bidirectional in-band full-duplex (FD)
multiple-input multiple-output (MIMO) system subject to im-
perfect channel state information (CSI), hardware distortion,
and limited analog cancellation capability as well as the self-
interference (SI) power requirement at the receiver analog domain
so as to avoid the saturation of low noise amplifier (LNA). A
novel minimum mean square error (MMSE)-based joint design
of digital precoder and combiner for SI cancellation is offered,
which combines the well-known gradient projection method and
non-monotonicity considered in recent machine-learning literature
in order to tackle the non-convexity of the optimization problem
formulated in this article. Simulation results illustrate the effec-
tiveness of the proposed SI cancellation algorithm.

I. INTRODUCTION

With the beginning of the fifth generation (5G) era archi-
tected to support individual service categories, in particular
enhanced mobile broadband (eMBB), massive machine type
communication (mMTC), and ultra-reliable low latency com-
munication (URLLC)), in-band full-duplex (FD) technology,
which enables simultaneous transmission and reception on the
same time-frequency resource block, has been considered as a
promising alternative to its half-duplex (HD) counterpart, as it
can be leveraged to jointly tackle different system requirements
such as overhead reduction, resource scarcity problem, and
demands for higher data rates.

Despite the fact that the concept of FD communications was
developed decades ago, wireless FD operation has – due to the
overwhelming self-interference (SI) caused by leakage of its
own transmitted signals which results from the close proximity
between transmit and receive antennas installed on the FD radio
– long been considered infeasible in practice until experimental
and theoretical research work demonstrating otherwise emerged
in the beginning of the 2010s [1]–[7]. Motivated by the above, a
substantial amount of research contributions to SI cancellation
technology in conjunction with multiple-input multiple-output
(MIMO) for higher spatial degree of freedoms (DoFs) has been
amassed [8]–[14], demonstrating theoretical feasibility of the
in-band FD operation under the assumption that ideal channel
state information (CSI) knowledge and/or radio-frequency (RF)
hardware architectures are available. To mention a few exam-
ples, the authors in [13] have studied a hybrid analog-digital
SI cancellation architecture for FD MIMO systems with fully-
connected analog cancellation taps, whereas [15] investigated
an interference mitigation scheme aiming at not only the SI but
also inter-user interference in a multi-cell multi-user scenario.

However, the performance of SI cancellation mechanisms for
FD is bounded not only by channel estimation inaccuracy but
also by non-ideal hardware distortions including nonlinearity
of power amplifiers (PAs), digital-to-analog converters (DACs),
and I/Q mixers, leading to the necessity of incorporating such
imperfections into the design of SI cancellation [16]. To make
matters worse, it has been argued recently [12], [13], [17]–[22]
that the architectural and computational complexity as well as
the associated energy consumption in order to perform these
hybrid digital-analog SI cancellation will be prohibitive as the
number of antennas increases, imposing a new challenge on SI
cancellation under limited analog cancellation capability.

In order to tackle this difficulty, a low-complexity SI cancel-
lation method subject to limited analog cancellation capability
for large-scale FD MIMO systems was proposed in [12], and
a new analog cancellation architecture based on tap delay line
processing such that the number of analog cancellation taps can
be reduced while maintaining the spatial DoF for the desired
system performance was introduced in [19]. Leveraging the
latter, [20] studied a FD MIMO system equipped with the low-
complexity multi-tap analog canceller proposed in [19] under
the assumption of perfect CSI and ideal hardware components,
which further extended in [21] to an imperfect CSI scenario
without considering hardware distortion. Aiming to simultane-
ously take into account hardware impairments, imperfect CSI
and limited hardware complexity for analog SI cancellation, the
authors in [23] proposed a low-complexity spatial-temporal SI
cancellation design for bidirectional FD MIMO systems.

One of bottlenecks of contributions such as the ones men-
tioned above is, however, that the SI power level at the
receiver analog domain is not properly tuned so as to avoid
the saturation of the low noise amplifier (LNA), which is still
a major challenge to be conquered. In this paper, we therefore
propose an algorithmic solution to the latter problem for
bidirectional FD MIMO communications, while taking all the
aforementioned issues (i.e., imperfect CSI, hardware distortion,
and limited analog cancellation capability) into consideration.

The remainder of the article is as follows. In Section II, the
system model including imperfect CSI and hardware distortion
is given, where signal-to-interference-plus-noise ratio (SINR)
expressions and the SI power at receiver analog domain are
also mathematically described. The problem formulation for the
desired SI cancellation will be discussed in Section III, in which
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the proposed gradient projection based SI cancellation design
is also offered. In Section IV, as an illustration, simulation
results are given in order to demonstrate the effectiveness of
the proposed method. Finally, conclusions and discussions on
possible future works are given in Section V.

Notation: Throughout the article, matrices and vectors will
be expressed respectively by bold capital and small letters,
namely, X and x. The transpose, conjugate, Hermitian and
inverse operators will be respectively denoted by (·)T, (·)∗,
(·)H and (·)−1, while the expectation, the covariance and the
Frobenius norm operators will be respectively denoted by E [·],
V [·] and ‖·‖. A complex matrix with a columns and b rows is
denoted by X ∈ Ca×b, and a complex random scalar variable
following the complex Gaussian distribution with mean µ and
variance σ2 is expressed as x ∼ CN

(
µ, σ2

)
. Finally, the matrix

containing only the diagonal of X will be denoted by diag(X).

II. SYSTEM MODEL

Consider a bidirectional two-way in-band FD MIMO system
shown in Figure 1, where two nodes operating in FD mode
exchange information with the support of a digital precoding
vector vk ∈ CN×1 with k ∈ {1, 2}, a digital combining
vector uk ∈ C1×M , and a low-complexity multi-tap analog SI
cancellation architecture [19], such that each node is capable
of suppressing the SI while increasing the intended signal
power at the destination node. For the sake of simplicity but
loss of generality, each node is assumed to be equipped with
N transmit and M receive antennas, respectively. Due to the
limited dynamic range of RF components at the nodes, it is
assumed that each node suffer from not only inevitable SI
caused by own transmitted signals but also nonlinear hardware
impairments from non-ideal PAs, DACs and I/Q mixer.

It is further assumed that the transmit power at the k-th
node is limited

(
i.e., E

[
‖vksk‖2

]
≤ Pk

)
with sk denoting

a unit-power symbol transmitted by the k-th node, whereas the
combining vector uk is normalized (i.e., ‖uk‖2 = 1). Fol-
lowing [9], [19], [23], the low-complexity multi-tap analog SI
cancellation at the k-th node can be expressed as Ck ∈ CM×N
composed of Ntap non-zero components and MN−Ntap zeros.
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Fig. 1. Two-way in-band FD MIMO system model equipped with digital
precoder/combiner and multi-tap analog canceller.

Referring to Figure 1, the communication channel from the
`-th node, with ` ∈ {1, 2|` 6= k}, to the k-th node, is denoted
by H`k ∈ CM×N as well as Hkk ∈ CM×N describing
the SI channel at the k-th node. In light of the above, the
received signal at the k-th node after processing by the analog
SI cancellation Ck can be expressed as

yk= H`k (v`s` + w )̀︸ ︷︷ ︸
Distorted intended signal

+

Cancelled SI & Hardware distortion︷ ︸︸ ︷
Hkkvksk −Ckvksk + Hkkwk +nk,

(1)
where w` ∼ CN

(
0, β · diag

(
v`v

H
`

))
denotes the nonlinear

hardware impairments induced by the `-th node [16], [24]–
[26], wk ∼ CN

(
0, β · diag

(
vkv

H
k

))
describes the effect of

the self-induced nonlinearity at the k-th node, and β expresses
the hardware distortion level, whereas nk ∼ CN

(
0, σ2IM

)
denotes the complex additive white Gaussian noise (AWGN)
vector at the k-th receiver.

A. Imperfect CSI model

In this subsection, statistical channel models for the com-
munication and SI channel matrices (i.e., H`k and Hkk) will
be described, respectively, while introducing the associated
imperfection models relying on the Gauss-Markov theorem
[27], [28].

Due to the dominant line-of-sight (LoS) stemming from
deterministic close proximity between transmit and receive
antennas at the FD node, the associated SI channel matrix Hkk

can be modeled as the Rician fading channel [29], namely,

Hkk =

√
κ

1 + κ
HLOS
kk +

√
1

1 + κ
HNLOS
kk ∀k, (2)

with κ denoting the Rician shaping parameter, also referred to
as the Rician K-factor, which expresses the power contribution
of the LoS components relative to non line-of-sight (NLoS)
counterparts, while HNLOS

kk corresponds to sum of NLoS paths
such that each element of HNLOS

kk follows an independent and
identically distributed (i.i.d.) complex Gaussian variable with
zero mean and unit-variance, and the LoS component HLOS

kk

can be written as a product of phase array responses aTX (θT )
and aRX (θR) of the transmit and receive antennas, respectively,
that is,

HLOS
kk = αka

H
RX (θR) aTX (θT ) ∈ CM×N , (3)

where αk is a complex gain, θT and θR denote the angle of
departure (AoD) and angle of arrival (AoA), respectively, and
the associated array responses can be written as

aTX (θT ) =
[
1 ej2πdcos(θT ) · · · ej2πd(N−1)cos(θT )

]
, (4)

aRX (θR) =
[
1 ej2πdcos(θR) · · · ej2πd(M−1)cos(θR)

]
, (5)

where we assume that both FD nodes are equiped with uniform
linear array (ULA) with half-wavelength antenna spacing d.

Given the above, it is assumed hereafter that CSI knowledge
of the communication and SI channel matrices is partially
available at the nodes, so that the corresponding imperfect CSI
can be expressed via the Gauss-Markov uncertainty model as



Hk` =
√

(1− τ2
k`)Ĥk` + τk`Ek`, (6)

Hkk =

√
qkkκ

1 + κ
HLOS
kk +

√
qkk

1+κ

(√
1−τ2

kkĤ
NLOS
kk + τkkEkk

)
= Ĥkk + τ ′kkEkk, (7)

where τij , i, j ∈ {k, `} denote parameters of the CSI accuracy,
Eij and Eii are the channel estimation error matrices with
its elements following i.i.d. CN (0, qij) and i.i.d. CN (0, 1),
respectively, where qij and qii are the path loss gains of the
channels Hij and Hii.

Notice that in equation (7), we implicitly define the known
SI components Ĥii and the scaled SI CSI accuracy τ ′ii for later
convenience, which are, respectively, given by

Ĥii ,

√
qiiκ

1 + κ
HLOS
ii +

√
qii(1− τ2

ii)

1 + κ
ĤNLOS
ii , (8)

τ ′ii ,

√
qii · τ2

ii

1+κ
. (9)

Furthermore, we considered in equation (7) that perfect (or
considerably accurate) knowledge of the LoS component of the
SI channel is available due to the deterministic (or much slowly-
varying) nature of this channel component [23], implying that
only part of the NLoS components possesses uncertainties.

B. Signal model

Taking into account the imperfect CSI model described in
the previous section, plugging equation (6) and (7) into the
received signal expression given in equation (1) yields

yk =

Intended signal with CSI & hardware imperfection︷ ︸︸ ︷√
1−τ2

`kĤ`k(v`s`+w )̀+τ`kE`k (v`s`+w )̀ (10)

+H̃kkvksk + τ ′kkEkk (vksk+wk)+Ĥkkwk︸ ︷︷ ︸
Residual SI with CSI & hardware imperfection

+nk,

with H̃kk , Ĥkk −Ck implicitly being defined.
From equation (10), the averaged SINR and corresponding

mean square error (MSE) at the k-th node can be written in a
closed-form expression, respectively, as

γk =
PCom,k

Σk
, (11)

εk = E
[
(s` − ŝ`) (s` − ŝ`)∗

]
=

1

γk
, (12)

where the power of the intended signal and interference-plus-
noise components can be respectively expressed as

PCom,k ,
(
1−τ2

`k

)
ukĤ`kv`v

H
` Ĥ

H
`ku

H
k , (13)

Σk , ukH̃kkvkv
H
k H̃

H
kku

H
k + τ ′

2
kk ‖vk‖

2
(1 + β)

+βukĤkkdiag
(
vkv

H
k

)
ĤH
kku

H
k +q`kτ

2
`k ‖v`‖

2
(1+β)

+β
(
1− τ2

`k

)
ukĤ`kdiag

(
v`v

H
`

)
ĤH
`ku

H
k + σ2, (14)

where the identity E
[
HAHH

]
= σ2Tr (A) I with each

element of H follows i.i.d. CN
(
0, σ2

)
is leveraged.

Furthermore, for later convenience, the covariance of residual
distorted SI after the analog cancellation can be written as

Φk , V
[
H̃kkvksk + τ ′kkEkk (vksk+wk)+Ĥkkwk

]
(15)

=V
[
H̃kkvksk

]
+ V [τ ′kkEkk (vksk+wk)] + V

[
Ĥkkwk

]
=H̃kkvkv

H
k H̃

H
kk+τ

′2
kk‖vk‖

2
(1+β)I+βĤkkdiag(vkv

H
k )ĤH

kk.

Please note from the above that the diagonal elements of Φk

describes the total average SI power at each digital thread at the
k-th receiver, which therefore need to be sufficiently attenuated
before processing by the RF chain so as to avoid saturation of
LNA while maintaining the operation point of LNA sufficiently
high in terms of energy efficiency of RF circuits. To elaborate,
the tunable radio components (i.e., vk, uk, and Ck) need to be
designed such that the m-th diagonal element [Φk]mm satisfies
[Φk]mm ≤ εk,m with εk,m denoting a power level requirement
such that the total received signal yk enjoys linearity of the
dynamic range at the receiver side.

III. PROPOSED SI CANCELLATION DESIGN

Taking into account the fact that maximizing SINR at each
user corresponds to minimizing the associated MSE as shown
in equation (11) and (12), in this section we shall hereafter con-
sider the following sum SINR maximization problem subject
to the maximum transmit power constraint at each user as well
as the residual SI power level constraints at each RF thread of
the receiver, which can be expressed as

max
vk,v`,uk,u`

g(vk,v`,uk,u`) ,
2∑
k=1

γk (16a)

s.t. ‖vk‖2 ≤ Pk,∀k (16b)
[Φk]mm ≤ εk,m,∀k,m ∈ {1, 2, . . . ,M}. (16c)

One may readily notice that the optimization problem given
in equation (16) is an intractable non-convex problem due to
not only the non-convexity of the SINR expressions in equation
(11) but also the coupling effect between the variables (i.e.,
vk,v`,uk and u`). Aiming at relaxing this difficulty while
taking advantage of the optimality of linear minimum mean
square error (MMSE) receiving filter in case that both the
intended signal and the effective interfering signals can be
treated as Gaussian [30], we propose a type of the alternating
optimization framework in conjunction with the non-monotone
algorithmic design [31], [32]. To this end, the normalized
MMSE receiving filters at the k-th and `-th node can be,
respectively, written in a closed-form expression as

uk=
vH
` ĤH

`k

(
Huk

HH
uk

+σ′2uk
IM+(1−τ2

`k)Ĥ`kv`v
H
` ĤH

`k

)−1∥∥vH
` ĤH

`k

(
Huk

HH
uk

+σ′2uk
IM+(1−τ2

`k)Ĥ`kv`vH
` ĤH

`k

)−1∥∥
2

, (17a)

u`=
vH
k ĤH

k`

(
Hu`

HH
u`

+σ′2u`
IM+(1−τ2

k`)Ĥk`vkv
H
k ĤH

k`

)−1∥∥vH
k ĤH

k`

(
Hu`

HH
u`

+σ′2u`
IM+(1−τ2

k`)Ĥk`vkvH
k ĤH

k`

)−1∥∥
2

, (17b)

where the effective interfering channels Huk
and Hu`

are
given in equation (18) with ΓNi ∈ RN×N being an all-zero
matrix except for its i-th diagonal position equal to 1.



Huk
,
[
H̃kkvk, βĤkkΓ

N
1 vk, β(1−τ2

`k)Ĥ`kΓ
N
1 v`, · · · , βĤkkΓ

N
Nvk, β(1−τ2

`k)Ĥ`kΓ
N
Nv`

]
(18a)

Hu`
,
[
H̃``v`, βĤ``Γ

N
1 v`, β(1−τ2

k`)Ĥk`Γ
N
1 vk, · · · , βĤ``Γ

N
Nv`, β(1−τ2

k`)Ĥk`Γ
N
Nvk

]
(18b)

∇f (vk) =

(
∂PCom,k

∂v∗k
Σk −

∂Σk
∂v∗k

PCom,k

)
1

Σ2
k

+

(
∂PCom,`

∂v∗k
Σ` −

∂Σ`
∂v∗k

PCom,`

)
1

Σ2
`

, (22)

Given fixed receiving filters calculated by equation (17), the
optimization problem (16) can then be reduced to

max
vk,v`

f (vk,v`) ,
2∑
k=1

γk (19a)

s.t. ‖vk‖2 ≤ Pk,∀k (19b)
[Φk]mm ≤ εk,m,∀k,m ∈ {1, 2, . . . ,M}. (19c)

Notice that the residual SI power constraints (19c) are inde-
pendent from the receiving filters uk and u` since it is needed
to be satisfied before processing by the LNA and analog-to-
digital converter (ADC), indicating that the precoding vectors
must be designed so as to satisfy both the transmit power
constraint and (19c) simultaneously. In order to tackle the non-
convexity of the objective function (19a) while enjoying the
convex sets (19b) and (19c), the FD communication literature
[23], [25], [33] as well as recent machine learning research
works [31], [32] jointly motivate us to propose an alternating
non-monotone gradient projection method described as follows.

A fundamental algorithmic framework of gradient projection
methods can be written as

v̆
[t]
k = P

{ ,v̄k︷ ︸︸ ︷
v

[t]
k + δ[t]∇f (vk)

}
(20)

v
[t+1]
k = v

[t]
k + ρ[t]

(
v̆

[t]
k − v

[t]
k

)
(21)

where P {·} denotes the projection operator that computes
the closest point (in Euclidean sense) from a current estimate
towards the feasible set, which is described later in details,
δ and ρ are the intensity parameters for the projection and
correction steps, and ∇f (vk) is the gradient of f (vk), which
can be written in a closed-form expression as shown above in
equation (22), with

∂PCom,k

∂v∗k
= 0N×1, (23a)

∂PCom,`

∂v∗k
=
(
1−τ2

k`

)
ĤH
k`u

H
` u`Ĥk`vk, (23b)

∂Σk
∂v∗k

= H̃H
kku

H
k ukH̃kkvk + τ ′

2
kk (1 + β)vk

+β

N∑
i=1

ΓNi ĤH
kku

H
k ukĤkkΓ

N
i vk, (23c)

∂Σ`
∂v∗k

= β(1− τ2
k`)

N∑
i=1

ΓNi ĤH
k`u

H
` u`Ĥk`Γ

N
i vk

+qk`τ
2
k`(1 + β)vk. (23d)

Algorithm 1 :
ALTernating Non-Monotone GrAdient Projection (ALTnmGAP)

Input: Pmax, Ĥkk, Ĥ`k, Ck,∀k, c
Output: vk,v`,uk,u`

1: Set iteration number t = 0 and Pk = Pmax ∀k.
2: Obtain initial v[t]

k ∀k via Gauss. random init. [34], [35].
3: repeat
4: t = t+ 1.
5: Compute u

[t]
k ∀k from (17).

6: Get v̄[t−1]
k according to (20) and (22).

7: Project v̄[t−1]
k onto (19b) and (19c).

8: Obtain v
[t]
k from (21).

9: δ= |g(v[t]
k ,v

[t]
` ,u

[t]
k ,u

[t]
` )− g(v[t−1]

k ,v
[t−1]
` ,u

[t−1]
k ,u

[t−1]
` )|.

10: ∆[t] = argmax
t′={max(1,t−c),...,t}

g
(
v

[t′]
k ,v

[t′]
` ,u

[t′]
k ,u

[t′]
`

)
.

11: if δ < 10−6 or (∆[t] = t− c) then
12: u

[t]
k = u

[∆[t]]
k ∀k.

13: v
[t]
k = v

[∆[t]]
k ∀k.

14: break.
15: end if
16: until reach maximum iterations

Following [25], we adopt the Armijo rule for updating the
step size parameters δ and ρ, which can be expressed as

f
(
v

[n+1]
k

)
−f
(
v

[n]
k

)
≥ ινmTr

(
∇fH

(
vk
)(
v̆

[n]
k −v

[n]
k

))
, (24)

with m denoting the minimal positive integer satisfying the
above inequality with ν = 0.5, ι = 0.1, δ = 1 and ρ[n] = νm.

In light of the above, the gradient step can be calculated
according to equations (21) and (24). In what follows, we
describe how to perform the projection operation onto the
feasible set given in equation (19b), (19c), and (20). Since the
feasible region characterized by equation (19b) and (19c) is a
convex set, we readily obtain

P {v̄k}= argmin
z

‖v̄k − z‖ (25a)

s.t. ‖z‖2 ≤ Pk (25b)
[Φk]mm ≤ εk,m,m ∈ {1, 2, . . . ,M}, (25c)

where one may notice that the above problem is an optimiza-
tion type of convex quadratic constrained quadratic programs
(QCQPs) which can be efficiently solved not only by the well-
known interior point methods1 [39] but also by leveraging
recently proposed specialized solvers such as [40].

1Note that interior point methods are widely available, i.e., CVX [36] in
Matlab, CVXPY [37] in Python, and Convex.jl [38] in Julia.



To conclude this section, we offer a summary of the proposed
alternating non-monotone gradient projection method here de-
veloped in the form of a pseudo code in Algorithm 1, where
the non-monotonicity of the gradient step is also algorithmically
explained. The authors kindly refer an interested reader to [31],
[32] for convergence guarantee of the non-monotone gradient
methods, which can be extended to the proposed method and
is omitted due to the space limit on the page length.

IV. SIMULATION RESULTS

In this section, we evaluate via software simulations the
performance of the proposed method in comparison with state-
of-the-art methods in terms of the achievable throughput as
well as the residual SI at the receiver analog domain. Following
the related works [20], [23], we compare our proposed method
with recent state-of-the-art algorithms (i.e., AltDRQ [23] and
AltRQSpl [20]). The simulation setups are as follows.

In order to be in line with prior works such as [20], [23],
[29], the numbers of transmit and receive antennas at each node
are assumed to be M = N = 4 and maximum transmit power
Pmax is limited to Pmax = 20 dBm, where the noise floor is
set to −90 dBm. Also, the number of analog cancellation taps
Ntap is equivalent to 8, where one may notice that this is 50%
reduction in the number of elements in the analog cancellation
matrix Ck in comparison with [1], [2]. Aiming at modeling
practical imperfect analog SI cancellation, it is assumed that
each analog tap of Ck suffers from amplitude imperfection
uniformly distributed between −0.01dB and 0.01dB, while
the associated phase noise is uniformly distributed between
−0.065◦ and 0.065◦ [19], while the target residual SI level
is considered to be εk,m = ε = −47 dBm for all k and m.

Furthermore, the communication channel matrices Hk` and
H`k are assumed to follow block Rayleigh fading channel
with 110dB pathloss, while the SI channels Hkk and H``

are considered to be modeled as block Rician fading channel
with 40dB pathloss and a 35dB K-factor, where the channel
estimation accuracy levels τk and τ` are statistically equivalent
(i.e., τk = τ` = τ ) with its effective range of τ ∈ {−40,−15}
dB. For the LoS components of the SI channels, it is assumed
that AoD θT and AoA θR are uniformly distributed over the
phase domain (i.e., {0, 2π}).

In addition to the above, the hardware nonlinearity factors
βk ∀k are assumed to be identical (i.e., βk = β` = β), and a
moderate hardware impairment level is considered β ∈ −50 dB
[25]. The algorithmic parameters such as the memory length c
and the maximum number of iterations tmax are chosen to be
c = 8 and tmax = 50.

Figure 2 illustrates the achievable sum-throughput perfor-
mance of the proposed ALTnmGAP method in comparison with
the state-of-the-art methods [20], [23] as a function of the CSI
accuracy parameter τ subject to moderate hardware impairment
level β = −50 dB, where the performance corresponding to the
half-duplex mode is also offered for the sake of comparison.
As highlighted in the figure, it can be observed that the pro-
posed method can achieve the maximum throughput among the

Fig. 2. Achievable sum-throughput comparisons of the proposed method
against the state-of-the-art SI cancellation methods as well as the conventional
half-duplex as a function of the channel estimation accuracy level τ with a
moderate hardware distortion level β = −50 dB.

Fig. 3. Residual SI power levels after processing by the analog cancellation
at the FD receiver for different methods (i.e., the proposed and state-of-the-
arts) as a function of the channel estimation accuracy level τ with a moderate
hardware distortion level β = −50 dB, where the target residual SI level is
highlighted by the marker “plus”.

methods satisfying the residual SI power level given in equation
(16c), which can be confirmed in Figure 3. The residual SI
power level after processing by the analog cancellation is shown
in Figure 3 as a function of τ , which clearly demonstrates the
fact that the proposed method can suppress the residual SI at
the receiver analog domain below the target over a wide range
of CSI inaccuracy. Please note in the figure that the target SI
residual level is denoted by the marker “plus” for the sake
of readability. All in all, one may conclude that the proposed
method can be seen as a compromise solution balancing the
achievable throughput performance and the residual SI level
requirement at the receiver analog domain so that the FD com-
munications can enjoy the RF dynamic range at the receiver.



V. CONCLUSION

This article studied a bidirectional in-band FD MIMO system
subject to imperfect CSI, hardware distortion, and limited ana-
log cancellation capability as well as the SI power requirement
at the receiver analog domain such that the residual SI at
the receiver analog domain may not pose saturation of the
LNA. An optimization problem aiming at maximizing the sum
SINR while satisfying the transmit power constraint and the
residual SI power level requirement is formulated, proposing
a new gradient projection based SI cancellation mechanism in
conjunction with the concept of non-monotonicity. Simulation
results demonstrated that the proposed method is a compromise
solution to the latter problem, which balances the throughput
performance and residual SI requirements.
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[8] M. Vehkaperä, T. Riihonen, and R. Wichman, “Asymptotic analysis of
full-duplex bidirectional MIMO link with transmitter noise,” in Proc.
IEEE PIMRC, London, UK, Sep. 2013, pp. 1265–1270.

[9] H. Iimori, G. Abreu, and G. C. Alexandropoulos, “Full-duplex transmis-
sion optimization for bi-directional MIMO links with QoS guarantees,”
in Proc. IEEE GlobalSIP, Anaheim, USA, Nov. 2018, pp. 1–5.

[10] B. Day, A. Margetts, D. Bliss, and P. Schniter, “Full-duplex bidirectional
MIMO: Achievable rates under limited dynamic range,” IEEE Trans.
Signal Process., vol. 60, no. 7, pp. 3702 – 3713, Jul 2012.
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