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Abstract—In order to estimate the channel gain (CG) between
the locations of an arbitrary transceiver pair across a geographic
area of interest, CG maps can be constructed from spatially
distributed sensor measurements. Most approaches to build
such spectrum maps are location-based, meaning that the input
variable to the estimating function is a pair of spatial locations.
The performance of such maps depends critically on the ability of
the sensors to determine their positions, which may be drastically
impaired if the positioning pilot signals are affected by multi-
path channels. An alternative location-free approach was recently
proposed for spectrum power maps, where the input variable
to the maps consists of features extracted from the positioning
signals, instead of location estimates. The location-based and
the location-free approaches have complementary merits. In this
work, apart from adapting the location-free features for the CG
maps, a method that can combine both approaches is proposed
in a mixture-of-experts framework.

I. INTRODUCTION

Information regarding the channel gain (CG) between a pair
of wireless transceivers is critical in a plethora of resource
allocation (RA) algorithms. In the context of device-to-device
(D2D) communication and cognitive radios, judiciously de-
signed RA algorithms can boost the network performance
metrics significantly [1]. For instance, consider a cellular
system where regular cellular connections coexist with D2D
communication. A RA scheme can be implemented for chan-
nel assignment and/or power allocation across the pairs of
D2D devices, with the goal of maximizing the total aggregated
throughput or other relevant metrics. Such a RA scheme will
typically require estimates of the CGs between the cellular
users and the D2D users, and between the transmitter and the
receiver in each of the D2D links, in order to quantify the
expected interference caused from sharing the communication
channels. Given the difficulty of continuously measuring the
CGs between arbitrary pairs of devices, the approach based
on the CG map is very useful [2], [3]. The RA performance
depends heavily on the accuracy of the CG estimates; there-
fore, the accuracy of the map is critical. Moreover, in the case
of mobile networks, the CGs for the spatial locations where
the transceivers are expected to be in the future time slots are
also necessary. Thus, it is important to have CG estimates not
only where the transceivers are currently located, but also in
the arbitrary locations around them.
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In its simplest form, a CG map can be defined as a
function that maps a pair of spatial locations to an estimate
of the CG between them. The CG maps were estimated by
recovering the so-called spatial loss field [4], where the gain
was modeled as a distance-based loss plus a weighted integral
of the spatial loss field. This model accounts for the loss due
to the absorption from obstacles, but can be inaccurate in the
multi-path propagation environments where the signals may
get severely attenuated, or amplified by multiple reflections.

The data samples used to train the CG function are taken
from a set of pairs of sensing nodes spread across the
area to be covered by the map. Thus, the existing methods
typically rely on accurate sensor location estimates [2], [3].
However, under practical conditions (for instance, when the
localization is achieved using positioning pilots sent by base
stations), the sensing nodes might not be able to determine
their locations accurately. Specifically, the time (difference)
of arrival (ToA/TDoA) measurements may experience severe
bias due to non-line-of-sight (NLoS) conditions [5], with large
localization error as a consequence. The training data is thus
noisy in the input variable, which then translates into errors in
the map estimates. The error due to the NLoS propagation
in strong multi-path environments may even destroy many
location estimates, rendering the CG map uninformative.

Recently, in the simpler case of an interference power
map, which is a function of a single location, this issue was
mitigated by extracting features from the pilot signals directly,
and building the maps using kernel ridge regression (KRR) [6].
Such features have nature similar (but not exactly equal) to the
positioning features such as the ToA or TDoA. Following [6],
here the (standard) procedure of estimating the location of the
sensors from the available pilot signals, and training the map
as a function of a vector of spatial coordinates, is referred
to as the “location-based” (LocB) cartography. On the other
hand, the (novel) method of directly learning the map estimate
as a function of the pilot signal features is referred to as the
“location-free” (LocF) cartography.

While many works explored the use of advanced regression
techniques (such as those based on deep learning [7], [8]
or advanced kernel methods [9]) to improve the accuracy of
spectrum maps, most of these works build LocB maps. When
the estimation of the sensor locations is accurate, the maps
produced by these methods are also accurate. Consequently,
these methods rely on pilot signals from base stations only
when the LoS component is strong, but not in strong multi-
path environments. On the other hand, the results in [6] show
a promising gain in the power map accuracy especially in the
scenarios with significant multi-path effects. Note, however,



that the dimensionality of the feature space considered in
[6] grows with the number of base stations in the covered
area, and some locations may not receive signals from all
base stations; this can lead to having data points with missing
features, generating the need for dimensionality reduction and
data completion techniques. In opposition, LocB methods
consider as their feature space the set of possible locations,
which has constant dimensionality (2 or 3).

A. Main Contributions

The main idea of this work is to build a map estimation algo-
rithm that can combine both the LocB and the LocF methods in
a way that exploits the knowledge about location uncertainty.
Notice that the more precise the location information of a node
is, the more reliable the LocB map estimate is expected to be.
An uncertainty measure regarding the location estimate acts,
intuitively, as a measure of reliability of the LocB method (or
expert) relative to the LocF method (or expert).

It is demonstrated in this work that such an uncertainty
estimate can be exploited to build more accurate CG maps.
To this end, the proposed approach estimates the CG from: a)
the LocF features (e.g. center of mass (CoM) of the channel
impulse response as in [6]), b) the estimated locations of
the transmitter and receiver, and c) the location uncertainty
information. We postulate that the complementary benefits of
the LocF and LocB estimators can be exploited efficiently by
learning a LocB estimator and a LocF estimator, and combin-
ing their outputs with a gating function that incorporates the
localization uncertainty. With higher uncertainty in the location
estimation, the final estimate relies more on a LocF estimator;
while otherwise, a LocB estimator has more weight on the
final estimate. The weights of the LocB and LocF estimates
are given by the gating function, which is optimized jointly
with the experts or estimators.

The aforementioned way of estimating the CG is also at-
tractive because of its simplicity, incorporating the divide-and-
conquer philosophy of the mixture-of-experts (MoE) methods
[10]. This is suitable for our development because we seek
an approach that enables estimating CGs at arbitrary locations
where no sensors may be available, in addition to the sensor
positions (although the accuracy of such estimates will be
lower as compared to the accuracy obtained at the locations
with sensor nodes). We expect that in real scenarios, some
training points will have only one type of feature available.
For the other training points with both types of features (LocB
and LocF), the learning will be enhanced.

Moreover, this work is (to the best of our knowledge) the
first to apply the LocF approach to the estimation of CG maps.

The rest of the paper is structured as follows. In Sec. II, our
learning model is put forth in a MoE framework. In Sec. III,
the CG cartography problem is formulated. In Sec. IV a
solution is derived, and the choice of hyper-parameters is later
discussed (Sec. IV-A). The results of numerical experiments
are presented in Sec. V, and conclusions are provided in
Sec. VL.

II. MODELING

Consider a transmitter located at x; € R, and a receiver
located at x, € R, where R is the region of interest
(typically a subset of R? or R3). The CG between them is
denoted by C%, € R. The main goal of CG cartography is
to learn a function that can give a point estimate ¢, of C} .,
given the information gathered at each of the two terminals.
Specifically, let &; denote an estimate of the transmitter’s
location, and e; € R} an uncertainty measure regarding &.
Let ¢;€ RM denote the vector containing the LocF features
extracted from the pilot signals the same sensing node has
received, where M is the total number of features extracted
(more information about how ¢; is obtained can be found in
Sec. II-B). A representation of the available information at the
transmitter comes from stacking the aforementioned variables
in the vector v; := [¢), &/, e (analogously for the
information at the receiver, 10,.). The function we seek to
learn is expressed in the form

ét,r = f('l/"tv ¢7)

With the twofold goal of estimating CG at arbitrary pairs
of transmitter-receiver locations, and also where the sensing
nodes do not have an accurate location estimate, our goal is
to develop an approach such that for a query where ¢; and
¢, are available and (&, ,) have large uncertainty (or even
are missing), one can leverage the LocF technique [6]; and
whenever (&, &,) are accurate and the features in (¢p¢, ¢..)
are noisy, it should work similarly to LocB approaches such
as [2], [11]. And between these two extreme situations, the
idea discussed here is to combine both LocF and LocB esti-
mates, exploiting the knowledge of uncertainty in the location
information.

A popular approach to combine the estimates into f is MoEs
[10]. It is common practice to use a convex combination of the
output of each of the experts, mainly because the combination
coefficients can be interpreted as conditional probabilities of
the events defining which of the experts has the best estimate
for a given data point. This can be expressed without loss of
generality by defining the gating function g(-):

F@e, ) = G, r) fr(@e, &)+ (1= (1, Y1) fo (P, D).

ey
Such a gating mechanism is widespread in the ML literature
not only because it is used in MoE, but also because of its
presence in recurrent neural networks [12]. We postulate that
incorporating the location uncertainty measure in the input of
this gating function will result into an improved performance
of the MoE-based CG map. This approach is justified because
the LocB estimator is expected to perform better than the
LocF one when the location estimate is sufficiently good. What
“sufficiently good” means is something we expect the model
will learn from the data. Moreover, the mixture allows each
expert to focus its resources in learning its own part of the
CG map in those areas where it is expected to perform better.
The empirical results in Sec. V support this idea.



A. Simple MoE Model: Gating as a Function of the Localiza-
tion Uncertainty Measures

The main idea in the model in (1) is to restrict each
of the two experts in the mixture to have as input either
location estimates, or LocF features. In order to keep the model
complexity at the minimum, we propose to restrict the gating
function to take as input only the uncertainty in estimating the
locations &, ... This yields the simplest possible model that
combines the aforementioned experts, and takes the location
uncertainty into account.

With eg; and e, respectively denoting the uncertainty
measures referring to estimating &, and &,, we will design
a gating function

g:R3 — [0, 1] )

that takes the localization error vector e = [ezs, €x.r] '
as an input for any transmitter-receiver pair (¢,7). A more
sophisticated model could also incorporate the uncertainty
associated with (¢, ¢,), but it is not clear whether the gain
in performance would be significant. The MoE model can be
written as:

f@be,r) = g(e) fi(@s, &) + (1 = g(e)) f(di, dr)  (3)

For this model, it is clear that g(e) should give less emphasis
on fi(&;,&,) when either e, ; or ey, is large.

Successful learning of the hybrid (MoE) model f()) entails
some advantages: The information carried by the location
uncertainty measure allows to give as much weight as is
needed to the LocB and LocF estimates. Whenever the location
estimates are deemed reliable, the MoE gives more weight to
the location-based estimate, which mitigates the relative diffi-
culty of the location-free estimation to generalize due to the
higher dimensionality of the positioning features . To see this,
consider the case where two different queries are performed
for the same Tx-Rx pair, but the positioning (pilot) signals
are received from different location sources. While a pure
localization-free approach might fail to generalize, the CG
can still be estimated successfully if the localization algorithm
identifies the location correctly. One can even evaluate the
CG map for an arbitrary pair of locations when there is no
sensing node at either one or both locations. In such a case,
the estimate is simply given by fi(x:, ).

The gating function should be component-wise non-
increasing, i.e.,

g(e) < g(e') V (e, €') such that e = €’

where the notation a = b denotes for a,b € R" that [a]; >
[b); Vi € [1, N]. Under the assumption of symmetric channels,
g(e) should also be symmetric, i.e.

g([ew,ta ew,r]T) = g([ew,ra 6w,t]T); Vec Ri

For large ||e||, meaning an unknown location, the weight
given by the gating function to the LocB estimator should
vanish: lim ¢ g(e) = 0. However, it is not necessary to
force ¢g(0) = 1, as the LocB map is imperfect and a certain

contribution from the LocF one may give better performance,
even if some locations are deemed perfectly known.

B. Positioning Signal-Based Features

The LocF features extracted from the pilot signals that will
be used in this work are the CoMs described in [6]. Let
CoM,, , denote the center of mass of the cross-correlation
between the pilot received at the n-th sensing node from
the m-th positioning signal source, and the pilot received
from the reference source (which is arbitrary and the same
for all sensing nodes). The feature vector is then ¢, :=
[CoMi p, . ..,CoMy.y]. The reason of the choice of this kind
of features is that they evolve smoothly over space and are
robust to the pilot distortions caused by multipath. Therefore,
the function f, can be easily learnt with such features.

When the region to map is large, it is likely that some of
the base stations that send pilot signals are so far away from
a given location that some features become missing, either in
some of the training points, or in query points. While a few
missing TDoAs is not a big issue for a localization algorithm
as long as enough sources are visible, the way the LocF map
is designed requires all entries in the query feature vector to
carry values. The technique for imputing such missing features
in [6] can be seamlessly applied in the application in this work.
In a nuthshell, this technique is based in the assumption that
the LocF features lie in a low-dimensionality subspace. Such
a subspace is learnt from the training data using a low-rank
matrix completion technique.

C. Location Estimates and Uncertainty Measures

Location estimates can be obtained in practice by extracting
TDoA measurements from the pilot signals [13], and solving
the localization problem e.g. along the lines of [5]. It is
assumed that the location estimator also gives a scalar measure
of the uncertainty of the location estimate. This measure
can be, e.g. the spectral radius of a covariance matrix, or
the diameter of an uncertainty region for a given level of
confidence. The procedure for obtaining such an uncertainty
measure is left out of the scope of the present paper. Our
experiments will rely on synthetically-generated uncertainty
measures.

IIT. PROBLEM FORMULATION

With NN, denoting the number of training transmitter-
receiver pairs, let ¢(n) and r(n) respectively denote the
indices of the transmitter and the receiver of the n-th pair;
and let ¢, denote the measured CG between them (i.e., a
noisy observation of C(,) (n)). Adopting a regularized least-
squares criterion, the CG map training can be expressed as:

N,
. L= /s A
mn}lerg_lze Fp nz::l (Cn - f(¢'t(n)a wr(n)))Q + )‘Q(f) “4)

One valid approach is to define a neural network (NN)
architecture, letting F denote the set of all functions that NN
can express, and defining € as a regularizer that depends on
the NN weights. However, the number of training samples for



such an NN to achieve good generalization may be far beyond
the number of samples available in a practical case.

We aim at learning the function f in a structured way, by
using the MoE described in Sec. II. We expect the number of
samples needed for good generalization to be much smaller
than that with a generic model.

The joint optimization of the experts and the gating function
is written as the regularized functional estimation problem (5)
at the bottom of the page, where G denotes the set of instances
of g(-) that have the properties discussed at the end of Sec.
II-A, and F,, and F; are model-specific function spaces such as
a reproducing kernel Hilbert space (RKHS) for a given kernel,
or a set of functions implemented by an NN. The terms in
parentheses multiplying A\, and ); are intended for balancing
the contribution of the regularization terms for any value of
g(eyn). If these terms were absent, many algorithmic attempts
to solve this problem would very likely fall into one of the two
trivial solutions, namely: g(e) = 0 Ve or g(e) = 1 Ve, which
respectively imply f(¥n) = fp(@s(n)s @r(n))s O f(Pn) =
Ji(®4(n); r(n)). The problem of estimating the coefficients
of a set of kernel machines whose outputs are combined using
a given gating function is presented and discussed in [14].
Differently, the joint optimization of the experts and the gating
function is done in a novel way here, exploiting the problem
structure to yield a low-complexity algorithm. Upon scaling
up the objective by the constant [V,,, and defining

fo=lh@a) &) i@y, Eevy))l T (6)
Fo =(Dun), dr)s - Fo(de,), ¢7"(Np))]T’ (6b)
g:=g(e1).g(ea),.--glen,)] (6¢)

problem (5) can be rewritten equivalently as

minimize e—gofi—(1—9)0 2
fieF1, fp€Fp,9€G | 90 fi—( 9) fp” o

+NLT g Q(f) + AT (1= g)Q(f,),

where ® denotes element-wise vector (Hadamard) product.

IV. OPTIMIZATION

At this point, the functions f,, fi,g can be learnt using
several different approaches. If such functions are expressed
parametrically, one can compute (automatically via back prop-
agation) the gradient of the cost function in (7) , and run a
gradient-based minimization algorithm to seek a local mini-
mum (as is the common practice for NNs).

An alternative approach is to solve the problem in (7) using
block-coordinate minimization (BCM):

k
fl( +1) .

= arg }lréi% e-(1-g")e f,ﬁ’“) -gM e le2
+M1TgQ(f)
e (1-g)0 5, — g o
+ 21T (1 - 9)Q(fy) (8b)

g* D = arg anelg Hé R G £y @QH

(8a)

(k+1) .— arg min
Ip & min

+ (WU =00 1Tg (o)

BCM converges monotonically to a local minimum of (7).

Whenever F; is an RKHS (denoted by ;) with associated
kernel x;(,-), and the regularizer 2 is the associated RKHS
norm || - [|3,,, the subproblem (8a) is a standard kernel ridge
regression (KRR) problem; the same applies to (8b). Accord-
ing to the Representer Theorem [15], there exist minimizers
for (8a) and (8b) with the following forms, respectively:

NP
fu(@e, ) = Zal7n"{l([§3:7 i'rT]T’ [i'tT(n)v ﬁer(n)]T) (9a)
n=1

NP
fp(¢ta¢7’) :Zap’nﬁp([(p;ra (b:]—rv[(ﬁ:(n)v ;r(n)]—r)'
n=1
(9b)
and if we define the kernel matrix K; such that [Kj];; =
rl(Efy & )" (@), &);)]7), define K, analogously,
and D) £ Diag(g(®)), then solving (8a-8b) boils down to:

2
al(k+1) .— arg min ‘é —(I- D(k))Kpaz(,k) — D(k)KlazH
(7]
+Nl1Tga) Ko (10a)
2
al(j“l) = arg min ‘E - (I-D")K,a, — D(k)Klal(k+1)H

+ 05171 - g)a) Kyoy (10b)

and it holds that f, = K,a,, and f; = K;o.

When both F; and F,, are RKHSs, (10) can be substituted
with a joint optimization whose closed form is (11) (shown
at the top of next page). It turns out that a related model
is proposed and discussed in [14], but the gating function
there is a generic (softmax) function, which would make the
optimization in (8c) nonconvex. An alternative approach is
proposed in this paper, based on exploiting the structure of
the problem at hand to design a low-complexity solver.

Recall that in the RKHS case, (8a-8b) become convex
problems. If the optimization over g(-) is also formulated

minimize NL ZnNil (En - g(en)fl(it(n)v ir(n)) —(1- g(en))fp(¢t(n)a ¢r(n)))2

Ip€Fp, f1€F1,9€9 P

+ (s Zazglen)) M) + (3 Za2a 1 - glen)) MU, 5)



laé’””l B {(IN,J — DW)2K, + 217 (1 — g1y,

al(k+1) D(k)(INp — D(k))Kp

as a convex problem, one can expect much more efficient
learning. In fact, one can directly incorporate the properties
of g(-) described in Sec. II-A in the definition of G, so that
(8¢) becomes:

X 2
Hé _ f;(;k+1) _ Diag(fl(k"rl) _ f;gk+1))g"

minimize
geRNp
+ (AZQ(f,(kH)) - A,,Q(f},’““))) 1Tg (12a)
s.to: 0<xXg=1 (12b)
[9]: < [g]; ¥ (i,5) st.ei = e (12¢)

which is a standard convex quadratic problem with affine
constraints. Regarding symmetry, it can be enforced easily
(not only on the gating function but also on f, and f;) by aug-
menting the training set, i.e., for each sample (&, Y1 n, ¥r.n),
adding its counterpart (¢, ¥y n, ¢, ) to the training set. Once
g is found, any gating function g(-) in agreement with (6¢)
will be optimal for the training set for fixed f,, f;. Once the
overall procedure has converged, an instance of g(-) can be
recovered easily by interpolating the values in g with a suitable
interpolation technique (e.g., /i nearest neighbors (KNN)).

Remark. The collection of constraints in (12¢) is written
with as many constraints as partial order relations in the set
{en}nNil, for clarity. The number of constraints grows super-
linarly with V,,. To avoid excess of complexity, the number
of constraints can be reduced by building a directed acyclic
graph (DAG) with the latter order relations, and computing
its transitive reduction. This results into a DAG encoding
the minimal set of constraints (that implies all others by the
transitive property), yielding an equivalent problem with much
fewer constraints.

A. Hyperparameter Selection

If a Gaussian/RBF kernel is used, the kernel functions
(K1, kp) have width parameters o; and o,. The proposed esti-
mator has then the following hyperparameters: A;, A, 07, 0p.
It may be challenging to adjust all these hyperparameters by
grid search and cross-validation (CV), for two reasons: a)
the dimensionality of the search space is 4, as opposed to
the search space for LocB or LocF which is 2; and b) the
computation required to train the MoE is much higher than
that for each of the experts separately, because of the iterative
loop and the relatively slow convergence of BCM. A simplified
procedure is proposed, based on selecting the hyperparameters
which are CV-optimal for the LocB and LocF estimators
separately, and then reusing the same hyperparameters for the
MoE. The procedure is tabulated as Alg. 1.

The computational cost of Alg. 1 depends on: a) the number
of elements in the grids where A\, and )\; are searched; b) the
number of training samples V,,; and c) the number of iterations
required for the for loop in Step 5 to converge. The dominating

(In, — DW)DWK,

—1 ~
(Iy, = D®)e an
(DMK, +N1Tgly,

D®e

step with a practical configuration is Step 6, whose complexity
is O(N?) due to the matrix inversion in (11).

Algorithm 1 Hyper-parameter selection and MoE training

Input: Training data {1, Yy, én 0,
Output: CG estimating function f (1, ;)
1: Select hyperparameters (\,, o) for the LocF CG estima-
tor via CV and grid search
2: Select hyperparameters (\;, o )for the LocB CG estimator
via CV and grid search
Initialize g(e) = 1/2Ve by defining g = 1/2
Set (Az, Ap, 01,0p) as hyperparameters for the MoE
for k =1,2,... do (until convergence)
Joint KRR coefficients optimization via (11)
Optimize gating function via (12)

Return f(tp;, 1) via (3)

X >R w

V. EXPERIMENTS

A wireless propagation environment is simulated using
an adapted version of the ray-tracing software in [16]. The
original code considers a set of walls and several sources to
generate a power map accounting for direct, first, and second
order reflected paths. The original source code has been
modified to generate CGs between any two points in the area
where the set of walls lie.

A set of positioning sources (e.g., base stations) are also
simulated, and their pilot signals are transmitted through
the aforementioned environment, so the received pilots are
affected by the same multipath and attenuation that creates
the CGs. The features to be used by the LocF estimators are
obtained as the CoM of the cross-correlation between each
pair of localization source pilots [cf. Sec. II-B]. The location
estimates & to be used by the LocB estimator are generated
synthetically by adding random noise ~ N'(0, c21) to the true
locations of the simulated nodes. The location uncertainties
e, are also synthetically generated by adding random noise
~ N (0, 02) to the Euclidian distance between the true location
and its estimate. For these experiments, o, := 7 m, and
g := 0.3 m (so that the uncertainty is significant and its
measure is consistent with the deviation of the estimate from
the true location). Training and testing data are generated
by spreading the sensing UE terminals in the area uniformly
at random, and generating for each pair (¢(n),r(n)) the CG
observation ¢, := Cy(n)r(n) + €n, With €, ~ N(0,02). The
CGs are expressed in dB, and o, = 2dB.

A first experiment is run to visualize the estimators resulting
from the proposed algorithm. Steps 1 and 2 in Algorithm 1
respectively produce a LocF and a LocB CG estimators, which
are not part of any mixture. Once the joint optimization of
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Fig. 1: Colormaps for several slices of the CG map produced by each estimator in experiment 1. Dark lines represent walls, and stars
represent positioning pilot signal sources. Each pixel’s color indicates the estimated CG in dB between a transmitter located at the triangle
and a receiver located at the pixel center. Each column corresponds to a different estimator, where "MoE.locF” ("MoE.locB”) denotes the

LocFree (LocBased) expert of the mixture; N, = 2000 samples.

fi, fp, g is done (Steps 5-7), not only the final estimator f(-,-)
is available, but also f;(-,-) and f,(-, ) as a by-product!, which
are different from the estimators trained in Steps 1 and 2.
Fig. 1 shows a subset of the estimated CGs for each of these
5 estimators, and also shows the true gains for comparison.
It can be observed that, in the first two rows, MoE.locF
underestimates the CG in several areas, whereas MoE.locB
tends to overestimate them. Interestingly, in the third row one
can observe the converse situation. The combination of them
shown in the MoE column provides a more balanced CG map.

To analyze the difference in performance between the
proposed mixture estimator MoE, and the simple estimators
LocB and LocF, a second experiment is run. The goal is to
compare the normalized mean square error (NMSE) incurred
by each of the aforementioned estimators for different number
of training samples, shown in Fig. 2. The NMSE is defined as

NMSE = E{|f (31, %,) — Ct..|*} /var{C; .}

where the expectation and variance are taken over locations
uniformly distributed across the region of interest. The main
feature to remark in Fig. 2 is that, above a certain number of
training samples (800 for this experiment), the MoE estimate
(which combines MoE.locB and MoE.locF) achieves a better
performance than the (simple) LocF or LocB estimators. This
suggests that a training set with too few samples does not carry
enough information to successfully learn the three functions
involved in MoE.

The increase of the NMSE incurred by MoE.locB when
the number of samples becomes higher is also remarkable. A

IThe functions f, f; and f, are respectively labeled in Fig. 1 as MoE,
MoE.locB and MoE.locF.
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Fig. 2: Comparison of test NMSE for several different learning
instances with a different number of training samples. Hyperparam-
eters determined by Alg. 1. Results averaged over 30 Monte Carlo
realizations.

possible explanation for this behaviour is that the MoE.locB
spatial function becomes more complex (rougher) in an at-
tempt to make the MoE fit the data better. Increasingly
complex estimators usually lead to overfitting but, according
to Fig. 2, MoE does not overfit. This suggests that the gating
function is successfully filtering out the abrupt changes in
MoE.locB.
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VI. CONCLUSIONS

A mixture-of-experts (MoE) model has been proposed to
map CG between the locations of any transceiver pair in the
area of interest. The location-free (LocF) and location-based
(LocB) approaches are combined using a gating function that
incorporates the uncertainty associated with the location esti-
mate. The proposed algorithmic approach learns the MoE.locF
and MoE.locB components and the gating function using a
block-coordinate minimization approach. Experiments with
simulated data confirm the ability of the proposed approach
to perform with lower error than the simple LocF or LocB
estimators. These results motivate future work extending the
experimental setup with more realistic and diverse propagation
scenarios.
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