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Abstract—Cyclically shifted partial transmit sequences (CS-
PTS) has conventionally been used in SISO systems for PAPR
reduction of OFDM signals. Compared to other techniques,
CS-PTS attains superior performance. Nevertheless, due to the
exhaustive search requirement, it demands excessive computa-
tional complexity. In this paper, we adapt CS-PTS to operate
in a MIMO framework, where singular value decomposition
(SVD) precoding is employed. We also propose SWAN, a novel
optimization method based on swarm intelligence to circumvent
the exhaustive search. SWAN not only provides a significant
reduction in computational complexity, but it also attains a fair
balance between optimality and complexity. Through simulations,
we show that SWAN achieves near-optimal performance at a much
lower complexity than other competing approaches.

Index Terms—OFDM, MIMO, PAPR reduction, swarm intel-
ligence, artificial intelligence.

I. INTRODUCTION

The adoption of orthogonal frequency division multiplexing
(OFDM) by various communication standards (e.g., WiFi,
ISDB-T, LTE, 3GPP Rel. 15/16) stems from its capability to
provide high data rates, augmented spectral efficiency, and ro-
bustness to multi-path fading [1]. However, OFDM signals suf-
fer from a high peak-to-average power ratio (PAPR) [2] caused
by the constructive combination of modulated subcarriers.
OFDM signals with high PAPR are power-inefficient [3] and
prone to distortion due to the non-linearity of radio frequency
(RF) amplifiers. Distortionless amplification can be achieved
by reducing the signal power (i.e., back-off mechanism), thus
forcing the amplifier to operate in the linear amplification
region. However, this procedure compromises the RF amplifier
energy efficiency. Therefore, it is essential to develop new
approaches without resorting to back-off mechanisms.

Literature review: To reduce the PAPR, several approaches
have been proposed. Clipping [3]–[6] limits the signal am-
plitude to a maximum threshold, thus preventing large peaks
but causing distortion and bit error rate (BER) degradation
[7]. Companding [8]–[10] consists of compression at the
transmitter (to avoid distortion) and signal expanding at the
receiver (to restore the amplitude). However, the latter pro-
cess also magnifies small-valued noise, thus causing BER
degradation. Besides, tone reservation (TR) [11], [12] and
tone injection (TI) [12]–[14] are techniques that can reduce
the PAPR without affecting the BER performance. TR uses
a subset of subcarriers for exclusively canceling large signal
peaks. TI expands the conventional PSK/QAM constellations
such that each symbol can be mapped into one of several

possible representations, and the best symbol mapping that
minimizes the PAPR is chosen for transmission.

Another subgroup of techniques suppresses the large peaks
by applying phase rotations (at the transmitter) and phase
de-rotation (at the receiver), which has the advantage of
preserving the BER performance. The most representative
techniques of this kind are selected mapping (SLM) [15], [16]
and partial transmit sequences (PTS) [17], [18]. In SLM, each
modulated subcarrier is altered by a phase rotation whereas,
in PTS, the modulated subcarriers are divided into disjoint
partitions, and each partition is affected by the same phase
rotation. While SLM relies on the design of codebooks, PTS
focuses on finding the optimal phase rotations from a set
of admissible values. The performance of both approaches
are similar, and their computational complexities are high.
Cyclically shifted partial transmit sequences (CS-PTS) [19]–
[22] has not received much attention despite being superior
to PTS and SLM. CS-PTS leverages the idea of PTS but
incorporates additional time-domain cyclic shifting, which
provides another degree of freedom that enables per-subcarrier
phase rotation. This improves PAPR reduction but causes
substantial complexity increase as more parameters have to
be optimized (e.g., phase rotations and time shifts).

Contributions: To address the high search complexity of
CS-PTS, we propose SWAN, a swarm-based optimization
approach. SWAN controls the number of evaluations of poten-
tial solutions, thus maintaining the search complexity afford-
able with negligible impact on the optimality. Swarm-based
approaches are characterized by exploration and exploitation.
Exploration is the capability of effectively sampling the search
space without inspecting every possibility exhaustively. Ex-
ploitation is the ability to capitalize on information obtained in
previous iterations to produce more suitable solutions. Cuckoo
search algorithm (CSA) [23] is a swarm-based approach
inspired in the parasitic breeding behavior of some birds.
It was shown though extensive experimentation that CSA
outperforms other methods such as genetic algorithms (GA)
[24] and particle swarm optimization (PSO) [25]. CSA has
remarkable exploration capability, which is attributed to the
usage of Levy flights. Nevertheless, the exploitation property
of CSA is limited. We found that by improving the exploitation
capability, the convergence rate of CSA could be substantially
accelerated. Our proposed approach SWAN is an improvement
to CSA, wherein we incorporate four additional mechanisms
to (i) boost the exploitation capability of CSA and (ii) achieve
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Figure 1: CS-PTS for a SVD-MIMO system

a fair balance between exploration and exploitation. The
following summarizes our contributions:
• CS-PTS has only been used in SISO systems [19]–[22]. We

are the first to adapt CS-PTS to operate in MIMO systems
with singular valued decomposition (SVD) precoding.

• We generalize the application of PTS and SLM to SVD-
MIMO systems.

• We propose a novel swarm-based approach, SWAN, which
finds near-optimal solutions (i.e., low-PAPR signals) at
enhanced convergence rate and affordable complexity.

II. GENERALIZING CS-PTS FROM SISO TO SVD-MIMO
Fig. 1 shows the implementation of CS-PTS for a SVD-

MIMO system with Nc subcarriers and Ntx antennas at the
transmitter, which we adapt from SISO CS-PTS [19]. Let
X̄(i) =

[
X̄(i)[0], · · · , X̄(i)[Nc − 1]

]T
(for i = 1, · · · , Ntx)

denote the data symbols (e.g., PSK/QAM) at the i-th an-
tenna, where each has a duration of ∆T . Upon serial-
to-parallel conversion, we obtain the symbols X̂(i) =[
X̂(i)[0], · · · , X̂(i)[Nc−1]

]T
with duration Nc∆T . Let Hk ∈

CNrx×Ntx denote the channel between the transmitter and
receiver in the k-th subcarrier (for k = 1, · · · , Nc). Using
SVD decomposition1, the channel matrix can be factorized
into Hk = UkΣkV

†
k, where † is the Hermitian transpose

and Uk ∈ CNrx×Nrx , Σk ∈ CNrx×Ntx , Vk ∈ CNtx×Ntx .
The right-hand matrix Vk is used for precoding (at the
transmitter) whereas Uk is used for decoding (at the re-
ceiver). Thus, the precoded symbols at the k-th subcarrier
are computed as X̆k = VkX̂k =

[
X̆(1)[k], · · · , X̆(Ntx)[k]

]T
.

Upon performing precoding on all subcarriers, we define
X̆(i) =

[
X̆(i)[0], X̆(i)[1], · · · , X̆(i)[Nc − 1]

]T
at each an-

tenna i. Each X̆(i) is split into M disjoint partitions, such
that X̆(i) =

∑M−1
m=1 X̆

(i)
m . The IFFT is applied to every

1We assume that the channel matrix is known. Therefore, SVD precoding
and decoding can achieve the MIMO channel capacity [26]. As a result, one
data stream per singular value can be transmitted without causing interference.

X̆(i), thus yielding M partial transmit sequences2 x̆
(i)
m (for

m = 0, · · · ,M − 1) at transmit antenna i. To preserve the
orthogonality of SVD decomposition, the same phase rotations
and time shifts must be applied to every m-th partition (across
all the antennas). Thus, the optimization problem collapses to
finding the optimal phase rotations {γoptm }

M−1
m=0 and time shifts

{δoptm }
M−1
m=0 that minimize the maximum PAPR across all the

antennas as shown in (1).
P :

[
{γoptm }

M−1
m=0 , {δoptm }

M−1
m=0

]
= arg min
γm∈U,δm∈D

max
1≤i≤Ntx

PAPRi (1)

where the PAPR at the i-th antenna is computed as

PAPRi =

max
0≤k≤NcL

∣∣∣∣∣
M−1∑
m=0

γmx̆
(i)
m

[
k + δm −NcL

⌊k + δm
NcL

⌋]∣∣∣∣∣
2

1

NcL

NcL−1∑
k=0

∣∣∣∣∣
M−1∑
m=0

γmx̆
(i)
m

[
k + δm −NcL

⌊k + δm
NcL

⌋]∣∣∣∣∣
2 .

Each phase rotation γm is constrained to the set U ={
ej

2π
U u | u = 0, · · · , U − 1

}
, where U represents the number

of admissible phase rotations. Similarly, every time shift δm is
restricted to the set D =

{
Nc
D d | d = 0, · · · , D − 1

}
, where D

represents the number of possible time shifts. The signal to be
transmitted via the i-th antenna (prior to appending the cyclic

prefix) is x(i)[k] =

M−1∑
m=0

γoptm x̆(i)m

[
k+δoptm −NcL

⌊k + δoptm

NcL

⌋]
(for k = 1, · · · , Nc), where L is the oversampling factor.
Due to time-frequency duality, cyclic time-domain shifting
produces linear variation in the phase response. By cyclically
delaying x̆m, phase variation per subcarrier can be achieved.
Thus, every subcarrier k in the same m-th partition will be
rotated by an additional phase rotation θ

(k)
m = 2πk

Nc
δm. The

combined effect of both phase rotations and time shifts at
subcarrier k of the m-th partition is γm + θ

(k)
m .

2This name originates from prior literature, e.g., [17], [19]. Essentially, the
qualification partial stems from the fact that each x̆

(i)
m is a partial OFDM

symbol formed by only a subset of modulated subcarriers from the total set
that constitute a complete OFDM symbol.



III. THE PROPOSED SWAN

CSA is inspired by the reproduction strategy of some cuckoo
bird species that engage in brood parasitism to ensure their
survival [23]. These birds deceive other species (host birds)
by laying their eggs in their nests. This tactic relieves cuckoo
birds from offspring feeding. As a result, more time can be
devoted to food foraging and reproduction, thus improving the
chances of survival of the species [23]. Sometimes, host birds
are able to identify the cuckoo eggs and either abandon the
nest or eject the parasite eggs.
Features: CSA captures the core reproduction strategy of
cuckoo birds, which is succinctly described in the following.
• The initial population of N cuckoo birds is equal to the

number of host nests.
• Each nest is a potential solution, and the suitability of each

is defined by its fitness value.
• The terms egg and nest are used interchangeably.
• The nests with the highest quality (i.e., highest fitness) will

carry over the next generation of birds.
• Host birds discover the parasite eggs with a probability pa.
Drawbacks: CSA has an affordable computational complexity
and remarkable exploration capability. However, CSA does
not exploit the known solutions properly. By balancing ex-
ploration and exploitation, the search performance can be
improved thereby attaining faster convergence. To achieve this
balance, we integrate four low-complexity mechanisms, thus
resulting into SWAN. Although SWAN reckons with additional
features, the complexity remains affordable since the proposed
improvements are applied to only a limited number of potential
solutions. Algorithm 1 describes SWAN in detail. The devised
mechanisms are described in the following.
Mechanism 1 (Update of the best solution): This mechanism
is explained in lines 20 ∼ 24 of Algorithm 1. It deals with
the appropriate placement of the best nest in the search space.
In CSA, the nest with the highest fitness in each generation
is used as a reference for generating Levy flights for the rest
of the nests. However, the best nest is not updated until the
next iteration (or generation). Thus, SWAN replaces the best
nest with a more suitable one if a higher fitness is obtained.
Specifically, the nests are generated according to

z
(t+1)
i =

{
z
(t)
i + α

(
z
(t)
best − z

(t)
i

)
�wlev if z

(t)
i 6= z

(t)
best

z
(t)
i + αwlev if z

(t)
i = z

(t)
best,

(2)

where z
(t)
best =

[
z
(t)
best[1], · · · , z(t)best[n]

]T
is the best solution at

iteration t, which is used as a reference for deriving new can-
didate solutions z

(t+1)
i =

[
z
(t+1)
i [1], · · · , z(t+1)

i [n]
]T

(for i =

1, · · · , N ). The random walks wlev =
[
wlev[1], · · · , wlev[n]

]T
are drawn from a Levy distribution function [23]. In (2), α is
a scaling factor, n denotes the dimensions of the solution, and
� represents element-wise multiplication.
Mechanism 2 (Best triad mating): In CSA, birds display
limited social interaction. However, SWAN fosters collaborative
information sharing, which improves convergence. We intro-
duce the idea of best triad mating, which exploits information
available at the best three solutions, intending to intensify the

Algorithm 1 SWAN algorithm for PAPR reduction
1: N : number of host nest: initial population of cuckoo birds
2: pa : fraction of the total nests that represents the worst solutions
3: n : number of dimensions
4: τ : counter of evaluations
5: NG : number of nests in the neighborhood of the best nest
6: NH : number of nests to be mutated
7: begin
8: Define the objective function f : Xn → R
9: Generate N host nests in Ω = {zi ∈ Xn | i = 1, · · · , N}

10: Evaluate the fitness Fzi of each nest zi
11: while ∼ stopcriterion do
12: Find the current fittest nest zi in Ω
13: Choose randomly another nest zi from Ω avoiding zbest
14: Generate a new nest zj via a Levy flight from zi
15: Evaluate the fitness Fzj
16: if (Fzj > Fzi ) then
17: Replace zi by the new solution zj
18: end if
19: Generate a new nest zk via a Levy flight from zbest
20: Evaluate the fitness Fzk
21: if (Fzk > Fbest) then
22: Replace zbest by the new solution zk
23: end if
24: Update the counter τ
25: Let ΩQ = {q1,q2,q3} be defined by the three nests with the

highest fitness in Ω, such that{
ΩQ ⊂ Ω,ΩP ⊂ Ω,ΩQ ∪ ΩP = Ω,

ΩQ ∩ ΩP = ∅,ΩP = {pi ∈ Xn | i = 1, · · · , N − 3}.
26: Let the triangular region H be defined by q1, q2 and q3

27: Compute the parameters Γ and ε of H
28: Compute the parameter Γ∗
29: Define ΩR = {r1, r2, r3} containing three potentially fitter nests

obtained via Gaussian random walks using Γ∗ as a reference
30: Define ΩS = ΩQ ∪ ΩR and sort the elements, Fsi ≥ Fsi+1

31: Replace ΩQ by the first 3 elements of ΩS

32: Update the set Ω, such that Ω = ΩP ∪ ΩQ

33: Update the counter τ
34: Build the subset ΩA = {ai ∈ Xn | i = 1, · · · , NA} consisting

of potentially NA worst nests in Ω, such that{
ΩA ⊂ Ω,ΩB ⊂ Ω,ΩA ∪ ΩB = Ω,ΩA ∩ ΩB = ∅,
ΩB = {bi ∈ Xn | i = 1, · · · , NB}, NA = paN

35: Build a subset ΩC = {ci ∈ Xn | i = 1, · · · , NA} consisting of
NA potentially fitter nests than those contained in ΩA

36: Build the set ΩD = ΩA ∪ ΩC consisting of 2NA elements
37: Sort ΩD = {di ∈ Xn | i = 1, · · · , 2NA}, with Fdi ≥ Fdi+1

38: Replace the elements of ΩA by the first NA elements of ΩD ,
such that ΩA = {di ∈ Xn | i = 1, · · · , NA}

39: Update the set Ω, such that ΩA ∪ ΩB = Ω
40: Update the counter τ
41: Find the current best nest zbest
42: Build ΩG = {gi ∈ Xn | i = 1, · · · , NG} with NG new nests

generated in the neighborhood of zbest using uniform random
walks

43: Select randomly NG nests from Ω avoiding zbest and replace
them by the newly generated eggs in ΩG

44: Update the counter τ
45: Build the set ΩH = {hi ∈ Xn | i = 1, · · · , NH} containing

the ΩH least fit nests and apply mutation
46: Keep the current best solutions for the next generation
47: Update the counter τ
48: end while
49: end

search in a smaller space within which (with high probability)
a better solution may lie. The procedure consists of five steps
that have been summarized in lines 26 ∼ 34 of Algorithm 1.
Step 2.1: Let ΩQ = {q1,q2,q3} be a subset of Ω containing
the fittest three nests (sorted in descending order of their fitness
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values). Further, let ΩP be a subset of Ω representing the
complement of ΩQ. Using the elements in ΩQ, we define H
(with point-to-point distances ‖q1−q2‖, ‖q2−q3‖, ‖q3−q1‖)
as shown in Fig. 2. These three solutions {q1,q2,q3} achieve
the highest fitness in the generation t. However, potentially
fitter solutions might lie in a neighboring area to them.
Step 2.2: We calculate Γ and ε (shown in Fig. 2) as follows

Γ =

2∑
i=0

∥∥∥∥qi−b − qi−c

∥∥∥∥
2

qi−a

2∑
i=0

∥∥∥∥qi−a − qi−b

∥∥∥∥
2

ε =

√√√√√√√√√8
2∏
i=0


1

2
−

∥∥∥∥qi−b − qi−c

∥∥∥∥
2

2∑
i=0

∥∥∥∥qi−a − qi−b

∥∥∥∥
2


where a = 3

⌊
i
3

⌋
+ 1, b = 3

⌊
i+1
3

⌋
+ 2, c = 3

⌊
i+2
3

⌋
+ 3.

Essentially, q1, q2 and q3 delimit a triangular region H with
sides ‖q1−q2‖, ‖q2−q3‖, ‖q3−q1‖. Thus, Γ is the in-center
of the circle C inscribed in H whereas ε is the in-radius of C.
Step 2.3: Let Fq1 , Fq2 , Fq3 be the fitness values of q1, q2,
q3, respectively. We compute the weighted reference Γ∗ via

Γ∗ =
Fq2

+ Fq3

Fq1 + Fq2 + Fq3

Γ +
Fq1

Fq1 + Fq2 + Fq3

q1. (3)

When F1 ≥ F2 + F3, q1 has a weight higher than Γ. This
indicates a higher fitness of q1 compared to the other two
solutions. Thus, Γ∗ will lean towards q1.
Step 2.4: Three new solutions ΩR = {r1, r2, r3} are gen-
erated using n-dimensional Gaussian random walks wgau =
[wgau[1], · · · , wgau[n]]T by means of{

r
(0)
` = Γ∗

r
(t+1)
` = r

(t)
` + κ`wgau if t > 0,

(4)

where κ` = ε`v + ε`φ
(

max
{F1−(F2+F3)
F1+F2+F3

, 0
})

and ε` = ` ε2 ,
(for ` = 1, 2, 3) . Suitable values for φ and ν are in the
ranges 0.10 ≤ φ ≤ 0.45, 0.55 ≤ ν ≤ 0.90, which
have been obtained via Monte Carlo simulation with standard
benchmark functions: hyperdimensional sphere [27], Ackley
[28], Michalewicz [29], Griewank [30], and Easom [31]. By
generating new {r1, r2, r3} in the proximity of Γ∗, the search
is confined to a smaller but potentially richer space, thereby
improving convergence.
Step 2.5: Let ΩS be defined as ΩS = ΩQ∪ΩR, thus consisting
of {q1,q2,q3} and the newly generated {r1, r2, r3}. Let the
elements of ΩS be sorted in descending order of fitness,
such that Fsi ≥ Fsi+1

for all si ∈ ΩS . Now, we redefine
ΩQ such that it contains the three best solutions of ΩS , i.e.
ΩQ = {s1, s2, s3}. Finally, we let Ω be the union of ΩQ and

. . .
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⇐= N initial
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Figure 3: Generalized structure of SWAN
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ΩP (defined in Step 2.1), i.e., Ω = ΩQ ∪ ΩP (note that the
cardinality of Ω has not changed).
Mechanism 3 (Exploitation of the best nest): While each
nest in CSA accommodates only one egg, we allow SWAN
to accommodate more than one egg per nest as described in
lines 42 ∼ 44 of Algorithm 1. Specifically, this mechanism
intensifies the exploitation of the best known solution as
follows. A random integer NG = {0, 1, 2, 3} is drawn with
equal probability. NG is the number of solutions randomly
selected from Ω which are to be replaced by new solutions
ΩG = {g1, · · · ,gNG}. By means of n-dimensional uniform
random walks wuni = [wuni[1], · · · , wuni[n]]T , additional NG
solutions are generated as shown in (5) (for ` = 1, · · · , NG),
where Ψ1 = [ψ1[1], · · · , ψ1[n]]T is a vector whose elements
are obtained from a normalized Gaussian probability density
function.{

g
(0)
` = zbest

g
(t+1)
` = g

(t)
` +

(
g(0) + 0.25Ψ1

)
�wuni if t > 0.

(5)

Mechanism 4 (Mutation of the worst nests): This mechanism,
described in lines 46 ∼ 48, creates new nests in different
locations in order to replace only a subset of the worst-
performing nests. This fosters balance between exploitation
and exploration by means of regulating diversification of
new solutions and re-usage of the old ones. Thus, we define
ΩH = {h1, · · · ,hNH} containing the least fit NH solutions
from Ω. Then, each element of ΩH is updated via (6) only
if the fitness of the new solution h

(t+1)
` (for ` = 1, · · · , NH )

has increased with respect to that of the previous h
(t)
`

h
(t+1)
` =

1

2

(
h
(t)
` + h(t)

w

)
�Ψ2 �Ψ3, (6)

where hw = [hw[1], · · · , hw[n]]T represents the nests with
the lowest fitness at iteration t. The elements of Ψ2 =
[ψ2[1], · · · , ψ2[n]]T are obtained from a random variable uni-
formly distributed in the range [1, 2] whereas the elements of
Ψ3 = [ψ3[1], · · · , ψ3[n]]T are 1 or -1 with equal probability.

Remark: CSA is initialized with a set of N nests (or
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Figure 7: PAPR reduction performance
in SVD-MIMO 4× 4 using PTS

4 5 6 7 8 9 10 11 12 13
10−4

10−3

10−2

10−1

100

PAPR0 (dB)

P
(P

A
P

R
>

P
A

P
R

0
)

No optimization
M = 2, U = 2, D = 2

M = 2, U = 2, D = 4

M = 2, U = 4, D = 4

M = 4, U = 2, D = 2

M = 4, U = 2, D = 4

M = 4, U = 4, D = 4

M = 4, U = 4, D = 8

Figure 8: PAPR reduction performance
in SVD-MIMO 4× 4 using CS-PTS
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Figure 9: Comparison between SWAN
and CSA in SVD-MIMO 4× 4
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Figure 10: Comparison of swarm-based
approaches in SVD-MIMO 4× 4

solutions). However, within each generation, 2N solutions
are generated from which only N are carried over to the
next generation. SWAN is also initialized with N eggs and
within a generation 2N+Nν eggs are generated. Nevertheless,
only N are preserved as shown in Fig. 3. The difference,
Nν = 3 + NG + NH , is due to the proposed mechanisms.

Adaptation of SWAN to CS-PTS in SVD-MIMO: In general,
swarm-based approaches cannot be applied straightforwardly.
Adjustments are necessary to take into consideration the
underlying nature of the problem. In CS-PTS for SVD-
MIMO, the number of dimensions is n = 2M , i.e., M
phase rotations and M time shifts. Without loss of opti-
mality, one phase rotation and one time shift can be fixed
since the PAPR changes based on relative phase differences.
As a result, the unknown parameters are {γoptm }M−1m=1 and
{δoptm }M−1m=1 . Any candidate solution at iteration t has the
structure z

(t)
i = [γ

(t)
0 , · · · , γ(t)M−1, δ

(t)
0 , · · · , δ(t)M−1]T ∈ Xn,

with Xn = C× · · · × C︸ ︷︷ ︸
n/2

×R× · · · × R︸ ︷︷ ︸
n/2

, γ(t)0 = 1 and δ(t)0 = 0.

We define the function f : Xn → R that takes an n-
dimensional input and maps it to a real value, which is
the maximum PAPR across all the Ntx transmit antennas,
i.e., f(z) = max1≤i≤Ntx PAPRi(z). As observed in (1),
the evaluation of each candidate solution requires M − 1
complex operations due to weighting by γm whereas time-
shifting by δm can be accomplished by varying the summation
index only. Therefore, most of the computational complexity
is due to complex multiplications by γm. We avoid part

of these operations by dividing SWAN into two stages (see
Fig. 4). To decrease the number of complex multiplications,
we create ρ1 intermediate nodes which only bear the effect
of the phase rotations γm. From each intermediate node,
ρ2 solutions bearing the added effect of time-shifting are
generated, amounting a total of ρ = ρ1ρ2 candidates. By
adopting the described structure, the complex multiplications
we incur into are associated only to ρ1 candidate solutions.
Finally, the fitness function Fz of a candidate solution z is
defined as Fz = 1

1+f(z) .

IV. COMPUTATIONAL COMPLEXITY

Table I shows the complexity of SLM, PTS, and CS-PTS
when exhaustive search is employed. The codebook size used
by SLM is V , whereas the number of partitions used by either
PTS or CS-PTS is M . Also, U and D represent the number
of admissible phase rotations and time shifts, respectively. As
observed, CS-PTS has the highest number of solution patterns
(due to the increased dimensionality, i.e., phase rotations and
time shifts), which justifies the importance of SWAN. As shown
in Table II, when employing SWAN in CS-PTS, the exponential
complexity is eliminated and instead it is controlled by ρ1 and
ρ2. Since we compare the performance of SWAN against the
benchmarks CSA, PSO and GA in Section V, we also show
their complexity in Table III, where ρ represents the number
of generated candidate solutions. Upon comparing Table II
and Table III, we conclude that the average cost per generated
solution of SWAN is approximately half of that required by
CSA. This is a consequence of adding the four mechanisms
described in Section III, which require low-complexity opera-



Table I: Computational complexity of SLM, PTS, CS-PTS using exhaustive search

Algorithm SLM PTS CS-PTS

Process Complexity Complexity Complexity

Multiplications Additions Multiplications Additions Multiplications Additions

Zero-padded
IFFTs V

[
NcL

2
log2 Nc +

NcL
2

]
V [NcL log2 Nc] M

[
NcL

2
log2

(
Nc
M

)
+
NcL

2

]
M
[
NcL log2

(
Nc
M

)]
M
[
NcL

2
log2

(
Nc
M

)
+
NcL

2

]
M
[
NcL log2

(
Nc
M

)]
Type Complex Complex Complex Complex Complex Complex

Phase patterns V [NcL] 0 UM−1 [(M − 1)NcL] UM−1 [(M − 1)NcL] UM−1 [(M − 1)NcL] (DU)M−1 [(M − 1)NcL]

Type Complex Complex Complex Complex Complex Complex

PAPR
computation V [2NcL] V [NcL] UM−1 [2NcL] UM−1 [NcL] (DU)M−1 [2NcL] (DU)M−1 [NcL]

Type Real Real Real Real Real Real

Table II: Computational complexity of CS-PTS using SWAN
for ρ = ρ1ρ2 solution patterns

Process Complexity

Multiplications Additions

Zero-padded
IFFTs M

[
NcL
2

log2(Nc
M

) + NcL
2

]
M

[
NcL log2(Nc

M
)
]

Type Complex Complex

Phase patterns ρ1[(M − 1)NcL] ρ1ρ2[(M − 1)NcL]
Type Complex Complex

Generation of
solutions ρ[3(M − 1)] ρ[2(M − 1)]

Type Real Real

PAPR
computation ρ[2NcL] ρ[NcL]

Type Real Real

Table III: Comparison of computational complexity of swarm-
based approaches for ρ solution patterns

Process Complexity

Multiplications Additions

Zero-padded IFFTs M
[
NcL
2

log2(Nc
M

) + NcL
2

]
M

[
NcL log2(Nc

M
)
]

Type Complex Complex

Phase patterns ρ[(M − 1)NcL] ρ[(M − 1)NcL]
Type Complex Complex

PAPR computation ρ[(M − 1)NcL] ρ[(M − 1)NcL]
Type Complex Complex

G
A

Generation of
solutions ρ[3(M − 1)] ρ[3(M − 1)]

Type Complex Complex

PS
O

Generation of
solutions ρ[5(M − 1)] ρ[5(M − 1)]

Type Complex Complex

C
SA

Generation of
solutions ρ[8(M − 1)] ρ[4(M − 1)]

Type Complex Complex

tions and, on average, reduce the cost. Complexity is a critical
factor when selecting an approach for practicality reasons.
Nevertheless, convergence also plays an important role in
guaranteeing high performance. For instance, although GA may

be a preferred choice over CSA and PSO due to its low cost per
generation, we corroborate in the next section that GA performs
worst in terms of convergence (i.e., for a given number of
generations the performance of GA is subpar compared to CSA
and PSO, thus exhibiting its lower convergence per iteration).

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the probability that the PAPR ex-
ceeds a threshold PAPR0, denoted by P (PAPR > PAPR0).
We evaluate several techniques under various configurations.
For a fair comparison, we also adapt SLM and PTS to
operate in SVD-MIMO mode. In the sequel, we assume that
the data symbols are randomly obtained from a 64-QAM
constellation, the oversampling factor is L = 4, and the
number of subcarriers is Nc = 256. We also assume the
Rayleigh fading channel model [32], [33] with Np = 16 paths.

Fig. 5 shows the PAPR for a varying number of transmit
and receive antennas (Ntx × Nrx) when PAPR reduction is
not considered. As the number of antennas increases, the min-
max PAPR (evaluated via (1)) increases as well. This is an
expect outcome since a given solution needs to minimize
the maximum PAPR over multiple antennas. In the following
scenarios (i.e., Fig. 6 to Fig. 10), we evaluate a variety of
PAPR reduction techniques when considering a 4× 4 MIMO
system with SVD precoding.

Fig. 6 shows P (PAPR > PAPR0) using SLM with
different V = {4, 16, 64, 256, 1024, 4096}, which are pseudo-
randomly generated with phase rotations from

{
e0, eπ

}
. Fig.

7 shows the performance of PTS with M = {2, 4, 8},
U = {2, 4, 8} whereas Fig. 8 shows the performance of CS-
PTS with M = {2, 4, 8}, U = {2, 4, 8}, D = {2, 4, 8}. Con-
sidering the trade-off between complexity and performance,
CS-PTS achieves superior results compared to PTS and SLM.
Specifically, CS-PTS generates several solution patterns by
solely time-shifting the partial transmit sequences, which does
not incur in additional costly complex multiplications. Fig. 9
depicts the performance attained by CSA and SWAN, as well
as Optimal (i.e., obtained through exhaustive search) when
M = 4, U = 4, D = 8. For CSA and SWAN, we consider a va-
riety of iterations ρ = {270, 540, 1080, 2160, 4320}. Although
CSA is computationally more complex than PSO and GA (as
seen in Table III), we consider CSA as the benchmark approach



due to its higher performance in terms of optimality. With
almost half of the complexity of CSA (compare Table II and
Table III), SWAN consistently outperforms CSA under the same
number of iterations. Also, the results shown under Optimal
are obtained after evaluating (4 × 8)3 = 32, 768 solution
candidates. We realize that by only evaluating ρ = 4320
patterns, SWAN is at most 0.1 dB apart from Optimal with a
probability of 10−4. Fig. 10 shows that CSA outperforms PSO
and GA, and has higher convergence rate. Noteworthily, under
the same ρ value, SWAN always outperforms CSA, PSO, and
GA. Although SWAN and GA have comparable complexities,
SWAN outperforms GA by 0.15 dB at P (PAPR > PAPR0) =
10−4, and this result is prevailing under all the evaluated
values of ρ = {270, 1080, 4320}.

VI. CONCLUSIONS

In this paper, we adapted CS-PTS to operate in MIMO
systems with SVD precoding. Leveraging on this system, we
formulated a min-max problem to reduce the PAPR across
multiple transmit antennas. Given the high computational
complexity of the resulting problem, we proposed a swarm-
based approach called SWAN to design the parameters (i.e.,
phase rotations and time shifts) that minimize the maximum
PAPR. Through extensive simulations, we showed that SWAN
outperforms other competing approaches such as CSA, GA,
and PSO in terms of convergence and complexity. Our results
confirmed that even with a low complexity requirement, SWAN
attains near-optimality. We conclude that SWAN is an attractive
technique for systems with limited capabilities. In particular,
through SWAN, computationally-constrained systems can ex-
plore the solution space in a smarter fashion, thus providing a
better trade-off between complexity and optimality compared
to straightforward approaches such as exhaustive search.
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