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Abstract—Developing resource allocation algorithms with
strong real-time and high efficiency has been an imperative topic
in wireless networks. Conventional optimization-based iterative
resource allocation algorithms often suffer from slow con-
vergence, especially for massive multiple-input-multiple-output
(MIMO) beamforming problems. This paper studies learning-
based efficient massive beamforming methods for multi-user
MIMO networks. The considered massive beamforming problem
is challenging in two aspects. First, the beamforming matrix
to be learned is quite high-dimensional in case with a massive
number of antennas. Second, the objective is often time-varying
and the solution space is not fixed due to some communication
requirements. All these challenges make learning representation
for massive beamforming an extremely difficult task. In this
paper, by exploiting the structure of the most popular WMMSE
beamforming solution, we propose convolutional massive beam-
forming neural networks (CMBNN) using both supervised and
unsupervised learning schemes with particular design of network
structure and input/output. Numerical results demonstrate the
efficacy of the proposed CMBNN in terms of running time and
system throughput.

Index Terms—Beamforming, WMMSE, convolutional neural
network, massive MIMO

I. INTRODUCTION

The rapid development of deep learning in various appli-

cations has greatly changed many aspects of our life [1].

Besides the changes in human life, many research fields are

also revolutionized by deep learning, such as computer vision

and natural language processing. In the research of wireless

network communication, deep learning (and machine learning)

based methods are gaining more and more attention due to

their efficacy. In response to this, embedding deep learning

into the 5th generation of mobile systems (5G) and wireless

networks is becoming an increasingly hot topic in recent years

[2], [3].

At the same time, the advantages of massive MIMO in

energy efficiency, spectral efficiency, robustness and reliability

proved massive MIMO to be indispensable in the 5G era

[4], [5]. To improve the quality of communication in massive

MIMO systems, downlink beamforming or precoding is one

of the most important transmission technologies. For beam-

forming design, the system throughput (weighted sum-rate)

maximization under a total power constraint is an important

metric of communication quality, which is the focus of our

paper.

Many algorithms developed for beamforming are based on

optimization theory like weighted minimum mean square error

(WMMSE) [6], which can find locally optimal solutions of a

formulated optimization problem through iterations. However,

such optimization based algorithms often suffer from high

computational costs (e.g., WMMSE involves complex matrix

inversion operations). When large-scale antenna arrays are

deployed on transmitter [7], the computational cost of these

algorithms can be prohibitive. Meanwhile, algorithms with

low complexity like zero-forcing method [8] cannot achieve

good performance when the number of users or antennas

becomes large.

As a result, deep learning-based methods were proposed to

solve such problems in recent years. Supervised deep neural

network (DNN) has been applied to power control, which can

achieve similar sum-rate performance as the classical power

allocation algorithm WMMSE [2]. In contrast, unsupervised

learning can reach (even better) the performance of the

WMMSE algorithm [9], [10]. Meanwhile, a hybrid precoding

scheme with DNN-based autoencoder [11] was proposed

for Millimeter wave (mmWave) MIMO systems. Apart from

the aforementioned DNN models, a distributed convolutional

neural network (CNN)-based deep power control network was

introduced [12] to maximize the system spectral efficiency

or energy efficiency with local CSI. Furthermore, CNN-based

beamforming neural networks (BNNs) were proposed [13] for

three typical beamforming optimization problems in multi-

user multiple-input-single-output (MISO) networks. For the

sum-rate maximization problem, BNNs were trained using

both supervised learning and unsupervised learning.

Although these deep learning-based methods have been

proposed for multi-user MIMO downlink beamforming, cur-

rent methods mainly focus on the basic case of the sum-

rate maximization problem without taking more complicated

situations like user priority or varying number of stream per

user into consideration. Besides, the neural network design

does not utilize the structure of the closed-form update in the

iterative algorithm.

In summary, two main challenges remain unaddressed in

learning-based massive MIMO beamforming. First, as the

number of antennas becomes large in massive MIMO system,

both the input and output of the neural network (NN)-based

methods would be of high dimension, which makes the neural

network more complex and harder to train. Second, in real-

world systems, the number of user streams and user priority

are both changeable over time which means the solution space

is not fixed. Thus, it will be quite challenging to take such two
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cases into consideration without increasing the neural network

complexity significantly.

In this paper, to tackle the above challenges, we propose

a new deep learning framework called convolutional massive

beamforing neural networks (CMBNN). The main contribu-

tions of this paper are summarized as follows:

1) We utilize the structure of the closed-form solution of

WMMSE algorithm in the design of the NN structure. In

addition, we design a novel NN structure to cope with varying

number of user streams. By doing so, for the first time, we are

able to handle beamforming with time-varying user priority

and varying number of user streams without significantly in-

creasing the NN complexity or sacrificing model performance.

2) Due to the use of problem structure in the design of our

networks, all NN structures proposed in our paper are much

simpler than existing approaches. The low complexity of NN

structures makes our method more appealing under the real-

time requirements in 5G wireless communication systems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a single cell multi-user massive MIMO system

where the BS is equipped with NT transmit antennas and

serves K users each equipped with NR antennas [14]. Let

Vk ∈ CNT×dk denotes the transmit beamforming that the BS

employs to send the signal sk ∈ C
dk×1 to user k. The BS

signal is given by,

x =
K∑

k=1

Vksk,

where it is assumed E
[
sks

H
k

]
= I.

Assuming a flat-fading channel model, the received signal

yk ∈ CNR×1 at user k can be written as

yk = Hkx+ nk (1)

= HkVksk
︸ ︷︷ ︸

desired signal of user k

+
K∑

j=1,j 6=k

HkVjsj

︸ ︷︷ ︸

multi-user interference

+nk, ∀k

where matrix Hk ∈ CNR×NT represents the channel matrix

from the BS to user k, while nk ∈ CNR×1 denotes the

additive white Gaussian noise with distribution CN (0, σ2
kI).

We assume that the signals for different users are independent

from each other and from receiver noises. In this paper, we

treat the multi-user interference as noise and employ linear

receive beamforming strategy, i.e., Uk ∈ Cdk×NR , ∀k, so that

the estimated signal ŝk ∈ Cdk×1 is given by ŝk = UH
k yk, ∀k.

B. Problem Formulation

A basic problem of interest is to find the transmit beam-

formers {Vk} such that the system weighted sum-rate is

maximized subject to a total power constraint due to the BS

power budget. Mathematically, it can be written as follows

max
{Vk}

K∑

k=1

αkRk

s.t.

K∑

k=1

Tr (VkV
H
k ) ≤ Pmax

(2)

where Pmax denotes the BS power budget, the weight αk

represents the priority of user k in the system, and Rk is the

rate of user k given by

Rk , log det
(

I+HkVkV
H
k HH

k

(
Ak+σ2

kI
)−1
)

.

where Ak ,
∑

j 6=k HkVjV
H
j HH

k .

Under the independence assumption of sk’s and nk’s, the

MSE matrix Ek can be written as,

Ek , (I−UH
k HkVk)(I −UH

k HkVk)
H

+
∑

m 6=k

UkHkVmVH
mHH

k UH
k

+

K∑

i=1

σ2
k

Pmax

Tr (ViV
H
i )UH

k Uk

(3)

Followed by [6], we can obtain the equivalent WMMSE

form as

min
{Wk,Uk,Vk}

K∑

k=1

(log det(Wk)− Tr (WkEk))

Furthermore, inspired by the structure of ZF beamforming

[8], to reduce the complexity in the massive antenna scenario,

we also restrict Vk’s to the range space of HH , i.e., let it

satisfy Vk = HHXk with some Xk ∈ C
KNR×dk , where H ,

[
HH

1 HH
2 . . .HH

K

]H ∈ CKNR×NT . As a result, by defining

Mk , UkWkU
H
k and H̄ , HHH ∈ C

KNR×KNR , we can

derive the three main steps of the corresponding WMMSE

algorithm as follows

Xk =





K∑

j=1

σ2
k

Pmax

αjTr (Mj)H̄+

K∑

i=1

αiH̄
H
i MiH̄i





−1

× αkH̄
H
k UkWk (4)

Uk =





K∑

j=1

σ2
k

Pmax

Tr (H̄XjX
H
j )I+

K∑

i=1

H̄iXiX
H
i H̄H

i





−1

× H̄kXk (5)

Wk = (Ek)
−1

=
(
I−UH

k H̄kXk

)−1
(6)

The algorithm repeats the above three steps until convergence.

For ease of exposition, it is termed as reduced-WMMSE (R-

WMMSE).

III. PROPOSED METHOD

Our key idea is to learn the R-WMMSE algorithm above

using deep learning, so that the complexity can be further

reduced by choosing appropriate neural network structure and

input/output.



A. Reformulation

In previous work like [13], the noise power σ2
k is often

fixed for all scenarios, resulting in the trained network only

adapting to this noise level. Here we remove the effect of noise

by reformulating the problem. Let us define H̃k =
√

Pmax

σ2

k

Hk

and

R̃k, log det

(

I+H̃kVkV
H
k H̃H

k




∑

j 6=k

H̃kVjV
H
j H̃H

k+I





−1





Then we have the following proposition.

Proposition 1: Problem (2) is equivalent to

max
{Vk}

K∑

k=1

αkR̃k

s.t.

K∑

k=1

Tr (VkV
H
k ) ≤ 1,

(7)

in the sense that the optimal solution to problem (7) multiplied

by
√
Pmax is also optimum to problem (2).

Because of the above equivalence, we consider problem (7)

throughout the rest of this paper. Moreover, for notational

simplicity, we drop ‘˜’ in all notations in (7).

B. Neural Network Architecture

Figure 1 presents the CNN-based network architecture for

beamforming design followed by the idea of [13], where CL

and BN denote the convolutional layer and batch normaliza-

tion layer respectively, leaky relu is chosen as the activation

function and several dense layers are used after the flatten

layer. The network architecture is further detailed as follows.

1) Supervised Learning: Supervised learning is a straight-

forward way to train a beamforming neural network. All data

samples can be generated through running the R-WMMSE

algorithm. For the CNN model, as the input H or HHH are

all complex matrices, we would like to reshape the complex

matrix to a tensor like an image but with only two channels,

one represents the real part while the other represents the

imaginary part. However, different from the traditional image

processing with convolutional and pooling layers, we would

not use pooling layer because it may cause information

loss which would influence the learning result. Adam and

huber loss are selected as the optimizer and loss function

respectively.

Output

Supervised Learning

Huber Loss

Unsupervised Learning

Sum-rate
ut

Stage1

Stage2

Input CL BN Leaky 

Relu
CL BN Leaky 

Relu

...

Flatten

Real

Imaginary

Dense
...

Fig. 1. A basic neural network structure for massive beamforming

2) Unsupervised Learning: Even if the huber loss of super-

vised learning becomes small, the weighted sum-rate result is

not necessarily large enough. The intuitive reason is that the

supervised learning does not aim directly to maximize the

weighted sum-rate and its performance is largely limited by

the training samples. On the other hand, we have a direct

objective, i.e., weighted sum-rate maximization. Hence, we

could use the negative weighted sum-rate as an alternative

training loss which could improve the sum-rate directly.

L(θ;h) , −
K∑

k=1

αkRk(h, o) (8)

3) Supervised + Unsupervised Learning: As the loss func-

tion of unsupervised learning is complicated involving many

complex matrix operations, both the loss calculation and the

corresponding gradient computation would be more time-

consuming than the computation of traditional loss (e.g.,

MSE). Considering the trade-off between convergence speed

and accuracy, we choose to combine both supervised learning

and unsupervised learning to train the beamforming neural

network. Specifically, supervised learning is used for pre-

training and unsupervised learning is for further refinement.

In practice, only one or two epochs for unsupervised learning

is enough.

C. Design of Input and Output

In massive MIMO system, the number of transmit antennas

NT could be very large. Hence, if we still directly take H and

Vk (or Xk) as input and output as in [9], [13], the input/output

of the neural network (NN) would be both high dimensional

matrices, making it not easy to train an NN. As a consequence,

the NN input and output should be redesigned to reduce the

NN input/output size (and thus the training complexity and

difficulty). In terms of the R-WMMSE algorithm, we find

that beamformer Vk is uniquely determined by Xk while

Xk depends on HHH . Hence, HHH can be regarded as the

NN input, which has reduced size as compared to H when

NT >> NR. Moreover, since Xk can be determined by HHH

and {Uk,Wk}, we can take {Uk,Wk} as the NN output in

order to reduce the size of NN output. Tables I and II list the

dimension of various input/output schemes. It can be seen

that different choice of input/output leads to different size

of input/output. Note that we generally have NT >> NR,

NT ≥ KNR, K ≥ NR, dk in the massive MIMO case.

TABLE I
DIMENSION OF DIFFERENT INPUTS

Input Dimension

Hk 2× (KNR ×NT )
HHH 2× (KNR ×KNR)

Furthermore, due to the conjugate symmetry of HHH , both

the real part and imaginary part of HHH depend uniquely on

their upper or lower triangular parts. Hence, we can further

reduce the input size by combining the real part and the

imaginary part in a way as shown in Fig. 2. As a result, the



TABLE II
DIMENSION OF DIFFERENT OUTPUTS

Output Dimension

Vk 2× (NT × dk)
Xk 2× (KNR × dk)

Uk and Wk 2× (NR × dk + dk × dk)

Real

Imaginary

Real

Imaginary

Fig. 2. Reconstruction of input HHH

dimension of NN input is finally reduced to KNR × KNR.

Similar operation can be done for Wk, leading to a further

reduced size of NN output.

D. Architecture Design for User Priority

In practice, each user k in the system may have a different

priority with weight αk that often changes with time. While

most current methods do not take this into consideration, the

NN input or structure should be carefully redesigned when

the weights are considered. According to the R-WMMSE

algorithm mentioned before, both Xk and {Uk,Wk} depend

on αkHHH .

Two very intuitive ways to merge the weights into the NN

are depicted in Figure 3 and Figure 4. One is to merge weights

into input as K channels (see Figure 3), and the other is to

concatenate weight after convolution and flatten of the input

(see Figure 4). Our simulation results show that these two

methods can achieve reasonably good performance.

However, these two methods will bring higher computa-

tional complexity to the original network which can lead to

extra time and cost. Surprisingly, inspired by the update rule

of Xk in (4), we find that, just by taking H̃H̃H as input,

where H̃k =
√
αkHk and H̃ ,

[

H̃H
1 H̃H

2 . . . H̃H
K

]H

, we

can reach the same performance as the previous two intuitive

methods without any need for increasing network complexity.

E. Architecture Design for varying number of user streams

In practical systems, sometimes only one stream is trans-

mitted for some user during communication. This raises a new

challenge that the number of streams dk (dk ≤ NR) can vary

but the dimension of the network output needs to be fixed.

Table III shows the number of valid output elements when

dk is different. Thus, to ensure that the network output have

fixed dimension, certain positions should be set to zero when

there exists a single stream transmission.

There are a few simple and intuitive solutions to this prob-

lem. The simplest solution is to directly merge the information

of the number of user streams into the original input HHH .

Another solution is to ignore the number of streams used and

manually set to zero the positions corresponding to empty

streams of the output, which may result in discontinuous

Real

Imaginary

Real

Imaginary

...

Real

Real

Imaginary

Input(K channels)

Fig. 3. Merge weight into input as K channels

Input CL BN Leaky 

Relu
Flatten

Real

Imaginary

Dense

Output

Dense

...

nput CL LeakykyLeaky 

Relu
Flatten

Real

e

Output

e

...

Fig. 4. Concatenate weight after conv.

TABLE III
DIMENSION OF DIFFERENT dk

dk Uk Wk Num of valid elements

2 2× 2 2× 2 12
1 2× 1 1× 1 5

Input CL BN Leaky 

Relu
CL BN Leaky 

Relu

...

Flatten

Output

Real

Imaginary
...

Dense

Index
...

Dense

Output

Train

Output

Test

Inputnput CLCL BN Leaky L kkk

Relu
CL BN Leaky L kk

Relu

....

Flatten

Output

Real

Imaginaryyry
...

Densee

Index
...

DenseIndex Network

Lambda

Fig. 5. Network structure for varying number of user streams

loss function. These two methods both result in unsatisfactory

performance in our experiments.

To achieve better performance than the solutions mentioned

above, we introduce an auxiliary network called Index Net-

work whose function is to softly zero out the corresponding

positions given the number of streams used. Specifically, as

shown in Figure 5, the Index Network is a network separated

from the main network, it takes the number of user streams

as input and outputs a soft mask having the same dimension

of the output of the main network. The output of the main

network is multiplied by the mask element-wisely to produce



the final output. We find that this method can effectively

stabilize the training and improve the performance.

During the testing stage, to ensure that the network outputs

a beamforming with correct number of streams, the output

elements at certain positions will be set to zero manually at

the last layer (Lambda Layer).

During the unsupervised learning phase, variables of the

Index Network should be fixed and specific positions should

also be assigned with zero before calculating the unsupervised

loss.

IV. EXPERIMENTS

A. Neural Network configuration

The main network consists of one convolutional layer with

4 kernels of size 3×3, followed by batch normalization (BN)

layer and activation function layer (leaky relu), then only

one dense layer with 32 hidden units. The Index Network

is of similar scale as the dense layer before. Our network

is much simpler than the previous work [9], [13] with much

more layers and hidden units (mostly having more than two

convolutional and dense layers).

B. Data generation

For weighted sum-rate maximization, the channel matrix

H is generated from the complex Gaussian distribution with

pathloss between the users and the BS. The pathloss is set

to 128.1 + 37.6 log10(ω)[dB] [15] where ω is the distance

between the user and the BS in km (0.1 ∼ 0.3). The noise

power is set to be the same for all users and can be calculated

by σ2
k = 10

1

K

∑
k log10

1

NR

∑
i,j H

2

kij × 10−
SNR

10 , where signal-

to-noise ratio (SNR) is set as 20(dB). The priority coefficients

αk of the users are generated randomly and
∑

k αk = K ,

and dk is also generated randomly for each user k (dk = 1
indicates dual stream and dk = 0 indicates single stream). In

the simulation, 45000 samples are generated for training and

5000 are for testing. Table IV lists three main test cases in

the following experiment with NR = 2. The last test case is

of great importance in industry.

TABLE IV
THREE MAIN BEAMFORMING TEST CASES

Case NT K

1 8 2
2 8 4
3 32 12

C. Simulation Result

To test whether the predicted precoder V is good enough to

maximize the weighted sum-rate maximization problem, the

predicted output should be put back to the objective function

and the performance can be defined as follows.

f(H,Vk) ,

K∑

k=1

αkR̃k(H,Vk) (9)

Case 1 Case 2 Case 3
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Fig. 6. Average execution time (in seconds) among CMBNN, ZF and
WMMSE
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Fig. 7. Average performance among CMBNN, ZF and WMMSE

Performance ,
f(H,Vpredict)

f(H,Vtrue)
(10)

Figures 6 and 7 show the average execution time and

average performance compared with the WMMSE algorithm

and ZF algorithm respectively. It can be observed that 1)

the proposed method can achieve similar performance as the

WMMSE algorithm in most cases, while significantly out-

performing ZF algorithm (which is unable to handle the user

priority); and 2) the proposed method costs less execution time

(in testing stage) than both the WMMSE method including

many inversion operations and ZF method which needs extra

time to decide which beamforming vector should be used for

sending single stream.

In summary, our proposed CMBNN model is superior from

the perspective of both performance and efficiency.

V. CONCLUSION

In this paper, we have proposed a convolutional massive

beamforming neural networks (CMBNN) with low complex-

ity. Specifically, we have designed the neural network accord-

ing to the structure of optimization problem to handle complex

situations with changeable user priority and varying number



of user streams. Compared with the methods in literature,

our proposed framework can achieve better performance and

higher efficiency.
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