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Abstract—Path-loss modelling in deep-indoor scenarios is a
difficult task. On one hand, the theoretical formulae solely
dependent on transmitter-receiver distance are too simple; on the
other hand, discovering all significant factors affecting the loss of
signal power in a given situation may often be infeasible. In this
paper, we experimentally investigate the influence of deep-indoor
features such as indoor depth, indoor distance and distance to the
closest tunnel corridor and the effect on received power using
NB-IoT. We describe a measurement campaign performed in
a system of long underground tunnels, and we analyse linear
regression models involving the engineered features. We show
that the current empirical models for NB-IoT signal attenuation
are inaccurate in a deep-indoor scenario. We observe that 1)
indoor distance and penetration depth do not explain the signal
attenuation well and increase the error of the prediction by 2-12
dB using existing models, and 2) a promising feature of average
distance to the nearest corridor is identified.

Index Terms—path-loss, deep-indoor, NB-IoT, signal attenua-
tion, LIDAR, coverage

I. INTRODUCTION

According to IoT analytics, more than a half of the enter-

prise Internet of Things (IoT) projects in 2018 were classified

as smart city, connected industry and connected building; in

such categories, asset tracking and environment monitoring are

prominent use cases [1]. Applying IoT to remote monitoring,

e.g. smart water metering, the main problem is to ensure

reliable connectivity and optimised power consumption of

the sensors placed in basements or underground tunnels. The

solution must consist of an appropriate hardware design, a

suitable communication technology and knowledge of signal

behaviour in the deployment area, so that the service provider

can guarantee seamless and economically feasible service in

the customer’s environment.

Cellular IoT technologies such as Narrowband IoT (NB-

IoT) and LTE for Machine Type Communication (LTE-M)

are tailored for long-range applications, and they are expected

to dominate the market of massive IoT due to an excellent

link budget, long battery lifetime and security and reliability

support [2]. Both standards provide advanced power saving

mode and discontinuous reception techniques to save energy,

and introduce 20dB link budget improvement in comparison

to Long-Term Evolution (LTE) due to higher power spectral

density and message repetition schemes in uplink and down-

link [3], [4]. However, NB-IoT additionally enables multiple

deployment options (in-band with LTE, in the LTE guardband

and standalone) and outperforms LTE-M in terms of energy

efficiency in low data-rate scenarios and when radio conditions

are poor [5].

Even with NB-IoT the problem of bad or no coverage in

remote, hard-to-reach areas (especially underground) persists.

The number of packet repetitions is dictated by the current

Coverage Enhancement (CE) level, identified by the network

based on the perceived radio conditions [6]. At the same time,

the energy usage grows as the number of message repetitions

increases [7]. In deep-indoor situations, high signal attenuation

causes NB-IoT operation on CE levels corresponding to the

biggest number of repetitions (up to 128 in uplink), leading

to increased power consumption. Thus, understanding signal

propagation and attenuation in underground environments is

essential in the process of optimal sensor placement and

connectivity and throughput modelling.

3rd Generation Partnership Project (3GPP) and European

Telecommunications Standards Institute (ETSI) derived theo-

retical path-loss models covering outdoor-to-outdoor, outdoor-

to-indoor and indoor-to-indoor scenarios [8], [9]. However, the

assumptions regarding deep-indoor path-loss are oversimpli-

fied for some underground scenarios (see Fig. 1). Specifically,

the fact that the attenuation of the signal in the aforementioned

theoretical models depends solely on the distance between the

transmitter and the receiver may lead to rough conclusions not

reflecting other environmental factors. For that reason, inves-

tigating new features related to the communication scenario

appeals promising.

A comprehensive survey on radio propagation modelling

in deep-indoor propagation situations and tunnel systems can

be found in [10]. The authors discuss several modelling

techniques for radio propagation in tunnels hereof the use

of ray-tracing and empirical models. The theoretical analysis

shows that tunnel geometry have an important impact on the

attenuation rate of the received power which is not taken

into account by empirical models thus leading to inaccurate

predictions.

In this work, we present our efforts toward better under-

standing of deep-indoor path loss of NB-IoT. We conducted

a measurement campaign and collected radio signal strength

samples from a NB-IoT device. We observed that the received
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Fig. 1: Indoor deployment situations are further complicated by deep-indoor situations such as basements where coverage

modelling is difficult and impractical. Current models perform well at indoor deployment situated at level 0 and above but are

inaccurate at level -1 and -2. This paper presents measurements conducted at level -1 and -2.

power does not decrease with the transmitter receiver separa-

tion distance. This led us to derive more parameters - indoor

depth, indoor distance and average distance to the closest

corridor, and to study their significance to signal attenuation.

The main contributions of the paper can be summarised as

follows:

• We present a unique measurement campaign, performed

in the underground tunnels and basements of the Tech-

nical University of Denmark, spanning the entirety of

campus.

• We formulate the following features: indoor depth, indoor

distance and average distance to the closest corridor.

• We discuss the significance of the considered parameters

in modelling the path loss of NB-IoT in deep-indoor

environments and open issues concerning underground

deployments and coverage studies.

The remainder of this paper is organised as follows. We

introduce the available path-loss models and motivate the study

in Section II. The formulation of the features is explained in

Section III. The description of our measurement campaign and

the primary data analysis are included in Section IV. Section

V contains the statistical analysis of the engineered features,

and further discussion on general issues is included in Section

VI. We conclude the study in Section VII.

II. METHODOLOGY

The ultimate goal of coverage modelling is to obtain re-

alistic signal propagation behaviour, the analysis of which

constitutes to more optimised real-life deployment. Apart

from reflecting the field measurements faithfully, the model

ought also to be generalised, in other words, applicable to

more scenarios than the one accompanying model formulation.

Deterministic models (e.g. Ray Tracing) take into account

detailed profile of the environment, thus produce reliable

predictions. However, they are computationally complex and

biased towards the particular scenario. On the other hand, sta-

tistical models are simpler and more general, as they consider

only limited set of variables explaining the signal attenuation,

and they do not take into account the particularities of any

specific environment; yet, the accuracy of the statistical models

depends on the amount of available measurement data used for

model derivation.

A. Outdoor-to-Indoor path-loss

The approach for Outdoor-To-Indoor (O2I) path-loss mod-

elling is described in [8] and utilise a sequence of necessary

steps. The path-loss is decomposed into several terms as given

below:

PLo2i = PLb + PLtw + PLin +N (0, σ2

p) (1)

Where, PLb is the basic outdoor path-loss, PLtw are losses

associated with building penetration loss (constant and fre-

quency dependent), N (0, σ2

p) is a log-normal distribution with

local variability σp and PLin are losses dependent on the depth

inside the building. However, the model is only defined for

O2I scenarios with regular buildings and does not consider the

indoor depth. The losses associated with the indoor distances

are given as follows:

PLin = 0.5 · din,2d (2)

Where din,2d is the distance indoor, e.g. the distance to the

outer most wall closest to the transmitter. In a basement sce-

nario this parameter is unspecified. The primary contribution

of this paper is evaluating such indoor depth parameters for

path-loss modelling.

B. Statistical analysis

Since the deep-indoor loss component of the official path-

loss model is linear, we studied the relevance of the engineered

features by means of linear regression; we applied Ordinary

Least Squares (OLS) technique [11] and compared determina-

tion coefficient R2, Log-likelihood and Residual Mean Square

Error (MSE) statistics.



III. FEATURE ENGINEERING

Received power of the signal decreases with increased

distance as denoted by basic path-loss models, however, in the

outdoor-to-deep-indoor scenario, penetrating multiple media

(air, outdoor obstacles, ground, tunnel walls) makes the power-

distance relationship more complex. In practice, it is difficult

to know the exact characteristics of all the materials through

which the wave would penetrate, or even the kind of the

materials from which e.g. the underground constructions are

made. Furthermore, engineering features for path-loss estima-

tion that is capable of explaining such complex interactions is

problematic due to inaccuracy of obtaining indoor positions.

In this paper we obtain the indoor positions and the features

using a massive and high resolution LIDAR dataset of the

entire tunnel system.

Base station 

Measurements

100 m

Fig. 2: Layout of tunnel system where measurements were

conducted. The tunnel system is considered between level -1

and -2. The base station is placed at 30 m above top ground

level.

A. Indoor positioning

Indoor positioning is a non-trivial task as common ways

of obtaining positions (e.g. using Global Navigation Satellite

System (GNSS) solutions) are not possible in indoor and

deep-indoor situations. Several techniques for obtaining indoor

positions based on radio waves are documented in literature

[12] but require existing infrastructure and complex finger-

printing implementations. In this work we have access to a

high resolution LIDAR dataset of the measured area (see Fig.

2). The entirety of the tunnel area is sampled in (x, y, z)
coordinate points with a resolution of < 1 cm. In order to

utilise such a massive dataset we used the following procedure

for identifying the indoor positions. 1) each independent mea-

surement study was composed of a starting position and an end

position; 2) the start and end positions were identifying in the

LIDAR dataset (point cloud) and thus the Global Positioning

System (GPS) positions were extracted; 3) Using the known

amount of measurements of the given corridor, in combination

with the start and end position, allowed for an interpolation

between the equidistant measurement points, thus giving an

indoor position (with altitude information) per measurement

point.

B. Defining the features

Having access to a LIDAR dataset with high resolution

enabled accurate feature engineering in 3D along with ac-

curate indoor positioning. The configuration of the NB-IoT

transmitter is known, including the altitude information, GPS

position and transmitter specific parameters as seen in Table. I.

The accurate 3D position of the measurements in combination

with the details of the transmitter allows for computation of

azimuth and elevation angles for each measurement position.

Additionally, the LIDAR dataset enabled more advanced fea-

tures to be engineered which is the primary contribution of

this paper. Using the point cloud of the LIDAR dataset, the

tunnel dimensions was quantified using 3D trigonometry. This

furthermore enabled the engineering of complex features such

as the indoor distance (din), the penetration distance (dpen),

and the average distance to the nearest corridor (dcor,avg). Both

din and dpen is computed in a ”as-the-crow-flies” path towards

the evolved Node-B (eNB) as illustrated in Fig. 3 using the

elevation and azimuth angles relative to the measurement posi-

tion. dcor,avg is computed by identifying the corridors crossing

the main tunnel of the equidistant measurements using the

LIDAR data. Using trigonometry, the average distance to the

nearest corridor can be derived. All of the features are derived

in 2D and 3D space, i.e. with and without the use of the

elevation angle.

# of measurement points 895

TSMW/UE measurements per point 1e6/10

Operating frequency 820.5 MHz

Bandwidth 180 kHz

Noise figure (TX/RX) 5 dB/3 dB

TX power 46 dBm

Receiver antenna position Vertical

TX/RX antenna gain 5 dBi/5.8 dBi

TABLE I: Experiment parameters



Fig. 3: Distance indoor is computed in 2D and 3D using LI-

DAR information of the tunnel system. The tunnel dimensions

and the terrain entry point can be determined using the point

cloud and the angles (azimuth and elevation) deduced from

the measurement positions

The distributions of the features and their relationship with

the Reference Signal Received Power (RSRP) of the NB-IoT

signal are presented in Fig. 4. There is a slight and non-linear

tendency that the signal attenuates with the growth of indoor

depth, but in the case of indoor distance the trend is opposite.

A more distinct relationship between the RSRP and dcor,avg
is visible in Fig. 4b.

IV. MEASUREMENT CAMPAIGN

We collected NB-IoT RSRP measurements and other User

Equipment (UE) radio statistics from 895 measurement posi-

tions within the DTU tunnel system in Lyngby Campus. The

area covered by the measurements can be seen in Fig. 2. Each

of the measured corridors was divided into a set of equidistant

locations (1 or 2 metres distance between two measurement

positions), and the measuring equipment captured the samples

at these distinct locations only, i.e. the measurements were

taken stationary.

The setup consisted of a Rohde&Schwartz TSMW network

tester [13], u-blox SODAQ SARA N211 NB-IoT device [14], a

laptop and a gel rechargeable battery. The antennae of TMSW

and the UE were fixed vertically on the trolley. At each of the

measurement positions, a low-pass filter around the operating

frequency was used to capture 1e6 NB-IoT IQ samples.

Parallel to this 10 measurements of UE statistics was obtained

using the NB-IoT device. The mean of the measurements was

taken to remove any fast-fading impairments.

A. Visualisation

A scatterplot with linear regression fit and histograms in

Fig. 5 visualises the nature and mutual relation of RSRP and

3D distances between the UE and the eNB. It is possible to

notice that RSRP does not depend linearly on the distance, as

their distributions are clearly different; one may observe that

the line representing the 3GPP model fits the experimental

observations poorly. This agrees with the findings of our

previous study, described in [15], but now proven over larger

measurement area. Interestingly, the behaviour of RSRP with

respect to the indoor distance is not linear either. Therefore,

we believe that other features are needed to fully explain the

complex behaviour of NB-IoT signal attenuation underground.

V. RESULTS

A. Linear regression

Table II presents basic statistic of linear regression fit of

the investigated features on RSRP. Additionally, we added a

regression model employing azimuth angle φ and elevation

angle θ. These parameters are not considered useful in path-

loss modelling, but were included in the statistical analysis as

a source of reference to better evaluate the indoor features.

Model M1 with 3D distance exhibits the lowest MSE

(74.973) and the highest R2 coefficient (0.285). On the other

hand, M4 combining dpen,3D and din,2D yields 0.005 R2 and

104.335 MSE. Noteworthy, MSE of dcor,avg model is lower

than in dpen,3D and din,2D models by 13.934 and 12.812,

respectively, and R2 is higher by 0.131 and 0.122, respectively.

B. Indoor distance features

The O2I modelling principles as detailed in Section II-A is

undefined for basement scenarios. Thus, a prediction compari-

son utilising the penetration distance, and the indoor distances

as indoor distances in accordance with Eq. (2) are shown in

Fig. 6. The none case defines the use of path loss principles

for O2I scenarios using Eq. (1) but without the PLin term.

The remainder of the plot shows the Mean Absolute Error

(MAE) prediction errors as a function of different indoor

distance parameters. It is found that utilising any of the indoor

distance metrics in this particular basement scenario increases

the prediction error by ≈ 2 dB to ≈ 12 dB.

VI. DISCUSSION

Based on Tab. II it can be observed that none of the

parameters nor combinations thereof perform better than 3D

distance between the UE and the eNB (model M1). Moreover,

din,2D and dpen,2D explain only marginal share of the RSRP

variance and exhibit the highest MSE (M2-M4). On the other

hand, model M5 involving davg,cor feature, as well as model

M7 consisting of φ and θ angles yield significantly better

results. This indicates that indoor distance and indoor depth

are not useful in deep-indoor path-loss modelling. Instead, the

features related to the underground corridors (e.g. davg,cor)

and/or other geographical phenomena represented here by

model M7 should be considered.

A. Application considerations

In the former part of this paper we evaluated the engineered

features in terms of statistical metrics, however, in order to

TABLE II: Summary of linear regression statistics

ID Regressors Rˆ2 Log-likelihood Residual MSE

M1 3D distance 0.285 -3200.9 74.973

M2 din,2D 0.026 -3389.1 102.098

M3 dpen,3D 0.017 -3343.1 103.022

M4 dpen,3D + din,2D 0.005 -3348.8 104.335

M5 dcor,avg 0.148 -3279 89.286

M6
dpen,3D + din,2D

+ dcor,avg
0.150 -3278 89.276

M7 φ + θ 0.173 -3265.7 86.763
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Fig. 4: The relationship between RSRP and the engineered features.
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Fig. 5: Comparison between the observed power-distance relationship and the theoretical 3GPP model.

apply the features in real-life NB-IoT scenarios, such as smart

metering or underground monitoring, the following aspects

need to be considered.

1) Indoor positioning problem: Computing indoor depth

and indoor distance can only be done knowing the precise

location of the UE and the eNB. In our case, the availability

of LIDAR point cloud was essential, as it enabled to deduce

the measurement points with ca. 50 cm precision. Albeit, one

certainly cannot rely on such data in an arbitrary deep-indoor

area, and the fact that global localisation systems, such as GPS

or GNSS are unreachable underground means that knowing

where the device resides can be difficult.

2) Significance of other environmental features: Even

though the results presented in Section V-A exhibit some

correlation between the indoor parameters and the RSRP,

a stronger relationship comes from φ and θ angles, which

point at other features describing the measurement area and

not being directly associated with indoor penetration. It is

enough to mention the following: the footprint of the buildings,

the size and structure of tunnel corridors and ventilation

ducts or thickness of the entry doors. Moreover, the presence

of machines, pipes or solid structures inside the considered
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Fig. 6: MAE of utilising different indoor distance and pene-

tration depth features in Eq. (2)

underground area may also influence the coverage situation

significantly. Last, but not least, one must not forget the impact

of above-ground buildings and other obstacles on power losses,

even deep-indoor. Evaluating the aforementioned features is

out of scope of this paper.

3) Feasibility: Examining Table II one may put in question

the sense of finding indoor depth/distance features to apply

them as signal power regressors; the MSE is considerably

higher than in the case of total 3D distance, which is easier

to compute knowing the locations of the transmitter and the

receiver. Furthermore, the features alone explain less than 3%

variance, which may lead to a fundamental question: should

one rely on indoor depth and indoor distance in coverage

prediction, or would it be more convenient to conduct trial-

and-error tests instead?

As a matter of fact, not only path-loss and coverage

modelling plays an important role in deep-indoor IoT service

deployment planning. For instance, it is essential to provide

all the devices for energy, either in a form of batteries (then

device accessibility and possibility of battery replace is a key)

or, possibly, with the use of locally deployed electrical instal-

lation. Moreover, in industrial scenarios, the presence of other

devices or machinery might potentially cause interference.

Since we observed a significant share of variance ex-

plained by the elevation and bearing angles, we conclude that

in underground scenarios the complex behaviour of signal

attenuation is primarily caused by geographical parameters

of the environment not explained by the features presented

in this work. Discovering, engineering and analysing other

parameters has been left for future work.

VII. CONCLUSIONS

In this paper we present a measurement campaign conducted

in an underground tunnel system. With the aid of LIDAR point

cloud data of the tunnels, we deduced the precise locations of

the measurement points and, besides 3D distance, we derived

3 more parameters: indoor depth, indoor distance and average

distance to the closest corridor. A basic statistical analysis

of the linear regression models revealed that indoor distance

features (indoor depth and indoor distance) are not explanatory

and alone cannot constitute a good approximator for margin

budgets in deep indoor situations. Additionally, it is shown that

current empirical models offer poor prediction performance

using such indoor distance metrics. Instead, features unrelated

to indoor distance (such as the average distance to the closest

corridor) represent stronger correlation to the signal attenua-

tion and should be further investigated for use in empirical

path loss models.
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