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Abstract—In this paper, we address the anomaly detection
problem where the objective is to find the anomalous processes
among a given set of processes. To this end, the decision-making
agent probes a subset of processes at every time instant and
obtains a potentially erroneous estimate of the binary variable
which indicates whether or not the corresponding process is
anomalous. The agent continues to probe the processes until it
obtains a sufficient number of measurements to reliably identify
the anomalous processes. In this context, we develop a sequential
selection algorithm that decides which processes to be probed at
every instant to detect the anomalies with an accuracy exceeding
a desired value while minimizing the delay in making the decision
and the total number of measurements taken. Our algorithm
is based on active inference which is a general framework to
make sequential decisions in order to maximize the notion of
free energy. We define the free energy using the objectives of the
selection policy and implement the active inference framework
using a deep neural network approximation. Using numerical
experiments, we compare our algorithm with the state-of-the-art
method based on deep actor-critic reinforcement learning and

demonstrate the superior performance of our algorithm.

Index Terms—Active hypothesis testing, anomaly detection,
active inference, quickest state estimation, sequential decision-
making, sequential sensing.

I. INTRODUCTION

In many practical applications such as remote health mon-

itoring using sensors, the goal is to identify the anomalies

among a given set of functionalities of a system [1], [2].

Here, the system is equipped with multiple sensors and each

sensor monitors a different, but not necessarily independent

functionality (which we henceforth refer to as a process) of

the system. The sensor sends its observations to the decision-

making agent over a communication link, and the received

observation may be distorted due to the unreliability in the

sensor hardware and/or the noisy link (e.g., a wireless channel)

between the sensor and the agent. Hence, the decision agent

needs to probe each process multiple times before it declares

one or more of the processes to be anomalous with the desired

confidence. Repeatedly probing all the processes allows the

agent to quickly find any potential system malfunction, but
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this incurs a large cost (e.g., higher energy consumption

that reduces the life span of the sensor network). Therefore,

the agent uses the controlled sensing technique with which it

probes a small subset of processes at every time instant. In this

context, we address the question of how the agent sequentially

chooses a subset of processes so that it accurately detects the

anomalies with a minimum delay and a minimum number of

sensor measurements.

A classical approach to solve the sequential sensor selection

problem is based on the active hypothesis testing frame-

work [3], [4] where the decision-making agent constructs a

hypothesis corresponding to each of the possible states of the

processes and determine which one of these hypotheses is true.

Active hypothesis testing is a well-studied problem and several

solution strategies have been proposed in the literature [5]–[9].

However, these approaches provide model-based algorithms

which are designed under simplified modeling assumptions.

This has motivated the researchers to design data-driven

deep learning algorithms [3], [4], [10]. These algorithms are

not only more flexible than traditional algorithms, but they

also possess reduced computational complexity. The existing

literature along these lines relies on the most fundamental re-

inforcement learning (RL) algorithms such as Q-learning [10]

and actor-critic [3], [4]. However, recently a new framework

called active inference has been shown to be a promising

complement to the traditional RL approaches for several

sequential decision-making problems [11]–[13]. Therefore, in

this paper, we develop and implement a novel policy to select

processes to obtain measurements at each step, inspired by

the active inference approach.

The contributions of the paper are as follows: we first

define the notion of free-energy based on the entropy as-

sociated with the estimate of the states of the processes

and the cost of sensing. This allows us to reformulate the

anomaly detection problem as an active inference problem

in which the goal is to minimize the free energy. We then

implement our algorithm using deep neural networks which

are relatively less explored in the context of active inference.

Our algorithm balances the model-based and the data-driven

approaches of active inference. Specifically, we use the model-

based posterior updates to tackle the uncertainties in the

observations, and the data-driven neural network to handle

the underlying statistical dependence between the processes.
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The active inference approach has many similarities to the

reinforcement-based algorithms, such as learning probabilistic

models, exploration and exploitation of various actions, and

efficient planning. So we compare our algorithm with the

existing RL-based approach presented in [4] using numerical

simulations. We observe that the delay in estimation is smaller

for our method while the corresponding accuracy and cost

of sensing are competitive to the performance of the RL-

based method given in [4]. This advantage makes our active

inference-based approach a better alternative to the existing

RL-based method.

II. ANOMALY DETECTION PROBLEM

We consider N random processes that are potentially sta-

tistically dependent. Each process is in one of the two states:

normal (denoted by 0) or anomalous (denoted by 1). The

states of these processes are denoted by a random vector

s ∈ {0, 1}N . The goal of the work is to detect the anomalous

processes out of the N processes, which is equivalent to

estimating the random vector s. The dependence pattern and

the number of anomalous processes are unknown to the

decision-making agent.

To estimate s, the decision-making agent probes one or

more processes at every time instant and obtains potentially

erroneous observations of the corresponding entries of s. Let

the set of processes probed at time k be Ak ∈ P and the

corresponding observation vector be yAk
(k) ∈ {0, 1}|Ak|.

Here, P denotes the power set of {1, 2, . . . , N} without the

null set (|P| = 2N −1). The observation corresponding to the

ith process at time k, denoted by yi(k) ∈ {0, 1}, obeys the

following probabilistic model:

yi(k) =

{

si with probability 1− p

1− si with probability p,
(1)

where p ∈ [0, 1] denotes the probability that the observation

differs from the actual state of the process. We assume

that given s, the observations obtained across different time

instants are jointly (conditionally) independent. Also, probing

each process incurs a cost of sensing of λ ≥ 0, i.e., the cost

of sensing at time k is |Ak|λ.

At each time k, the agent determines which processes to

observe (Ak) until it declares the estimate of s with the desired

confidence. The selection policy is designed such that the

stopping time K and the total cost of sensing λ
∑K

k=1 |Ak|
are minimized.

III. ANOMALY DETECTION USING DEEP ACTIVE

INFERENCE

The active inference framework relies on a normative theory

of brain function based on its perception of the environment.

At a high level, the active inference agent maintains a gen-

erative model that represents its perception. The generative

model Q comprises a joint probability distribution on the

state of the environment, the actions, and the corresponding

observations. The generative model assigns higher probabili-

ties to the states and actions that are favorable to the agent,

and therefore, it is biased towards the agent’s preferences.

Given a generative model, the agent inverts the model using

the method of approximate Bayesian inference. To this end,

it defines a variational distribution q that the agent controls.

The distribution q is optimized by minimizing the Kullback-

Leibler (KL) divergence between the distributions q and Q.

Therefore, if we choose actions from the distribution q, they

fulfill the agent’s preferences. The KL divergence between

the variational distribution and the generative model is called

the variational free energy. In short, the goal of the active

inference agent is to minimize its expected free energy (EFE)

into the future up to the stopping time K . Next, we provide

the details of the active inference framework in the context of

anomaly detection.

A. Environment

The environment of the active inference framework refers

to the set of states, actions, and observations. In the context

of our anomaly detection problem, we define the state of the

active inference framework at time k as the posterior belief

π(k) on the random vector s ∈ {0, 1}N . Since there are

m = 2N possible values for s, the posterior belief is an

m−dimensional vector π ∈ [0, 1]m. Further, the actions refer

to the selection of which processes to observe Ak ∈ P , and

yAk
denotes the observations.

We first note that at time k, the information available to

the agent is the set of processes observed till time k and the

corresponding observation vectors:
{

Aj ,yAj

}k

j=1
. Using this

information, the posterior belief vector π(k) ∈ [0, 1]m can be

computed in closed form as follows [4]:

πi(k) =
πi(k − 1)

∏

a∈Ak

[

(1− p)1Ea,k,i
+ p1Ec

a,k,i

]

∑m

i=1 πi(k − 1)
∏

a∈Ak

[

(1− p)1Ea,k,i
+ p1Ec

a,k,i

] ,

(2)

where 1 is the indicator function and the event Ea,k,i ,

{ya(k) = sa|H = i} denotes the event that the observation

obtained and the corresponding state are the same, when the

index corresponding to the true value of s is H = i. Also, the

event Ec
a,k,i , {ya(k) 6= sa|H = i} denotes the complement

of Ea,k,i. As a result, given the previous state π(k − 1), the

action Ak and the observation yA, we can exactly compute

the updated posterior belief π(k) using (2). Therefore, the

generative model that learns the environment is a distribution

on the actions and the observations: Q(Ak,yAk
|π(k − 1)) .

B. Preferences

In this subsection, we consider the preferences of the agent

that defines the generative model. Recall that our goal is to

estimate the vector s with confidence exceeding a specific

level while minimizing the stopping time K and the cost of

sensing λ
∑K

k=1 |Ak|. Clearly, the best estimate of s based

on the posterior belief corresponds to i∗(k) , argmax
i=1,2,...,m

πi(k),



and the confidence associated with the estimation is πi∗(k)(k).
Therefore, the agent terminates the detection algorithm when

argmax
i=1,2,...,m

πi(k) > πupper, (3)

where πupper is the desired level of confidence. In short, the

decision making relies only on the posterior belief π(k). Also,

as k increases, we get more observations and the posterior

belief becomes more accurate. Therefore, the selection policy

µ is a function of the latest value of the posterior belief:

µ(π(k − 1)) = Ak.

Further exploring the objective of the policy design, we note

that minimizing the stopping time is identical to driving the

largest entry of π(k) to πupper as soon as possible. We achieve

this by minimizing the entropy H(π(K)) of π(K) because the

entropy is minimized when the largest entry of π(K) is 1 and

the remaining entries are zeros. Here, the entropy is given by

H(π) = −
m
∑

i=1

πi log(πi). (4)

We note that this approach is different from the Bayesian log

likelihood ratio based-approach in [3], [4], [10]. Therefore,

we define the instantaneous objective function that the agent

aims to minimize at time k as follows:

r(k) = H(π(k)) −H(π(k − 1)) + λ |Ak| . (5)

This definition ensures that the overall objective function is

given by

K
∑

k=1

r(k) = H(π(K))−H(π(0)) +

K
∑

k=1

λ |Ak| , (6)

where minimizing H(π(K)) − H(π(0)) minimizes the en-

tropy in the posterior belief as H(π(0)) is a constant, and

minimizing
∑K

k=1 λ |Ak| minimizes the total cost of sens-

ing. The instantaneous objective function r(k) represents the

preferences of the agent at time k and it is encoded into the

generative model as the prior probability on the belief vector:

Q(yAk
|Ak, π(k − 1))

= σ (−H(π(k)) +H(π(k − 1))− λ |Ak|) , (7)

where σ(·) is the softmax function. Also, π(k) is a function

of π(k − 1),Ak and yAk
due to (2). We also note that

Q(yAk
,Ak|π(k−1)) = Q(yAk

|Ak, π(k−1))Q(Ak|π(k−1)).
(8)

Therefore, the generative model is completely defined if we

specify the distribution Q(Ak|π(k − 1)). This distribution is

defined based on the EFE of the future as we discuss in the

following subsection.

C. Total expected free energy

The variational free energy F is the KL divergence between

the variational distribution q(A|π(k − 1)) and the generative

model Q(A|π(k − 1)). Thus,

F (k) =
∑

A∈P

q(A|π(k − 1)) log
q(A|π(k − 1))

Q(A|π(k − 1))
. (9)

The goal of the agent is to minimize the total free-energy of

the expected trajectories into the future:

G(A, π) =

K
∑

j=k

E {F (j)|Ak = A, π(k − 1) = π} . (10)

In other words, the agent computes the expected free-energy

of all paths into the future and probabilistically chooses an

action that minimizes the expected free-energy. Therefore, a

popular choice for the distribution over the actions assigned

by the generative model is a Boltzmann distribution over the

expected free energies [11], [14], [15]:

Q(A|π(k − 1)) = σ (−G(A, π(k − 1))) , (11)

where σ(·) is again the softmax function, and G is given by

(10).

So far, we have presented the conceptual aspects of our

algorithm. We next discuss how to compute the expressions

in (9) and (10).

D. Deep-learning based implementation

We implement our algorithm using deep neural networks.

We start with the computation of the free energy in (9):

F = −H(q(A|π(k − 1)))

−
∑

A∈P

q(A|π(k − 1)) logQ(A|π(k − 1)), (12)

where the entropy term H(q(A|π(k − 1))) is a function

of the variational distribution q which is controlled by the

agent. We implement this distribution using a neural network

which we refer to as the policy network. The policy neural

network takes the posterior belief π(k − 1) as the input

and outputs stochastic selection policy qθ ∈ [0, 1]m−1 which

is a probability distribution on P and parameterized by θ.

Therefore, the entropy term is computed using the entropy of

the distribution outputted by the neural network. This neural

network also gives the policy implemented by the agent, which

is sampled from the distribution q learned at time k:

Ak = µ(π(k − 1)) ∼ qθ(π(k − 1)). (13)

Further, the second term in (12) can be determined using

(11) and (10). From (10), the EFE for a single time-step can

be approximated as follows [15]:

G(Ak, π(k − 1)) ≈ − logQ(yAk
|Ak, π(k − 1))

+ EA∼Q(·|π(k) {G(A, π(k))} . (14)

Here, the first term is determined using (7). However, the

second term in (14) involves explicit computation into the

future values. Therefore, we learn a bootstrap estimate of

this quantity using a neural network which we refer to as

the bootstrapped EFE-network. Let Gφ(A) denote this neural

network where φ is the parameter of the network. In other



words, the estimate of the neural network is the predicted

value of the free-energy of the system. Thus, (14) reduces to

G(Ak, π(k − 1)) = H(π(k)) −H(π(k − 1))

+ λ |Ak|+ EA∼Q(·|π(k) {Gφ(Ak+1, π(k))} . (15)

Substituting (15) and (11) into (12) completes the derivation

of the algorithm.

To summarize, our solution involves two neural networks

qθ and Gφ which represent the policy and the expected free-

energy, respectively. At every time instant, we sample an

action from the output distribution of the policy network

qθ and obtain the corresponding observation yAk
. Next, we

compute the bootstrapped EFE estimate and the variational

free energy using the neural networks and (12) and (15).

Finally, the parameter θ of the policy network is modified

by minimizing the variational free energy F (k). Similarly, the

parameter φ of the bootstrapped EFE-network is optimized by

comparing EFE-network output with the value of the expected

value G(A) calculated at time k. We use the ℓ2−norm of the

difference between the two estimates:

L = ‖Gφ(A)−G(A)‖
2
. (16)

The pseudo-code of the algorithm is summarized in Algo-

rithm 1 below.

Algorithm 1 Active inference for anomaly detection

Initialization: • Policy network qθ(a|π) with parameters θ

• Bootstrapped EFE-network Gφ(π; a) with parameters φ

1: repeat

2: Initialize the prior state π0 ∈ [0, 1]m (can be learned

from the training data)

3: Time index k = 0
4: while k < T and max

i
πi > πupper and k < Tmax do

5: Choose action Ak ∼ qθ(π(k − 1))
6: Generate observations yAk,k

7: Compute π(k + 1) using (2)

8: Compute the bootstrapped EFE estimate G using

(15)

9: Compute the variational free energy F using (11)

and (12)

10: Update the policy network network by minimizing

the variational free energy F with respect to θ

11: Update the bootstrapped EFE-network by minimiz-

ing the boostrapping loss in (16) with respect to φ

12: Increase time index k = k + 1
13: end while

14: until

15: Declare the estimate corresponding to argmax
i

πi

IV. NUMERICAL RESULTS

In this section, we present numerical results comparing our

algorithm with the actor-critic method in [4]. The simulation

setup is similar to that in [4]. We choose the number of

processes as N = 3 and thus, m = 2N = 8. The probability of

a process being normal is taken as q = 0.8. Here, the first and

second processes are assumed to be statistically dependent,

and the third process is independent of the other two. The

correlation between the dependent processes is captured by

the parameter ρ ∈ [0, 1]:

P {s1 = 0, s2 = 0} = q2 + ρq(1− q) (17)

P {s1 = 0, s2 = 1} = q(1− q)(1 − ρ) (18)

P {s1 = 1, s2 = 0} = q(1− q)(1 − ρ) (19)

P {s1 = 1, s2 = 1} = (1− q)2 + ρq(1 − q). (20)

Also, we assume that the crossover probability of the obser-

vations is p = 0.8, and the maximum number of time slots

for each episode (trial or run) is Tmax = 300.

For the active inference algorithm, we implement the policy

neural network and the bootstrapped EFE-network with three

layers and the ReLU activation function between consecutive

layers. To update the parameters of the neural networks, we

apply the Adam Optimizer, and we set the learning rates of

the policy network and the bootstrapped EFE-network as 10−6

and 5× 10−6, respectively. The implementation of the actor-

critic method is the same as that in [4] except that we use

the entropy based-reward function as defined in (5). Also, we

choose the learning rates of the actor and critic networks as

5× 10−4 and 5× 10−3, respectively.

The simulation results are presented in Figs. 1 to 3. Our

observations from the numerical results are as follows:

• Success rate: In Fig. 1, we plot the success rates of

the two algorithms as a function of the upper bound on

the posterior πupper. The success rate is defined as the

ratio between the number of times the algorithm correctly

identifies all the anomalous processes to the total number

of trials. We observe that the success rates achieved

by both algorithms are comparable in all the settings.

Also, the success rate depends primarily on πupper and

it is almost insensitive to λ and ρ. This is intuitive

because πupper sets the confidence level with which the

algorithms identify the anomalies, and therefore, for the

same confidence level, the success rates achieved by the

algorithms are almost the same.

• Stopping time: In Fig. 2, we show the variation of the

stopping time K with πupper. We see that the stopping

time increases with πupper in all cases, as a higher

value of πupper requires the algorithms to collect more

observations before they make the decision regarding the

anomalous processes. Also, we observe that the stopping

time decreases with an increase in ρ for all values of λ

and πupper. This decrease is expected due to the fact that

as the correlation increases, an observation corresponding

to one of the dependent processes gives more information

about the other. Consequently, the algorithms require

fewer observations, and thus, a smaller stopping time,

to achieve the same confidence level. Finally, we notice

that the stopping time for the active inference algorithm

is less than that of the actor-critic algorithm.
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Fig. 1: Variation of the success rate of the active inference and the actor-critic algorithms when πupper, λ and ρ are varied.

0.8 0.85 0.9 0.95 1
Upper bound on belief upper

4

6

8

10

12

14

16

18

20

22

S
to

p
p

in
g

 t
im

e 
K

Active Inference,  = 0
Actor-Critic,  = 0
Active Inference,  = 0.3
Actor-Critic,  = 0.3
Active Inference,  = 0.8
Actor-Critic,  = 0.8

(a) Cost per measurement λ = 0.05

0.8 0.85 0.9 0.95 1
Upper bound on belief upper

0

5

10

15

20

25

S
to

p
p

in
g

 t
im

e 
K

Active Inference,  = 0
Actor-Critic,  = 0
Active Inference,  = 0.3
Actor-Critic,  = 0.3
Active Inference,  = 0.8
Actor-Critic,  = 0.8

(b) Cost per measurement λ = 0.1

0.8 0.85 0.9 0.95 1
Upper bound on belief upper

0

5

10

15

20

25

S
to

p
p

in
g

 t
im

e 
K

Active Inference,  = 0
Actor-Critic,  = 0
Active Inference,  = 0.3
Actor-Critic,  = 0.3
Active Inference,  = 0.8
Actor-Critic,  = 0.8

(c) Cost per measurement λ = 0.2

Fig. 2: Variation of the stopping time K of the active inference and the actor-critic algorithms when πupper, λ and ρ are varied.

0.8 0.85 0.9 0.95 1
Upper bound on belief upper

6

8

10

12

14

16

18

20

22

24

T
o

ta
l n

u
m

b
er

 o
f 

m
ea

su
re

m
en

ts

Active Inference,  = 0
Actor-Critic,  = 0
Active Inference,  = 0.3
Actor-Critic,  = 0.3
Active Inference,  = 0.8
Actor-Critic,  = 0.8

(a) Cost per measurement λ = 0.05

0.8 0.85 0.9 0.95 1
Upper bound on belief upper

6

8

10

12

14

16

18

20

22

24

T
o

ta
l n

u
m

b
er

 o
f 

m
ea

su
re

m
en

ts

Active Inference,  = 0
Actor-Critic,  = 0
Active Inference,  = 0.3
Actor-Critic,  = 0.3
Active Inference,  = 0.8
Actor-Critic,  = 0.8

(b) Cost per measurement λ = 0.1

0.8 0.85 0.9 0.95 1
Upper bound on belief upper

8

10

12

14

16

18

20

22

24

26

T
o

ta
l n

u
m

b
er

 o
f 

m
ea

su
re

m
en

ts

Active Inference,  = 0
Actor-Critic,  = 0
Active Inference,  = 0.3
Actor-Critic,  = 0.3
Active Inference,  = 0.8
Actor-Critic,  = 0.8

(c) Cost per measurement λ = 0.2

Fig. 3: Variation of the total number of measurements
∑K

k=1 |Ak| of the active inference and the actor-critic algorithms when

πupper, λ and ρ are varied.



• Total number of measurements: Fig. 3 compares the total

number of measurements
∑K

k=1 |Ak| obtained by the two

algorithms in different settings. Clearly, the total number

of measurements decreases with ρ, which is expected as

mentioned above. Also, we infer that the total number of

measurements obtained by both algorithms are similar

in all the settings with the active inference algorithm

collecting slightly fewer measurements compared to the

actor-critic algorithm.

Thus, we conclude that the two algorithms achieve compa-

rable success rates and incur a similar total cost of sensing,

but the active inference algorithm has better stopping time

compared to the actor-critic algorithm. This indicates that our

algorithm identifies the anomalies faster than the actor-critic

algorithm. Moreover, the stopping time of our algorithm does

not vary much with λ while the stopping time of the actor-

critic algorithm increases with λ. This implies that the actor-

critic algorithm is more sensitive to the instantaneous cost

of sensing λ |Ak| than the total cost of sensing
∑K

k=1 λ |Ak|.
To elaborate, we note that both algorithms continue to acquire

measurements until the desired level confidence level πupper is

achieved. However, since the actor-critic algorithm optimizes

the average cost of sensing 1
K

∑K

k=1 λ |Ak|, as λ increases, it

picks a fewer number of processes per time instant and this

results in an increased stopping time. On the contrary, the av-

erage number of processes selected by our algorithm does not

vary much with λ. Therefore, we achieve better performance

by carefully designing the objective function using a novel

entropy based-function and the total cost of sensing whereas

the actor-critic algorithm optimizes the average change in

entropy and the average cost of sensing.

V. CONCLUSION

In this paper, we presented an anomaly detection algorithm

using an active inference-based approach. We modeled the

problem of anomaly detection as an active inference problem

aiming at the detection accuracy exceeding a desired value

while minimizing the delay and total cost of sensing. We

designed a new objective function based on entropy and imple-

mented the active inference algorithm using a deep learning-

based approach. Through simulation results, we compared

our algorithm with an algorithm based on the deep actor-

critic method in terms of the success rate, stopping time,

and total cost of sensing. The results demonstrated that our

algorithm can detect the anomalies quicker (as indicated by

the smaller stopping times) and achieves a competitive success

rate with a similar cost of sensing as the actor-critic algorithm.

However, we detect all the anomalous processes at a given

time, assuming that the (normal or anomalous) behaviors

of the processes remain unchanged until the agent makes a

decision. Extending our algorithm to track any changes in

the behavior of the processes over a longer time period is an

interesting direction for future work.
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