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Abstract—This paper investigates the optimal resource al-
location in free space optical (FSO) fronthaul networks. The
optimal allocation maximizes an average weighted sum-capacity
subject to power limitation and data congestion constraints. Both
adaptive power assignment and node selection are considered
based on the instantaneous channel state information (CSI) of
the links. By parameterizing the resource allocation policy, we
formulate the problem as an unsupervised statistical learning
problem. We consider the graph neural network (GNN) for the
policy parameterization to exploit the FSO network structure
with small-scale training parameters. The GNN is shown to
retain the permutation equivariance that matches with the per-
mutation equivariance of resource allocation policy in networks.
The primal-dual learning algorithm is developed to train the
GNN in a model-free manner, where the knowledge of system
models is not required. Numerical simulations present the strong
performance of the GNN relative to a baseline policy with equal
power assignment and random node selection.

Index Terms—Free space optical networks, resource allocation,
graph neural networks, primal-dual learning

I. INTRODUCTION

5G wireless networks are expected to provide high rates,
low latency and flexible constructions through an ultra-dense
deployment of small cells [1]. The cloud radio access network
(C-RAN) emerges as a promising cellular architecture to
satisfy these requirements [2]. It moves the baseband signal
processing to a centralized baseband unit (BBU) pool, and
distributed remote radio heads (RRHs) are responsible for
capturing signals and forwarding them to the BBU. RRHs
are connected to the BBU via fronthaul links. These links
are traditionally optical fibers with high capacity and zero
interference [3]. However, optical fiber is not ubiquitous
and its deployment can be expensive. Free space optical
(FSO) communication provides an attractive alternative that
maintains comparable advantages as optical fiber [4], [5].
More importantly, it is cost-efficient and flexible in implemen-
tation. On the other hand, FSO links are sensitive to channel
characteristics and may be significantly impacted by factors
like weather and turbulence. Various models are put forth
to characterize the FSO channel, based on which different
techniques are developed to reduce channel effects [6]–[9].

To mitigate the channel dependent degradation, cooperative
transmissions has been proposed in FSO networks. With a
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certain transmit power budget, adaptive powers are assigned
based on the CSI to maximize the channel capacity [10],
[11]. For the relayed communication, joint relay selection
and power adaptation are proposed to minimize the outage
probability or maximize the network throughout [12]–[14].
However, the aforementioned works employ relaxations to
simplify problem models leading to approximate solutions,
and are computationally expensive to implement with respect
to instantaneous channel state changes. These issues motivate
the application of machine learning due to its low complexity
and potential for model-free implementation. Deep learning in
particular has been leveraged for resource allocation problems
in wireless radio frequency domain [15]–[17]. In [18], we
proposed the deep neural network to solve the optimal power
allocation for WDM radio on free space optical (RoFSO)
systems. Deep neural networks are limited, however, in their
ability to generalize over varying network topologies.

As an extension of convolutional neural networks, graph
neural networks (GNNs) have been used to model and analyze
data collected from networks and has achieved signifigant
successes in many learning tasks [19]–[22]. With the use
of graph convolutional filters, GNNs exploit the underlying
irregular structure of network data in a manner that results in
lower computation complexity, less parameters for training,
and generalization capabilities relative to traditional deep
neural networks. As such, the GNN is considered as a suitable
candidate learning over network scenarios such as the FSO
fronthaul network and related communication networks.

In this paper, we consider the resource allocation problem
in the FSO fronthaul network of C-RAN architecture. RRHs
transmit optical signals to intermediate aggregation nodes
(ANs) through FSO links, and the latter forward aggregated
signals to the BBU through high speed fiber. Based on the
CSI, different powers are assigned to different RRHs and an
optimal AN is selected at each RRH to maximize the objective
function, subject to power limitation and data congestion con-
straints. The formulated optimization problem is non-convex
with complicated constraints (Section II). We introduce the
graph neural network (GNN) to parameterize the resource
allocation policy and translate the problem into a statistical
learning problem (Section III). The GNN is shown to be
permutation equivariant in the sense that relabelling RRHs
or ANs in network results in the same optimal policy. The
primal-dual learning algorithm is developed to train the GNN
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Fig. 1: The FSO fronthaul network.

solving the learning problem (Section IV). With the use of
policy gradient, its implementation is completely model-free
that avoids the error induced by the system model inaccuracy.
Numerical simulations are present to show significant perfor-
mance of the proposed GNN learning algorithm (Section V).

II. PROBLEM FORMULATION

We consider the free space optical fronthaul network con-
sists of remote radio heads, aggregation nodes and the base-
band unit. RRHs transmit optical signals through free space
to selected ANs. ANs then aggregate received signals and
forward them to the BBU through optical fiber. The RRHs are
distributed remotely in the space around ANs and equipped
with multiple apertures pointing towards ANs, such that each
RRH can possibly transmit signals to all ANs. The ultra-
wide field of view (UWFOV) beam acquisition is available
in ANs, through which each AN can receive optical signals
from different RRHs simultaneously. See Fig. 1 for details of
the proposed FSO fronthaul network. The resource allocation
problem considered here comprises the power adaptation and
the AN selection. Based on the CSI, different powers are
assigned to different RRHs and each RRH selects a best AN
for signal transmission, in order to maximize the objective
function. The exact objective can be adjusted according to
practical situations.

Assume there are N RRHs, M ANs and one BBU in a FSO
fronthaul network. The CSI between RRHs and ANs is repre-
sented by the matrix H ∈ RN×M , where [H]nm = hnm is the
CSI between n-th RRH and m-th AN for all n = 1, . . . , N
and m = 1, . . . ,M . The assigned power and the selected
AN for n-th RRH is based on the observed CSI H via a
power assignment policy Pn(H) and an AN selection policy
αn(H) = [αn1(H), . . . , αnM (H)]>. Here αnm(H) ∈ {0, 1}
is the indicator taking one if m-th AN is selected by n-
th RRH and zero if not, such that

∑M
m=1 αnm(H) ≤ 1.

In addition to channel states, separate state variables x ∈
RN+M represent the status of RRHs and ANs, such as
equipment conditions of RRHs and ANs. Given the collection
of resource allocations P(H) = [P1(H), . . . , PN (H)] and
∆(H) = [α1(H), . . . ,αM (H)] with network states H and
x, a channel capacity Cnm(x,H,P(H),∆(H)) is achieved
between n-th RRH and m-th AN. Since the FSO channel
is a fading process with coherence time on the order of

milliseconds, we consider it as an ergodic and i.i.d block
fading process. The instantaneous CSI tends to vary fast, so
as the instantaneous channel capacity. Therefore, a long term
average E [Cnm(H,P(H))] is the more meaningful metric.
We then consider the objective function as the weighted sum
of channel capacities over RRHs

N∑
n=1

ωn

M∑
m=1

E [Cnm(x,H,P(H),∆(H))] , (1)

where ω = [ω1, . . . , ωN ]> is the weight vector representing
priorities of different RRHs and the expectation E[·] is with
respect to the probability distribution of the CSI H.

Three constraints are considered. Assuming RRHs are
connected to a common power supply, the first is the expected
total power limitation

E

[
N∑

n=1

Pn(H)

]
≤ Pt. (2)

The second is motivated by the safety concern. To avoid
possible danger in optical beam transmission, we limit the
peak power that can be allocated on single optical signal

0 ≤ Pn(H) ≤ Ps, ∀n = 1, ..., N. (3)

The third is to prevent the data congestion at ANs. Specifi-
cally, we require the incoming sum-capacity at each AN less
than or equal to the capacity of optical fiber

N∑
n=1

E [Cnm(H,P(H),∆(H))] ≤ Ct, ∀m = 1, . . . ,M. (4)

Together, we formulate the resource allocation problem in the
FSO fronthaul network as follows

P := max
P,∆

N∑
n=1

ωn

M∑
m=1

E [Cnm(x,H,P(H),∆(H))] , (5)

s. t. E

[
N∑

n=1

Pn(H)

]
≤ Pt, 0 ≤ Pn(H)≤Ps,

M∑
m=1

αnm(H) ≤ 1,∀n = 1, ..., N,

N∑
n=1

E [Cnm(x,H,P(H),∆(H))]≤Ct,∀m=1, ...,M.

While some theoretical models exist for the channel distri-
bution, e.g. [6], and the channel capacity for FSO fronthaul
networks, e.g. [14], we stress that the above problem is given
without any particular system model. Pre-existing models may
not be accurate in practical systems, leading to inevitable
errors for model-based algorithms. We therefore propose a
“model-free” approach in this paper in which no explicit
knowledge or form of any of the models in (5) is assumed.

III. GRAPH NEURAL NETWORKS

With unknown objective function and complicated con-
straints, the optimization problem (5) is challenging. We



Fig. 2: The weighted bipartite graph representation of an FSO
fronthaul network with N = 5 RRHs and M = 2 ANs. The
RRHs (grey nodes) are connected only to ANs (blue nodes)
and vice versa through FSO links. The edge weight between
nodes is the CSI of the associated link.

pursue to solve it with a learning procedure. In particular,
the resource allocation policies are functions of the CSI H.
By introducing a parameterization θ ∈ Rp, we use a function
family Φ(H,θ) to model P(H) and ∆(H) as

[P(H),∆(H)] = Φ(H,θ). (6)

Substituting (6) into (5), we translate it into a statistical
learning problem. The goal here becomes to learn the optimal
function Φ(H,θ∗) with optimal parameters θ∗, which maxi-
mizes the objective function. This alternative learning problem
can be solved without system models but only depending on
system observations, as we demonstrate in Section IV.

For the learning parameterization Φ(H,θ), we introduce
the graph neural network (GNN). The GNN is well-know for
its ability to exploit network structures to process data, which
makes it a suitable candidate in our case. By interpreting
RRHs and ANs as nodes and links between them as edges,
the FSO fronthaul network can be abstracted as a weighted
bipartite graph G. The graph representation matrix S captures
the structure and the channel state information over network,
which is defined as

S =

(
0N×M H
H> 0M×N

)
. (7)

See Fig. 2 for details of the graph structure. The graph signal
x = [x1, . . . , xN+M ]> is defined on the top of nodes, where
xi is the signal value of i-th node indicating the status of RRH
or AN.

The key component constituting the GNN is the graph
convolutional filter, which processes the graph signal x based
on the graph matrix S. Recall the graph shift operation Sx
assigns to node i the aggregated information [Sx]i from its
neighbors scaled by edge weights. It generalizes the signal
shifting from the time domain to the graph domain and plays
an important role in defining the graph convolution. Shifting x
for k times yields the signal Skx, indicating k node exchanges

over graph. With a set of parameters θ0, . . . , θK , we aggregate
K shifted signals to obtain the higher-level feature

u =

K∑
k=0

θkSkx := G(S)x (8)

where G(S) is defined as the graph filter. Observe that G(S)
exploits the node information up to a neighborhood of radius
K and thus contains higher-level features generated from a
more complete picture of the graph. If particularizing G as
the line graph where each node is a time instant and x is the
signal sampled over time, the filter output G(S)x reduces to
the traditional convolution. We can then think of (8) as the
generalization of the convolution for graph signals.

The GNN is defined as a concatenation of layers, each of
which consists of a bank of graph filters followed by a point-
wise nonlinearity. To be more precise, at layer ` = 1, ..., L,
we have F input features {xg`−1}Fg=1. These features are
processed by graph filters {Gfg

` (S)}fg to produce higher-
level features {ufg

` }fg as in (8). We aggregate the latter over
the index g and then apply the nonlinearity σ(·) to get the
f -th output feature

xf
` =σ

(
F∑

g=1

ufg
`

)
=σ

(
F∑

g=1

Gfg
` (S)xg

−̀1

)
,∀f=1, ..., F. (9)

The input of the GNN is the input of 1-st layer x1
0 = x and

the output of the GNN is the output of L-th layer x1
L. The

learning parameters θ are filter parameters {θfg`0 , . . . , θ
fg
`K}`fg .

We then denote
Φ(x,S,θ) = x1

L (10)

as the non-linear map of the GNN on the graph matrix S with
parameters θ. The number of GNN parameters is independent
of the network size, making it computationally efficient for
training compared with the dense deep neural network.

A. Permutation Equivariance

With graph convolutional filters, the GNN accounts for the
network structure in its parameterization. One key property
obtained by doing this is the permutation equivariance, corre-
sponding to that the resource allocation policy of (5) is per-
mutation equivariant. In particular, we define the permutation
matrix Π as

Π ∈ {0, 1}(N+M)×(N+M) : Π1 = 1, Π>1 = 1. (11)

Put simply, the permuted vector Πx reorders the entries of
x and the permuted matrix Π>SΠ reorders the columns and
rows of S. We give the following theorem to formally state
this property according to [20].

Theorem 1: Consider the GNN Φ(x,S,θ) with the graph
signal x, graph matrix S and parameters θ. For any permuta-
tion Π, it holds that

Φ(Πx,ΠSΠ>,θ) = ΠΦ(x,S,θ). (12)



Theorem 1 establishes that the GNN with a permutation
of underlying graph Π>SΠ and input signal Πx generates
an equally permuted output. In the context of our case, it
indicates that reordering RRHs or ANs in the FSO network
indices an associated reordered resource allocation policy with
policy parameters θ unchanged. This property follows the
intuition of resource allocation problems since the labelling
of network nodes is arbitrary which should be reflected in our
learning parameterization Φ(x,S,θ). We remark that the deep
neural network does not satisfy the permutation equivariance
without considering the graph structure in its architecture.

With the use of GNN, we represent (6) as

Φ(x,S,θ)=[ΦP(x,S,θ),Φ∆(x,S,θ)] (13)

where ΦP(x,S,θ) = [ΦP1(x,S,θ), . . . ,ΦPK(x,S,θ)]> =
P(H) are assigned powers and Φ∆(x,S,θ) = ∆(H) are
selected ANs. With P = [0, Ps]

N the space satisfying the
peak power constraint (3) and Λ the space restricting only
one AN is selected by one RRH, we require θ belongs to
the set Θ = {θ|ΦP(x,S,θ) ∈ P,Φ∆(x,S,θ) ∈ Λ}. The
optimization problem (5) is then translated into the following
learning problem

P := max
θ∈Θ

N∑
n=1

ωn

M∑
m=1

E [Cnm(H,Φ(x,S,θ))] , (14)

s. t. E

[
N∑

n=1

ΦPn(x,S,θ)

]
≤ Pt,

N∑
n=1

E [Cnm(H,Φ(x,S,θ))]≤Ct,∀m=1, ...,M.

Note both the graph matrix S and the graph signal x are
input variables of the GNN, which vary across time reflecting
the instantaneous CSI of the FSO network and the status of
RRHs and ANs. Our goal is to learn optimal GNN parameters
θ∗ ∈ Θ that maximize the objective and satisfy constraints.

IV. PRIMAL DUAL LEARNING ALGORITHM

Consider the alternative problem (14). We develop a model-
free primal-dual learning algorithm to train the graph neural
network. With multiple constraints, it is straightforward to
consider working in the dual domain. By introducing the non-
negative dual variables λ = [λ1, . . . , λM+1] ∈ RM+1, the
Lagrangian of the problem is given by

L(θ,λ) =

N∑
n=1

ωn

M∑
m=1

E [Cnm(H,Φ(x,S,θ))]

+ λ1

(
Pt − E

[
N∑

n=1

ΦPn(x,S,θ)

])
(15)

+

M∑
m=1

λm+1

(
Ct −

N∑
n=1

E [Cnm(H,Φ(x,S,θ))]

)
where constraints in (14) are reinterpreted as weighted penal-
ties in (15). The associated dual problem is to search for

optimal θ and λ that make a so-called “saddle point”, i.e.
respectively maximize and minimize the Lagrangian,

D = min
λ
D(λ) = min

λ
max
θ∈Θ
L(Φ(x,S,θ),λ). (16)

The null duality gap D − P = 0 is achieved for con-
vex optimization problems, in which we can work on the
dual problem (16) instead without loss of optimality. The
optimization problem (14) is not necessarily convex with
unknown system models, i.e., unknown objective function
and constraints can be non-convex. However, for the learning
parameterization Φ(H,θ) with strong function approximation
ability, the duality gap of (14) can be sufficiently small close
to null [17], [18].

We develop a primal-dual learning algorithm to solve the
dual poblem (16), which then solves the primal problem
(14) as well. The primal-dual algorithm updates both the
primal variables θ and the dual variables λ iteratively with
gradient descents, searching for the saddle point (θ∗,λ∗) that
is maximal w.r.t. the primal variables and minimal w.r.t. the
dual variables. Note that this saddle point is local because
of the non-convexity, whose influence can be mitigated by
methods such as performing algorithm multiple times to find
the best solution. In particular, the algorithm is divided into
two steps at each iteration:

(1) Primal step. At k-th iteration, let θk and λk be current
primal variables and dual variables. We update the primal
variables as

θk+1 = θk + δk∇θL(θk,λk). (17)

where δk > 0 is the step-size at iteration k. Observe that this
update needs the system model to compute the gradients of
the Lagrangian defined in (15). As we do not assume this to be
available due to unknown system models, we resolve this issue
using the policy gradient method common in reinforcement
learning settings [23]. In particular, this approach considers
the resource allocation policy Φ(x,S,θ) as samples drawn
from a predetermined probability distribution πx,S,θ(Φ) pa-
rameterized by the output of the GNN. With the use of the
likelihood ratio identity, we can express the function gradient
that takes the form of ∇θE[f(H,Φ(x,S,θ))] as

∇θE[f(H,Φ(x,S,θ))]=E[f(H,Φ)∇θlogπx,S,θ(Φ)] (18)

where Φ is the random sample drawn from the distribution
πx,S,θ(Φ) that is determined by (x,S,θ). As such, we can
represent the gradient of the Lagrangian in (17) as

∇θL(θ,λ)=E

[(
N∑

n=1

ωn

M∑
m=1

Cnm(H,Φ) +λk1

(
Pt−

N∑
n=1

ΦPn

)

+

M∑
m=1

λkm+1

(
Ct−

N∑
n=1

Cnm(H,Φ)

)
∇θlog πx,S,θ(Φ)

]
(19)

where E[·] is approximated by sampling N realizations from
πx,S,θ(Φ) and taking the average. It should be emphasized
that (19) is model-free as the gradient of log πx,S,θ(Φ) can



be computed given the distribution πx,S,θ(Φ), while capacity
values Cnm(H,Φ) and ΦPn can be observed in the system.
Furthermore, appropriate distributions shall be selected for
πx,S,θ(Φ) to satisfy the feasibility condition θ ∈ Θ.

(2) Dual step. With the obtained θk+1, the update of dual
variables λ takes the form

λk+1
1 =

[
λk1 − ηk

(
Pt − E

[
N∑
n=1

ΦPn(x,S,θ)

])]
+

, (20)

λk+1
m+1=

[
λkm+1−ηk

(
Ct−E

[
N∑
n=1

Cnm(H,Φ(x,S,θ))

])]
+

(21)

for all m = 1, . . . ,M , where ηk is the step-size and [·]+ is
the non-negativity operator due to the definition of λ. The
dual update can be implemented with system observations
ΦPn(x,S,θ) and Cnm(H,Φ(x,S,θ)), such that it is also
model-free with no need of system models. As in the primal
update, the expectation E[·] can be approximated with the
average of S samples of H.

The primal-dual update performed iteratively provides a
model-free approach towards solving for the GNN parameters
θ and corresponding dual variables λ in problem (14). We
summarize the whole training method in Algorithm 1.

V. SIMULATION RESULTS

In this section, we present simulation results to corroborate
our theory. We compare the GNN primal-dual learning policy
with the baseline policy, i.e., equal power assignment and
random AN selection, to show its strong performance.

We consider a FSO fronthaul network as in Fig. 1. RRHs
and ANs are distributed uniformly at random at locations
rn ∈ [−5km, 5km]2 and am ∈ [−1km, 1km]2, and the weight
vector ω is drawn randomly from zero to one. Since we
are doing numerical simulations not physical experiments,
the CSI samples {H} and corresponding channel capacities
{Cnm(x,H,Φ)} cannot be observed. We use system models
in [14] to compute these observation but keep in mind that
the GNN learning policy works in a model-free manner. The
GNN architecture is with L = 8 layers, each of which contains

Algorithm 1 GNN primal-dual learning algorithm
1: Input: Initial primal and dual variables θ0,λ0

2: for k = 0, 1, 2, . . . do {main loop}
3: Draw CSI samples {H} of batch size S, and compute

the allocated resources {Φ} according to the GNN
Φ(x,S,θ) and the policy distribution πx,S,θk(Φ)

4: Obtain channel capacity observations Cnm(x,H,Φ)
with current allocated resources {Φ} and the CSI {H}

5: Compute the policy gradient ∇θL(θk,λk) by (19)
6: Update the primal variable by (17)

θk+1 = θk + δk∇θL(θk,λk)
7: Update the dual variable by (20)-(21)

λk+1 =
[
λk − ηk∇λL(θk+1,λk)

]
+

8: end for
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Fig. 3: The performance of the GNN policy and the baseline
policy for 5 RRHs and 2 ANs with Pt = 1.5W and Ps =
0.5W: (left) the objective value; (right) the constraint value.
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Fig. 4: The performance of the GNN policy and the baseline
policy under different network scenarios: (left) power limita-
tions with Pt = 3W and Ps = 1W; (right) the network with
10 RRHs and 4 ANs.

F = 1 graph filter of order K = 5 followed by the ReLU
nonlinearity σ(·) = [·]+. The final layer passes through a
sigmoid function to normalize the outputs and the latter is
used as parameters of the policy distribution πx,S,θ(Φ). The
truncated Gaussian and categorical distributions are selected
to satisfy the feasibility condition θ ∈ Θ. The GNN is trained
with the primal-dual learning algorithm, where the ADAM
optimizer and geometrically decaying step-sizes are used for
the primal update and the dual update, respectively. We point
out this implementation is completely model-free, requiring
only system observations Cnm(H,Φ(x,S,θ)) in practice.

We first simulate on a small network with N = 5 RRHs
and M = 2 ANs. The limitations are Pt = 1.5W, Ps = 0.5W
and Cs = 20. Fig. 3 (left) shows the performance, i.e., the
weighted sum-capacity, achieved by the GNN learning policy
and the baseline policy. We see that the learning process
of the GNN converges as the training iteration increases.
The GNN outperforms the baseline as we expected, and we
emphasise that this performance improvement is obtained
without explicit knowledge of capacity function models. The
constraint values are shown in Fig. 3 (right). Both the power
limitation and the data congestion constraints are satisfied as
the learning process converges. This implies the feasibility of
the optimal solution generated by the learned GNN.

We then consider the GNN learning policy under different
system scenarios; namely, larger power limitations Pt = 3W



and Ps = 1W (Fig. 4 (left)) and the larger network with
N = 10 and M = 4 (Fig. 4 (right)). In general, the GNN
maintains good performance for both cases. Specifically, we
observe that the performance improvement of the GNN is
emphasised compared with Fig. 3. This is because with larger
allowed powers or at a larger network, the GNN gains more
space to manipulate the resource allocation and thus better
exhibits its learning capacity. Moreover, since the number of
GNN parameters does not scale with the size of networks,
either the training or the implementation of the GNN keeps
computationally efficient for large networks. However, model-
based algorithms will face a more complicated problem with
more expensive computations.

We now evaluate the permutation equivariance of
the GNN. For the FSO network with N = 5
RRHs and M = 2 ANs, we consider two permuta-
tions Π1x = [x3, x4, x5, x2, x1, x6, x7]> and Π2x =
[x2, x1, x5, x4, x3, x7, x6]>, i.e., relabelling RRHs and ANs.
Table I shows the expected objective value over 100 samples
for the original and two permuted network scenarios. The
results show that the same GNN learned from original net-
work performs well for two permuted networks, verifying the
permutation equivariance proposed in our theory. The small
differences among three cases are because 100 CSI samples
are drawn from the probability distribution randomly.

TABLE I: Performance of the GNN learning policy for
permuted networks.

Objective value
Original network 21.397
Network permutation Π1 21.405
Network permutation Π2 21.381

VI. CONCLUSION

We consider the optimal resource allocation in FSO fron-
thaul networks. The optimization problem takes the form of
constrained statistical learning, where the resource allocation
policy can be parameterized with the graph neural network.
The GNN accounts for the network structure in its param-
eterization and thus exhibits the permutation equivariance,
showing that it can achieve same performance on reordered
FSO networks. We further develop a primal-dual learning
algorithm to train the GNN, the implementation of which is
model-free without requiring information of system models.
This property is essentially important for FSO networks, in
which cases sophisticated optical systems may be difficult to
model or modelled inaccurately, leading to the performance
degradation of model-based algorithms. Numerical simula-
tions demonstrated the GNN is an effective parameterization
for learning resource allocation policies and outperforms the
baseline policy significantly. In the near future, we will extend
the GNN learning algorithm to more FSO resource allocation
scenarios.
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