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Abstract—A distributed storage system (DSS) needs to be
efficiently accessible and repairable. Recently, considerable effort
has been made towards the latter, while the former is usually not
considered, since a trivial solution exists in the form of systematic
encoding. However, this is not a viable option when considering
storage that has to be secure against eavesdroppers. This work
investigates the problem of efficient access to data stored on
an DSS under such security constraints. Further, we establish
methods to balance the access load, i.e., ensure that each node is
accessed equally often. We establish the capacity for the alphabet
independent case and give an explicit code construction. For the
alphabet-dependent case we give existence results based on a
random coding argument.

I. INTRODUCTION

The problem of locality, i.e., the ability of a distributed

storage system (DSS) to recover a specified number of node

failures from only a small number of other nodes, has been

studied intensively in recent literature [1], [2]. This increased

interest is driven by the desire to avoid large overhead and

organizational complexity stemming from involving a large

number of nodes in the repair process. By the same reasoning,

it is not desirable for a system having to connect to a large

number of nodes to recover data requested by a user. When

user data is not secret, this is not an issue, as a systematic

encoding of the data offers a simple and optimal solution,

where a user retrieving data can obtain his files from a single

server. However, when any number of t nodes should not be

able to learn anything about the user data, systematic encoding

is not possible anymore. In this work, we consider this problem

of local access in secure DSS. While this problem is by its

motivation closely related to locally repairable codes, we stress

that we are not concerned with secure storage codes that offer

local repair of failed nodes, as, e.g., considered in [3], [4].

Assume kD data files are given, which can be considered as

symbols of some alphabet. We want to store these files on n,

where n > kD, servers such that: (a) a passive eavesdropper

having access to up to t servers cannot obtain any information;

(b) each file can be recovered by accessing no more than r
servers (clearly, r > t); (c) the system can tolerate a given

number of server failures without data loss.

Let us show the requirements with use of simple example.

Assume we have two files X0 and X1 and want to store them

in a secure way on three servers. A possible scheme is shown
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in Fig. 1. Here, Z denotes a random variable over the same

alphabet as X0 and X1. Clearly, an eavesdropper with access

to a single server does not gain any information about the

files. At the same time, accessing two servers is sufficient to

recover each of the files, e.g., to recover file X0 it suffices to

read X1 + Z and X0 + X1 + Z and calculate X0 = (X0 +
X1 + Z) − (X1 + Z). Note that the goal of a secure LRC

as considered in [3], [4] would be to locally recover X0 +Z ,

X1 +Z , or X0 +X1 + Z (codeword symbols) instead of X0

or X1 (data/message symbols).

X0 + Z X1 + Z X0 +X1 + Z

Fig. 1: Example of a secure DSS storing two files such that

each file can be retrieved from two nodes.

Previous works that consider this problem include [5]–[7].

However, the solutions presented there impose a very specific

access structure, where accessing any part of a file always

requires accessing the same subset of nodes, while other nodes

never participate in the retrieval of a file.

This problem is a particular case of a secret sharing prob-

lem. In secret sharing, the common secret is distributed among

the participants. The participants possess so-called “shares”,

such that only allowed subsets of participants can recover

the secret and all other coalitions can derive no additional

information. The most popular and well-investigated secret

sharing scheme is an (n, s)-threshold scheme proposed and

investigated in [8], [9]. In such a scheme there are n shares

and any subset of at least s participants can recover the secret,

while any set of < s share provides no information about the

secret. In [8], [9] the solution of this problem is formulated

in terms of polynomials. The connection to Reed–Solomon

codes was established in [10]. In [11], secret sharing schemes

with use of linear codes were considered and the connection

in between access structure and minimal weight codewords of

the dual code was established.

In this paper, we require a special access structure, i.e. any

file can be recovered by accessing at most r servers. This is

different from the threshold secret sharing as (a) we do not

require any r servers to be able to recover the file; (b) we want

to recover a single file rather that the whole secret (k files).

There has also been considerable work on secret sharing

schemes with multiple secrets and specific access structures

[12]–[14]. The difference to our work is that there the require-
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ment is that any set of users that is not specified as part of

the access structure of a given secret is not allowed to learn

anything about this secret. Our definition of accessibility is

a relaxed version of this definition of an access structure, in

the sense that we allow any set of > t nodes to recover any

information of the file, and only require existence of recovery

sets of a specified size for each file/secret.

Another related problem is that of private information

retrieval (PIR) as posed in [15]. There, the user wants to

retrieve a file from a DSS such that any set of t servers does

not learn the index of the desired file. However, while we allow

the servers to learn the index of the retrieved file but not the

file contents, the servers in the PIR setting are not allowed to

know the index, but do know the file contents.

II. PRELIMINARIES

A. Notations

Let A be an a × b matrix and A ⊆ {0, ..., b − 1} be a set

of integers. We denote by A|A the restriction of the matrix

A to the columns indexed by A. Further, we denote by 〈A〉
and 〈A〉c the row span and column span of A, respectively.

We also use the notation [n] , {0, . . . , n − 1}.We denote a

linear code of length n, dimension k, and distance d over Fq

by [n, k, d]q . If the distance and/or field size are not important,

we simply write [n, k].

B. Problem Description

We are interested in information-theoretic security and begin

by formally stating the problem of t-collusion secure storage.

Definition 1 (t-Collusion Secure Storage): An (n, kD, d, t)
DSS stores kD files X = (X0, ..., XkD−1) ∈ F

kD on n
nodes. We denote the information stored in the system by

Y = (Y0, ..., Yn−1) ∈ F
n. The encoding function is given by

the randomized mapping

f : FkD 7→ F
n,

where by randomized we mean that f is defined by conditional

probabilities Pr(Y |X).
In what follows we assume a uniform distribution on X . By

H(X) we denote the entropy of a discrete random variable

(RV) and by I(X ;Y ) = H(X) − H(X |Y ) we denote the

mutual information in between discrete RVs X and Y .

Any set of n−d+1 nodes recovers all files, i.e., ∀ D ⊆ [n]
with |D| ≥ n− d+ 1 it holds that

H(X |YD) = 0 .

The system is t-collusion secure, i.e., ∀ T ⊂ [n] with |T | ≤ t
it holds that

I(X,YT ) = 0 .

In accordance with the literature on secret sharing [8], [9] we

say a storage system is ideal if H(Yi) = H(Xj) ∀i ∈ [n], j ∈
[kD]. In this work we only consider ideal storage systems.

This security model is the same as in [3], [4], but while

these works considered local repair of nodes, we require the

property of local access.

Definition 2 (Access Complexity): A storage system as in

Definition 1 is of access complexity r if ∀i ∈ [kD] ∃A ⊂ [n]

with |A| ≤ r such that H(Xi|YA) = 0. We call the set A a

recovery set of i and say it is minimal if

H(Xi|YA\a) > 0 , ∀ a ∈ A .

Our goal is to maximize the secure storage rate

R ,
kD
n

(1)

of the DSS under the given constraint. We refer to the highest

achievable rate as the capacity of the system.

Definitions 1 and 2 define a t-collusion secure storage

system in the general case, where the data stored at the nodes

is an arbitrary function of the randomness and the files. To

transform this problem into a code design task, we define the

notion of a linear t-collusion secure DSS with linear access

complexity. We will show in Section III that for the alphabet-

independent case it suffices to consider linear schemes to

achieve the capacity, i.e., the highest possible storage rate.

Definition 3 (t-Collusion Secure Code): Let C be a linear

[n, kD+kS, d] code. We say that C is a t-collusion secure code

if there exists a matrix G with 〈G〉 = C that can be written as

G =

(
GD

GS

)

, (2)

where GD ∈ F
kD×n and GS ∈ F

kS×n, such that d⊥S > t,
where d⊥S is the distance of the code with parity check

matrix GS .

For a linear t-collusion secure storage system the access

complexity can be directly related properties of the generator

matrix.

Definition 4 (Linear Access Complexity): For a code C as

in the Definition 3 the access complexity r is given by

r = max
i∈[kD ]

min
A⊆[n]

ei∈〈G|A〉
c

|A| ,

where ei denotes the i-th unit vector.

If a t-collusion secure code is of access complexity r by

Definition 4, each of the kD files can be obtained from the

stored symbols by performing the respective linear combina-

tions that result in the unit vector when performed on the

columns of G.

Theorem 1: A t-collusion secure code as in Definition 3

gives a t = (d⊥S − 1)-collusion secure storage system as in

Definition 1.

Proof: The word Y can be split into two parts by

Y = (X0, ..., XkD−1, Z0, ..., Zks−1) ·G

= (X0, ..., XkD−1) ·GD
︸ ︷︷ ︸

YD

+(Z0, ..., Zks−1) ·GS
︸ ︷︷ ︸

YS

.

Any t = d⊥S − 1 columns of GS are linearly independent.

Therefore, for any set of nodes T ⊂ [n] with |T | ≤ t
choosing Z0, ..., Zks−1 i.i.d. random gives YS,T ∈ F

1×|T |

distributed uniformly over the vectors of length t and therefore

independent of X . It follows that

I(X,YT ) = I(X,YD,T + YS,T ) = 0 .

Remark 1: Trivially, it holds that r > t and by the Singleton

bound it holds that t ≤ kS .



III. BOUNDS

This section is devoted to the bounds on the distance d
and storage dimension kD for the case of general t-collusion

secure storage system, i.e. we consider an arbitrary randomized

mapping f . We note that the bounds do not depend on r and

are based on the techniques from [3].

Definition 5: Define the support of the map f by

supp(f(X)) = {Y : Pr(Y |X) 6= 0} .

Theorem 2: Consider a t-collusion secure (n, kD, d, t) DSS.

The following holds for the parameters of the system

d ≤ d∗q(n− t, qkD ) ,

where d∗q(n,M) is any upper bound on the distance of a q-ary

code of length n and of size M .

Proof: Let us fix the set T ⊆ [n] with |T | = t,
X ∈ F

kD
q and some Y ∈ supp(f(X)). Due to the fact that

I(X,YT ) = 0 we claim that for any X ′ 6= X there must exist

Y ′ ∈ supp(f(X ′)) with Y ′
T = YT .

Let C0 = {Y ′ ∈ supp(f(X ′)) : X ′ ∈ F
kD
q , Y ′

T = YT }
such that |C0 ∩ supp(f(X ′))| = 1. We note that |C0| = qkD .

Since C0 has fixed values on the coordinates T ⊆ [n], the code

C[n]\T ∈ F
n−t
q must be a q-ary code of length n− t and size

qkD and theorem statement follows.

Corollary 1: We note that the following inequality holds

kD ≤ logq M
∗
q (n− t, d),

where M∗
q (n, d) is any upper bound on the size of a code with

length n and distance d.

Theorem 3 (Capacity of t-Collusion Secure Storage): The

capacity of an ideal (n, kD, d, t) DSS with access complexity

r = t+ 1 is

C(n,kd,d,t) =
kD

kD + t
.

Proof: Converse: By the Singleton bound and Theorem 2

it holds that 1 ≤ d ≤ d∗q(n − t, qkD ) ≤ n − t − kD + 1 and

thus n ≥ kD + t.
Achievability: Given by generalized Reed–Solomon (GRS)

codes, as shown later in Lemma 2, as they achieve both the

upper bound on the storage rate and the lower bound of r > t
on the access complexity.

We refer to a t-collusion secure code or DSS as optimal if it

attains this capacity.

IV. CONSTRUCTIONS

In the following, we will determine a sufficient and nec-

essary condition for a code to be a t-collusion secure code.

The result presented in Theorem 4 is similar to that in [5].

However we take a different approach, which will enable us

to further extend these results in the following.

Lemma 1: Let A1 ∈ F
a×b and A2 ∈ F

a×b. Then rk(A1 ·
AT

2 ) = a if and only if 〈A1〉
⊥
∩ 〈A2〉 = {0}.

Proof: Assume rk(A1 · AT
2 ) < a. Then there exists a

non-zero v ∈ F
a×1 such that A1 · A

T
2 v = A1 · (vA2)

T = 0.

It follows that vA2 ∈ 〈A1〉
⊥

. Clearly vA2 ∈ 〈A2〉 and the

lemma statement follows.

Theorem 4: An [n, k, d] code C is an optimal (n, kD =
k− t, d, t) secure storage code of access complexity r = t+1
if and only if it contains an [n, t] MDS subcode.

Proof: The necessity follows directly from Theorem 4 and

the Singleton bound. To show that it is also sufficient for a

code to contain an [n, t] MDS subcode, consider a code C with

a generator matrix G as in Definition 3, where GS ∈ F
t×n is a

generator matrix of an [n, t] MDS code CS . Then the generator

matrix of C can be written as

G =
(
M 0

0 It

)
·
(

G′

D

GS

)

,

where G′
D ∈ F

kD×n, M ∈ F
kD×kD is of full rank, and

It ∈ F
t×t is an identity matrix. Let B ∈ F

kD×n be a matrix

containing codewords of weight t + 1 from C⊥
S as rows, i.e.,

GS ·BT = 0. Define M = (G′
D ·BT )−1, then

G · BT =
(
M·G′

D·BT

GS ·BT

)

=
(
(G′

D·BT )−1·G′

D·BT

0

)

=
(
IkD
0

)

(3)

and it follows that each of the kD unit vectors can be obtained

as a linear combination of exactly r = t + 1 columns, as

required by Definition 4.
It remains show that G′

D ·BT is invertible, i.e., of full rank.

By Lemma 1 this is the case if and only if

〈G′
D〉

⊥
∩ 〈B〉 = {0} . (4)

Without loss of generality assume that the set {0, 1, ..., kD +
t−1} is an information set of the code C. Let the rows of B be

codewords of C⊥
S , where the support of the i-th row is given by

supp(Bi,:) = {i, kD, kD +1, ..., kD+ t−1}. The existence of

such codewords in the code C⊥
S follows from observing that

GS is the parity check matrix of an MDS code of distance

d⊥S = t+1. Such a code contains a codeword with supp(c) =
S for any S ⊂ [n] with |S| = d⊥S (cf. [16, Chapter 11]). It

follows that the indices of the non-zero columns of B are given

by supp(B) = {0, 1, ..., kD + t− 1}. Denote by G
′

D, B, and

GS the respective matrices restricted to the columns indexed

by supp(B). Note that G′
D ·BT = G

′

D ·B
T

. Now assume on

the contrary that this matrix is not of full rank, i.e., there exists

a non-zero vector v ∈ F
1×kD such that (G

′

D · B
T
) · vT = 0.

Since GS · BT · vT = GS · B
T
· vT = 0 by definition, these

conditions give
(

G
′

D

GS

)

︸ ︷︷ ︸

G
′

·(v ·B)T = 0 .

The support of B is an information set of the code C by

definition, so the matrix G
′
∈ F

kD+t×kD+t is of full rank

kD + t, hence the equation can only be fulfilled if v ·B = 0.

This is a contradiction since the rows of B are clearly

independent. It follows that G′
D ·BT is of full rank.

Lemma 2: An [n, k = kD + t] generalized Reed-Solomon

(GRS) code is an optimal t-collusion secure code for any t
with 0 < t < kD .

Proof: It is easy to see that a GRS code contains an [n, t]
MDS subcode for any t in the given range and the optimality

follows from Theorem 4.
Example 1: We construct an (n = 6, kD = 2, d = 3, t = 2)

secure storage code over F7 of access complexity r = t+1 =
3. We begin with a [6, 4] GRS code with generator matrix in



Vandermonde form, where the first two rows give GD and the

last two rows give GS , i.e.,

G′
D = ( 1 1 1 1 1 1

1 2 3 4 5 6 ) and GS = ( 1 4 2 2 4 1
1 1 6 1 6 6 ) .

For B we use

B = ( 1 0 2 1 0 0
0 1 3 2 0 0 )

and obtain M = (G′
D · BT )−1 = ( 4 5

1 6 ). Finally, we get

G =

(
4 5 0 0
1 6 0 0
0 0 1 0
0 0 0 1

)

·

(
G′

D

GS

)

=

(
2 0 5 3 1 6
0 6 5 4 3 2
1 4 2 2 4 1
1 1 6 1 6 6

)

.

It is easy to check that (3) holds.

V. LOAD BALANCING

While Theorem 4 provides a simple sufficient and necessary

condition for a code to be an optimal t-collusion secure code,

the access structure used for proving the optimality, which is

similar to that in [5], has some disadvantages. As the support

of B is restricted to a specific set of kD+t positions, where kD
columns contain a kD × kD identity matrix, the access to the

nodes would be very unbalanced, as there are t nodes which

are accessed in the recovery of any file, kD which are accessed

in the recovery of exactly one file each, and n − (kD + t)
nodes which are never accessed. In this section, we consider

constructions with more balanced access structures. We begin

by formally defining our objective.

Definition 6 (Balanced Access): Let B ∈ F
kD×n be a matrix

where every row has weight t + 1. We say the matrix is

balanced if every column is of weight
⌊
kD(t+ 1)

n

⌋

≤ wt(B′
:,j) ≤

⌈
kD(t+ 1)

n

⌉

, ∀ j ∈ [n] .

Example 2: Consider the same system as in Example 1. The

matrix B given there is clearly not balanced, as Y2 and Y3 are

both required for the retrieval of X0 and X1. By Defintion 6

the weight of each column in a balanced access structure B′

is wt(B′
:,j) = kD(t+ 1)/n = 1. It is easy to check that

B′ = ( 0 1 2 0 0 6
1 0 0 5 6 0 )

is balanced as in Definition 6 and satisfy condition that G′
D ·

BT is invertible. The respective generator matrix is given by

G =

(
2 2 0 0
5 2 0 0
0 0 1 0
0 0 0 1

)

·

(
G′

D

GS

)

=

(
4 6 1 3 5 0
0 2 4 6 1 3
1 4 2 2 4 1
1 1 6 1 6 6

)

.

In what follows we use the language of parity-check ma-

trices to present our results. In accordance to (2) we have

C⊥ = C⊥
D ∩ C⊥

S and thus

HD =

(
A
H

)

, HS =

(
H
B′

)

, (5)

where HD ∈ F
(n−kD)×n
q , HS ∈ F

(n−kS)×n
q and H ∈

F
(n−kD−kS)×n
q are parity-check matrices of codes CD, CS and

C accordingly. For A ∈ F
kS×n
q , B′ ∈ F

kD×n
q , the matrix

(
A
H
B′

)

forms a basis of Fn
q (the rows are linearly independent).

We note that B′ from (5) can be used as an access structure.

Indeed C⊥
D = 〈HD〉 and thus C⊥

D∩〈B′〉 = {0} due to the linear

independence. The next lemma describes all possible access

structures.

Lemma 3: Let HS be given by (5), then any valid access

structure B is given by

B = (A1, A2) ·HS ,

where A1 ∈ F
kD×(n−kD−kS), A2 ∈ F

kd×kD , and rk(A2) =
kD.

Proof: Clearly B ⊂ C⊥
S , since we require GS ·B

T = 0 by

definition, so B = A · HS for some A ∈ F
kD×(n−kS). Now

assume rk(A2) < kD , i.e., there exists a non-zero vector e
such that e ·A2 = 0. Then

e ·B = e · (A1, A2) ·HS

= (e · A1 ·H + e ·A2 · B
′

︸ ︷︷ ︸

=0

) .

Thus, e ∈ C⊥
D as C⊥ ⊂ C⊥

D . This contradicts the condition

C⊥
D ∩ 〈B〉 = {0} (recall we need this condition for the matrix

M to be invertible) and we conclude that rk(A2) = kD .

We now consider two code constructions that have the load

balancing property. We use the notation of the Vandermonde

matrix

V j
i ,





1 αi ··· α(n−1)i

1 αi+1 ··· α(n−1)(i+1)

...
...

...
1 αj ··· α(n−1)j



 .

Let H = V n−kD−t−1
0 , HS = V n−t−1

0 =

(
H

V n−t−1
n−kD−t

)

,

HD =

(
V n−1
n−t

H

)

and kS = t for the rest of the section.

a) Construction 1: Let us choose

B = (0, A2) ·HS = A2V
n−t−1
n−kD−t,

where the matrix A2 is of full rank and chooses vectors of

weight n− kD + 1 from
〈
V n−t−1
n−kD−t

〉
. This is always possible

as
〈
V n−t−1
n−kD−t

〉
forms an [n, kD, n− kD + 1] GRS code. The

code C is optimal (see Theorem 2), i.e. d = n−t−kD+1 and

can have arbitrary access structure with r = n− kD +1. This

constructions works for any n, kD and t but interesting for

the case r < kD+ t (as having kD+ t symbols we can always

reconstruct the whole codeword and thus all information

symbols), which holds for R = kD/n > 0.5(1− (t− 1)/n).
b) Construction 2: Let α be a primitive element of Fq,

n = q − 1, n
n−t

= a, where a is an integer, and kD = a. We

note that

(11 . . . 1)HS = v = (∗ ∗ . . . ∗
︸ ︷︷ ︸

a

0 ∗ ∗ . . . ∗
︸ ︷︷ ︸

a

0 . . . ∗ ∗ . . . ∗
︸ ︷︷ ︸

a

),

as
∑n−t−1

l=0 αajl = 0 for j = 1, . . . , n− t−1. Thus the weight

v is exactly t+ 1.

We mention that the code C⊥
S is cyclic and thus contains all

cyclic shifts of v. The j-th cyclic shift (to the right) of v can

be obtain as ajHS , where aj = (1α−j α−2j . . . α−(n−t−1)j).
Let us form the matrix A with the columns aj and choose B =
(A1A2)HS . Clearly, B contains kD = a vectors of weight t+1
and A2 has full rank as it is the Vandermonde matrix. Thus,

our construction has the following parameters: n = q − 1,

kD = a, a|n, t = a−1
a

n, r = t+1, d = n/a− a+1. Clearly,

the rate R = kD/n ≤ 0.5 for this construction.



VI. SMALL FIELDS

In Section IV, we showed how to find an optimal t-collusion

secure storage code over Fq with optimal access complexity

r = t+ 1 for all parameters (n, k, d, t) whenever n ≥ q. This

construction relies on the code having an MDS subcode, which

is (except for the trivial cases) only possible if q is comparable

to the code length. This section deals with constructions small

field size q, where we cannot use the MDS property.

Lemma 4: The m-variate Reed–Muller (RM) code R(v,m)
of order v is a t-collusion secure storage code with length

n = 2m, dimension k =
∑v

i=0

(
m
i

)
, distance d = 2m−v,

storage dimension kD =
(
m
v

)
, collusion resistance t = 2v − 1,

and access complexity r = 2v.

Proof: The length, dimension, and distance are the pa-

rameters of the RM code. For the storage, we use the
(
m
v

)

highest order terms, i.e., the rows in the generator matrix

corresponding to functions of degree exactly v. There are

kD =
(
m
v

)
such rows in any generator matrix of an R(v,m)

code. The remaining rows give the matrix GS . It is well-known

that this is an R(v − 1,m) code and that its dual is therefore

an R(m− (v − 1)− 1,m) code of distance d⊥S = t+ 1 = 2v

(cf. [16, Chapter 13]). The access complexity follows from the

properties of RM codes used in the Reed decoding algorithm

(cf. [16, Ch. 3, Theorem 14]).

Note that RM codes have 2m−v disjoint recovery sets for each

file, which can be used to obtain a balanced access structure.

Example 3: Let R(v,m) be an m-variate binary RM code

of order v. Let m = 4 and v = 2. The parameters of this

code are length n = 2m = 16, dimension k = 1+
(
m
1

)
+
(
m
2

)
,

and distance d = 2m−v = 4. Consider the non-systematic

encoder given in [16, Chapter 13, 6] which can recover each

of the symbols a12, ..., a34 corresponding to the second order

terms from r = 4 symbols. Let these be our data symbols, so

kD = 6. The remaining kS = 5 symbols give a first-order RM

code R(vS = 1, 4). The dual of this code is a R(m−vs−1,m)
code and therefore of distance d⊥S = 4. Hence the code is a

t = 3-collusion secure code storing kD = 6 files (bits) with

distance d = 4.

With the Gilbert-Varshamov bound (cf. [16]) and Theorem 2

we obtain d ≤ d∗2(n − t, kD) = d∗2(13, 6) = 4 , for these

parameters. Since r = t+1, the code is optimal for the given

parameters n, k, t, and q. However, note that d∗2(13, 8) = 4,

so the code is not optimal w.r.t. kD.

VII. RANDOM CODING BOUND

In this section, we derive an asymptotic achievability bound

by means of random coding.

Theorem 5: For any field size q and sufficiently large n there

exists a t = τn collusion secure storage code with distance

d = δn, access complexity r = nhq(τ) + o(n) and rate

R =
kD
n

≥ R∗ = 1− hq(δ) − hq(τ) − o(1),

where hq(x) = −x logq(x)−(1−x) logq(1−x)+x logq(q−1)
denotes the q-ary entropy function.

Proof: Consider the parity-check matrix HS (see (5)).

Recall that B′ can be used as an access structure and we only
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Fig. 2: Comparison of bounds on the code rate R for q = 2
and τ = 10−2. A = (0, 1 − τ), B = (0, 1 − h2(τ)), C =
(12 (1− τ), 0), D = (h−1

2 (1− h2(τ)), 0).

need to make it sparse. For this purpose, we transform the

matrix HS to the form

H ′
S =

(
In−kD−kS

H̃

0 IkD B̃

)

.

Note that B =
(

0 IkD
B̃
)

= (A1A2)HS and A2 has full

rank. Thus in accordance to Lemma 3 we constructed a code

with access complexity kS +1. This approach can be applied

to any matrix HS .

In what follows we apply the random coding technique

to obtain the values of kD and kS . Consider the ensemble

E1 of all parity-check matrices HS of size (n − kS) × n.

The ensemble is defined as follows: positions in HS are i.i.d.

random variables with uniform distribution over the set [q].
Let m = n− kS . We can estimate the following probabilities

p0 , Pr (rk(HS) < m) = 1−

m−1∏

i=0

(1− 1/qn−i) ≤
m

qn−m+1

and p1 , Pr (d(C(H)) < δn) ≤ qhq(δ)−1+
kD+kS

n
+o(1).

The distance of the dual code can be estimated in exactly

the same way but we need the ensemble E2 of the generator

matrices GS . It holds that

p2 , Pr (rk(GS) < kS) ≤
kS

qn−kS+1

and p3 , Pr
(
d(C⊥

S ) < τn
)
≤ qhq(τ)−

kS
n

+o(1). Taking into

account that each code CS can be represented by the same

number of parity-check (or generator) matrices, we conclude

that the fraction of “bad” codes is less or equal to p0 + p1 +
p2 + p3. To conclude note that the fraction of “bad” codes

can be made arbitrarily small (by increasing n) when kS =
nhq(τ) + o(n) and R < R∗.

Substitution of the first MRRW bound [17] for k∗q (n, d)
from Corollary 1 for t = τn and q = 2 gives the following

asymptotic form of the upper bound

R ≤ (1− τ)h2

(
1

2
−

√

δ

1− τ
(1−

δ

1− τ
)

)

+ o(1) . (6)

Fig. 2 shows the lower bound on the rate from Theorem 5

compared to the upper bound (6). We note that the gap between

points A and B, C and D decreases with a decrease of τ .
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