

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 28, 2024

Fast SD-Hamming Decoding in FPGA for High-Speed Concatenated FEC for Optical
Communication

Zhang, Can; Forchhammer, Søren; Andersen, Jakob Dahl; Mehmood, Tayyab; Yankov, Metodi
Plamenov; Larsen, Knud J.

Published in:
Proceedings of 2020 IEEE Global Communications Conference

Link to article, DOI:
10.1109/GLOBECOM42002.2020.9322436

Publication date:
2021

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Zhang, C., Forchhammer, S., Andersen, J. D., Mehmood, T., Yankov, M. P., & Larsen, K. J. (2021). Fast SD-
Hamming Decoding in FPGA for High-Speed Concatenated FEC for Optical Communication. In Proceedings of
2020 IEEE Global Communications Conference IEEE. https://doi.org/10.1109/GLOBECOM42002.2020.9322436

https://doi.org/10.1109/GLOBECOM42002.2020.9322436
https://orbit.dtu.dk/en/publications/5a757879-e1ed-4346-88a8-68cfe3de967a
https://doi.org/10.1109/GLOBECOM42002.2020.9322436

Fast SD-Hamming Decoding in FPGA for
High-Speed Concatenated FEC for Optical

Communication
Can Zhang, Søren Forchhammer, Jakob Dahl Andersen, Tayyab Mehmood, Metodi P. Yankov, Knud J. Larsen

Department of Photonics Engineering
Technical University of Denmark

Kongens Lyngby, Denmark
Email: canzh, sofo@fotonik.dtu.dk

Abstract—In this paper, we consider fast decoding of
soft-decision (SD) Hamming codes as inner codes in concatenated
forward error-correction (FEC) schemes for high-speed optical
communication. The goal is single FPGA implementations at
speeds of 400 Gb/s and beyond. A low complexity maximum a
posteriori (MAP) probability decoding is applied to a (128,120)
Hamming code. Chase decoding of a (128,119) Hamming code is
also implemented. The VHDL designs for both decoding schemes
are presented. The FEC performance and FPGA resource uti-
lization are investigated and compared. Synthesis results indicate
that, both the Chase and the MAP decoder leave sufficient
resources available to also accommodate a powerful outer hard
decision code, on a single FPGA. Furthermore, MAP decoding
of (128,120) Hamming code features lower hardware complexity
and provides a higher data throughput.

Index Terms—Soft-decision, Hamming codes, Chase decoding,
concatenated coding, MAP decoding, VHDL, FPGA.

I. INTRODUCTION

For fast and reliable high-speed connections between data
centers, forward error correction (FEC) is applied. In optical
communication, FEC provides the required bit error rate
(BER), which is often specified at 10−15 [1], [2]. Highly
efficient hard-decision (HD) FECs are deployed in optical
communication using product codes [3], [4] or staircase codes
[5], [6].

To improve the performance further, soft-decision (SD)
FECs are studied and proposed, at the expense of increased
complexity. One approach is concatenated coding using a SD
inner code and a HD outer code [7], as in the 400G ZR
implementation, recently specified by the Optical Interconnect
Forum (OIF) [8], [9]. This system combines an inner SD-
Hamming code with a HD outer staircase code in a 16 Quadra-
ture Amplitude Modulation (QAM) optical communication
system targeted at Data Center Interconnects (DCIs).

In this paper, we consider fast decoding of soft-decision
Hamming codes. We shall refer to this setting as SD-
Hamming. We consider the case where the SD-Hamming code
is intended as the inner code in a concatenated coding scheme
(Fig. 1), as in OIF 400G ZR [8], [9], where the outer code is
a HD staircase code.

This work was supported by the IFD INCOM project (8057-00059B) and
DNRF Research CoE SPOC, ref. DNRF123.

Fig. 1. Block diagram of concatenated FEC coding and modulation over
AWGN channel with an inner SD-Hamming code and the outer staircase
code. π denotes interleaving and ϕ the mapping of the modulation format.

We set the 4.5×10−3 output BER of the inner code as our
target to match the 10−15 output BER of an outer staircase
code, as is specified in [1] at the overhead ∼ 6.7%. Higher
BER can also be relevant, if relaxing the BER requirement
after outer code [1] or allowing a higher overhead [10]. An im-
plementation of 400G ZR based on 50 FPGAs was presented
in [9] for verification and investigation. This implementation
had a throughput of 200 Gb/s.

The goal here is fast decoding of the FEC enabling a
400 Gb/s concatenated decoding implementation on a single
FPGA. We also investigate the feasibility of having SD-
Hamming decoding at 800 Gb/s on the FPGA. We focus
on a fast maximum a posteriori (MAP) probability decoding
scheme for SD-Hamming. For comparison we implement and
compare with fast decoding based on a Chase algorithm.
The FEC solution presented in this work can be deployed
to potential ZR+ applications, with extended capabilities of
400G ZR.

Sec. II presents related work on different approaches for
SD-Hamming decoding, with a particular focus on fast MAP.
In Sec. III, the Hamming codes considered are presented
together with fast soft-decision decoding using both fast MAP
decoding and Chase decoding. In Sec. IV, a VHDL design
is presented and in Sec. V, VHDL synthesis results towards
400G/s and 800G/s are presented. Sec. VI discusses the
concatenation of SD-Hamming with the HD outer code.

II. RELATED WORKS

Chase decoding [11] and fast MAP decoding [12] have
been considered and deployed in different coding schemes.
A low-complexity serial code concatenation for high-speed

978-1-7281-8298-8/20/$31.00 ©2020 IEEE

optical communication systems was proposed in [13], where
the inner code is a Turbo Product Code (TPC) based on
two extended Hamming codes, with parameters (128,120)
and (64,57). The fast MAP algorithm is used among other
techniques, but no performance results were reported for the
fast MAP in [13]. I. B. Djordjevic et al. proposed a reverse
concatenated BCH-LDPC code [14]. Fast MAP is applied to
decode an extended BCH (128,120) code, which is the same
as an extended Hamming (128,120) code. The decoding per-
formance outperforms its TPC counterpart, using Chase and
BCJR for decoding, respectively. In [15] Generalized LDPC
code with Reed-Muller (RM) and BCH codes as component
code was considered. After decomposing the RM(4,6) to
several first-order RM codes, 64 parallel low-complexity MAP
decoders are used for decoding. It has been shown that the
RM(4,6)-based GLDPC code features a much lower decoding
complexity, compared with the TPC based on BCH(128,113)
× BCH(256,239), which requires 239 parallel Chase decoders.
Chase decoding for TPC constructed by extended Hamming
code (64,57) was considered in [16], and the synthesis results
on a Xilinx Artix-7 FPGA were presented. In [9], Chase
decoding of the 400G ZR (128,119) Hamming code was
implemented. We design and implement a Chase decoder for
the same code.

It is noted that MAP decoding for SD-Hamming (128,120)
is only seen in [13] and [14] as part of different coding
schemes. [13]–[15] deployed fast MAP decoding in sim-
ulations for extended Hamming/BCH and RM codes due
to its low-complexity, whose structure is also suitable for
FPGA/ASIC implementation. However, to the best of our
knowledge, hardware implementation results for fast MAP
decoding have not been reported in the literature.

III. HAMMING CODES AND SD DECODING

We consider Hamming codes as the inner code in a concate-
nated coding scheme as in OIF 400G ZR [8], where the outer
code is an HD staircase code. Thus, the Hamming code serves
as an error-reducing code utilizing the soft information in the
received signal. The outer code serves the purpose of bringing
the BER to the low values required, e.g. 10−15. This means a
combined design, where the BER output of the SD-Hamming
decoding is required to be better than, e.g. 4.5 × 10−3 [1],
depending on the channel and the parameters and performance
of decoding the outer code.

A. Hamming codes

Hamming codes were the first error-correcting code to be
defined. The (n, k) = (2m − 1, 2m −m− 1) code is specified
from the (2m − 1) × m parity check matrix having all non-
zero m-tuples as rows in some order. The order may be
chosen to ease implementation or to provide some specific
properties. Hamming codes have a minimum distance of 3,
and thus are always able to correct one error. The codes may
be extended by an overall parity check to have length 2m

and minimum distance 4. We shall consider the (128,120)
extended Hamming code below. Error performance could be

improved by expurgating some codewords away by converting
an information symbol into an extra parity check which is
specified by an extra column in the parity check matrix. We
shall consider such a (128,119) code as specified by OIF in
[8]. The extra column in the parity check matrix excludes
codewords where a selection of positions (64) has odd weight.

For SD decoding of the Hamming codes, we assume that
the demodulator provides the Log-Likelihood-Ratio (LLR) for
each received value yj given transmitted binary cj at time j
by

Lj = log
Pr (yj |cj = 1)

Pr (yj |cj = 0)
(1)

where Pr(yj |cj) denotes the conditional probability of yj
given cj . The value Lj is easily calculated from the received
values, both for BPSK (e.g. extracted from QPSK) and
16QAM modulation. We shall consider Chase decoding [8] for
the (128,119) code and MAP decoding [12] for the (128,120)
code. Chase decoding of (128,120) has also been investigated,
but performance is inferior to MAP. Another option for SD
decoding is based on a trellis formulation for the block code
facilitating a trellis decoding algorithm like Viterbi or BCJR
MAP [17]. However, the trellis for this length of codes seems
too complex, compared to the fast Chase and MAP decoding
considered.

B. MAP Decoding of (128,120) Hamming code
The algorithm is based on MAP decoding of a linear code

by using its dual code [12]. The fast computation of the
soft decisions is achieved by using fast Hadamard transforms
(FHT) of size n×n [12], where n corresponds to the code
length. The coefficients of FHT are all +1 or -1, therefore
the computation is reduced to only addition and subtrac-
tion operations. The number of operations is proportional
to nlog2n. Other steps in the fast MAP algorithm all have
linear complexity. The overall complexity of fast MAP is
O (n log2 n), while applying a BCJR algorithm for Hamming
codes has complexity O(n2) [12]. The extended Hamming
code (128,120) can be seen as the dual code of the first order
Reed-Muller code RM(1, 7) if a particular order of rows
in the parity check matrix for the extended Hamming code
is used. The key steps in the fast MAP algorithm is briefly
outlined as follows. Firstly, the terms ρj and τj are computed
from the soft-values in (1).

ρj =
1− Pr(yj |1)

Pr(yj |0)

1 +
Pr(yj |1)
Pr(yj |0)

= Pr (cj = 0|yj)− Pr (cj = 1|yj) (2)

τj = ln |ρj | , j = 0, . . . , n− 1 (3)
The first part computes the product of probabilities h(0)

i and
h
(1)
i by the following expression

h
(0)
i =

∏
j∈I(0)

i

ρj and h
(1)
i =

∏
j∈I(1)

i

ρj i = 0, . . . , n− 1 (4)

where the sets I(0)
i and I(1)

i refers to the positions where the
ith codeword of RM(1, 7) has 0’s and 1’s, respectively.

The fast computation separates the sign and absolute value
of (4). We first compute the sum of logarithms of probabilities

3.6 3.8 4 4.2 4.4 4.6 4.8

E
s
/N

0
 (dB)

1

2

3

4

5

6
7
8
9

10

15
O

ut
pu

t B
E

R

MAP Soft full
Hard Decision
MAP Quant 2
MAP Quant 3
MAP Quant 4
MAP Quant 5
MAP Quant 6

10-3

Fig. 2. MAP decoding performance of (128,120) Hamming code for different
levels of quantization of input values.∑

j∈I()
i
ln |ρj | (5). This term is obtained by applying FHT to

the vector (τ0, τ1, . . . , τn−1). The computation performs the
steps in (6) log2n times.
sj = τ2j+τ2j+1, sn/2+j = τ2j−τ2j+1 j = 0, . . . , n/2−1

τj = sj j = 0, . . . , n− 1 (6)

To determine the signs of (4), the signs of ρj are grouped to
a new vector and a modified Walsh-Hadamard transform over
GF(2) is used. Finally (4) can be reconstructed with the help
of exponentiation.

In the second part, let xi = h
(0)
i − h

(1)
i . By applying FHT

again to (x0, x1, . . . , xn−1), and after some auxiliary compu-
tations, the soft decision for all coded bits Pr

(
cj = 0|y

)
−

Pr
(
cj = 1|y

)
is obtained. Detailed description and proof of

the MAP decoding algorithm is given in [12].
Considering different input quantization levels, the MAP

decoding performance of the Hamming (128,120) code is
investigated. The random bits are generated from the function
randi in MATLAB. We have simulated 104 blocks of 128
bits. For BPSK, the received signal is quantized to 1 sign bit,
1 integer bit and N fractional bits. All values use saturation
at ±1 before scaling. We have tested with N = 2, 3, 4, 5
and 6, respectively, and compared with the performance when
using full precision soft bits. As is indicated in Fig. 2, using 6
fractional bits for the soft information achieves almost the full
potential of MAP decoding. Using 4 or 5 fractional bits still
achieves an acceptable performance. The N = 3 quantization
setting corresponds to a ca. 0.2 dB loss in a BPSK channel
at the target output BER threshold of 4.5× 10−3.

C. Chase decoding of (128,119) Hamming code

The basic idea of Chase decoding [11] is simply to find
multiple possible error patterns for the received word by a
combination of bit-flipping and hard decision decoding. For
each error pattern, the distance to the actual received word
is calculated based on the soft input values. Finally, the error
pattern with the best distance (maximum likelihood) is chosen
as the most likely error pattern. Chase decoding can and has
been applied to a wide variety of codes designed for HD
decoding, extending them to SD decoders.

There exist many variations of the algorithm, but basically
there are two parameters: how many positions are candidates

3.6 3.8 4 4.2 4.4
E

s
/N

0
 (dB)

2

3

4

5

6

7
8
9

10
11

 O
ut

pu
t B

E
R

10-3

(128,119) flip 100, 5 errors
(128,119) flip 5, 4 errors
(128,119) flip 6, 4 errors
(128,119) flip 7, 4 errors
(128,119) flip 6, 3 errors
(128,119) flip 7, 3 errors

Fig. 3. Chase decoding performance of (128,119) Hamming code for different
choice of Chase parameters: Number of candidates for flipping (flip) and
maximum number of errors corrected.

for flipping and how many bits can be flipped simultaneously.
The candidates for flipping are chosen among the positions
with the most unreliable received values. Including many
patterns increases the decoder complexity, since the number
of hard-decision decodings increases rapidly. While increasing
the number of patterns, the performance of the decoding
approaches that of true maximum likelihood decoding.

We have investigated the performance for various settings
of the two parameters for the (128,119) code of interest
and conclude that flipping up to 3 positions out of the 6
most unreliable gives a performance within 0.1 dB of that
of a maximum likelihood decoding and at the same time a
reasonable implementation complexity. This choice implies
42 hard-decision decoding instances of the Hamming code,
i.e. 1 for flipping 0 positions, 6 for flipping 1 position, 15 for
flipping 2 positions and 20 for flipping 3 positions. However,
as we shall see the number of decoders can be reduced for
the specific (128,119) code. The performance is depicted in
Fig. 3 as a function of the signal-to-noise ratio (Es/N0), and
it is in line with the performance reported in [5]. In Fig. 3,
the performance for different combinations of the number of
candidates (flip) and the maximum number of errors corrected
which is given by the maximum number flipped plus the 1
error corrected by the Hamming code.

D. Comparison of MAP and Chase decoding

The output BER performance from the SD-Hamming de-
coder is investigated for different settings of Chase parameters
and MAP quantization levels, which is depicted in Fig. 4
as a function of (Eb/N0). When using 6 fractional bits for
input soft values and full precision for other internal values
(MAP Quant 6,floating point), the output BER of MAP
decoding is the same as that of finding 6 candidates for
flipping in the Chase decoding (flip 6) and identical to that
of using full precision (“MAP soft full” in Fig.2). For fast
implementations, the internal values in the MAP are quantized
to finite precisions. Thus the output BER performance is
shown in Fig. 4 if input values are quantized to 6 and 4
fractional bits, respectively. A light version of the Chase (flip
5 reduced) is achieved when finding 5 flip candidates, flipping
each of these and 4 combinations of 2 flips.

3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

E
b
/N

0
 (dB)

1

2

3

4

5

6
7
8
9

10
 O

ut
pu

t B
E

R

Chase (128,119) flip 5, reduced
Chase (128,119) flip 6, 4 errors
MAP (128,120) Quant 6, floating-point
MAP (128,120) Quant 4, fixed-point
MAP (128,120) Quant 6, fixed-point

10-3

Fig. 4. Comparison of decoding performance for MAP and Chase decoding.

The MAP decoder has a higher code rate of 120/128
vs. a code rate of 119/128 for the Chase decoder. The
(128,120) code with MAP decoding provides ca. a 1% higher
information throughput. This is incorporated in Fig. 4 by using
Eb/N0. The MAP decoder can furthermore output soft values
(which we have also implemented with a marginal increase
in decoding resources.)

IV. SD-HAMMING VHDL DESIGN

The VHDL design of the SD-Hamming decoders studied
differ significantly. The transforms are applied in the MAP
decoder, whereas many parallel decoding instances are per-
formed based on potential error patterns in the Chase decoder.

A. MAP decoding of (128,120) Hamming code

1) Fixed-point computations: Although the simulated re-
sults in Fig. 2 demonstrate the MAP decoder performance
with quantization on the soft values, the computation of soft
decisions, in principle, here still uses full precision of the
floating point numbers in all steps. When it comes to VHDL
design, the fixed-point arithmetic is performed for computing
all the temporary values. To further reduce the hardware
complexity and allow for fast implementation, exponentiation
and logarithm operations in the MAP decoding algorithm have
been substituted by pre-computed values in look-up tables,
based on the knowledge that input values have been quantized
to a given precision.

In two’s complement, each value is quantized to a fi-
nite precision, represented by one sign bit, L integer bits
and N fraction bits. The quantization error is accumulated
and propagated in each computational step, and the actual
effective number of soft information bits becomes smaller,
which degrades the decoding performance. Hence, finding
the minimum requirement of bit-width to store the primary
variables within the MAP decoder is a critical part in the
VHDL design.

A rough estimate can be firstly achieved by simulations,
gathering enough statistics for all internal values at different
SNRs. This involves finding the maximum absolute value to
determine the number of bits to allocate, and finding the mini-
mum absolute value and minimum fraction for each parameter
to determine the number of fractional bits to allocate. Since

the inner code serves as an error-reducing code, a slight loss
in performance can be tolerated using fewer fractional bits.

From the detailed description presented in [12], the value of
ρ is only used in the last step for computing the soft decision.
By comparison, FHT is performed on τ (3) to compute the
sum of logarithms of probabilities in (5). Hence quantization
errors in τ are more likely to accumulate and the precision of
τ plays a dominant role in the MAP decoder. By comparing
different bit width settings, the desired decoding performance
can be achieved, when allocating 5 and 8 fractional bits to
ρ (2) and τ (3), respectively. For all other temporary values,
they are set to 16-bit width, which appears to be enough by
conducting behavioral simulations for the VHDL design.

2) Fast Hadamard transform: Among all the computations
of temporary values in the fast MAP algorithm, the twofold
use of FHT (6) requires the largest number of add/subtract
operations. Accordingly, an area-efficient and high-speed im-
plementation of FHT is our main focus in the VHDL design.

Due to the recursive property of the Hadamard transform,
the FHT can be implemented in a fully pipelined way. The
size 4×4 transform is considered as a kernel module and
computed in two stages. Each stage consists of 2 adders
and 2 subtractors. Then the size 8×8 transform is further
implemented in three stages, and the result is obtained from
two 4-point transform modules and an additional stage of
add/subtract operations. Similarly, the 128×128 transform in
the MAP decoder can be easily computed from these short
length modules, and cascaded in a 7-stage pipeline. This
design can execute FHT in a minimum number of clock
cycles, at the expense of requiring more FPGA resources.
Alternatively, to allow for efficient hardware resource reuse,
an iterative FHT architecture is considered as in (6). The
128×128 FHT design block in FPGA is constructed by one
stage consisting of 64 adders and 64 substractors. The ter-
mination of computation is controlled by a counter and extra
logic units, which switch the register values out of the FHT
back to the FHT input multiplexer, and finally outputs the
FHT result after 7 iterations. Both of these two ways have
been implemented and performance results are given in Sec.
V-C1.

B. Chase decoding of (128,119) Hamming code

First, our Chase decoder does a partial sorting of the soft-
decision input values to identify unreliable bits. Then, parallel
hard-decision decoders will decode the received word with
selected combinations of bits flipped, and finally the best
one is selected. To optimize resources, an initial syndrome
is calculated and thereafter modified according to the flip-
patterns.

1) Sorting the soft-values: Each soft input value is received
as one sign bit and 4 soft decision bits. A partial sorting of the
128 values is first performed to find the 6 minimum absolute
LLR values. All the 128 values of one code word arrive in
every clock cycle. The solution we chose for sorting the 128
values, is based on the idea of merging two sorted lists of
6 elements into one sorted list of the 6 minimum elements.

First the 128 values are inserted into 22 sorted lists of length
6. Then these lists are merged in a tree structure to one final
list of the 6 minimum values.

2) Syndrome calculation: The syndrome is calculated by
multiplication of the received 128 bit sign vector and the
128×9 parity check matrix - modulo 2 [8]. Each syndrome
bit is an XOR of the sign vector bits at the positions in the
column where the parity matrix is 1.

Some syndromes indicate that 1 error is the most likely
while others indicate more than 1 error. We only make a
correction when the syndrome indicates 1 error. Since the
last syndrome bit is just an XOR of all 128 positions, all
syndromes indicating 1 error have this bit as a 1. This means
that some of the flipping patterns can be excluded based on
this syndrome bit. If it is already 1, we will flip an even
number of positions (0 and 2) otherwise we will flip an
odd number of bits (1 and 3). Based on this parity bit, the
maximum number of Hamming decoders required is reduced
from 42 to 26.

The basic syndrome calculated based on the received bits
is modified to match the various flip-patterns. This is found
by a table look-up and the modifications are XOR’ed to the
basic syndrome for each flip-pattern.

3) Hamming decoder: After the syndrome calculation, the
error position is found by a look-up table with 256 entries. The
fast implementation uses 26 Hamming decoders in parallel.

V. FPGA SYNTHESIS RESULTS

A. FPGA device and synthesis tool

The SD-Hamming decoder VHDL design has been synthe-
sized for a Xilinx Virtex UltraScale+ family device: XCVU9P-
L2FLGA2104. The synthesis, place and route use all the
default strategies in Vivado v2019.1.3. In the target UltraScale
architecture, each Configurable Logic Block (CLB) provides
8× 6-input look-up table (LUT)s and 16 flip flops [18]. 2160
on-chip block RAM blocks are available in this VU9P device.
Each block stores up to 36 Kb data, which can be configured
as either two independent 18 Kb RAMs (RAMB18E2), or one
36 Kb RAM (RAMB36E2).

B. Performance and complexity metrics

After the place and route process, the maximum operating
frequency (Fmax) is achieved, based on which the information
data rate is calculated. The hardware complexity is depicted
by the logic utilization (CLB, CLB LUTs, CLB Registers)
and the number of occupied block RAMs [19]. Dedicated
multipliers on the FPGA are not used. The numbers for
resource consumption and their percentage of maximum avail-
able amount are both presented in Tables I-II.

C. Analysis of results

1) MAP decoder: The MAP decoder is synthesized under
different settings of input quantization levels (Fig. 2). We have
investigated 8, 6 and 4 bits, respectively. The logic utilization
is slightly lower when using fewer bits. This is attributed to
the reduced size of look-up tables to store ρ (2) and τ (3).

In this work, we focus on the 8 bits (6 fraction bits) setting,
which gives a better decoding performance.

As discussed in Sec. IV-A, we’ve considered two different
architectures to implement the FHT block. Both of these
VHDL designs enable a data rate at 400 Gb/s and 800 Gb/s,
using 9 and 20 parallel MAP decoders, respectively. As is
shown in Table I, MAP decoding based on the iterative
reuse FHT architecture requires 15.5% and 33.6% of CLBs
for 400 Gb/s and 800 Gb/s, respectively. Specifically, the
two FHT blocks occupy approximately 60% of the CLB
LUTs used in the MAP decoder (9250 out of 14716). By
comparison, the fully pipelined FHT architecture requires
33.4% and 70.1% of CLBs for 400 Gb/s and 800 Gb/s,
respectively. Accordingly, the iterative reuse FHT architecture
greatly lowers the requirement of FPGA resource utilization
and reduces the overall complexity.

It is worth mentioning that, such an iterative architecture
could possibly lead to inferior timing closure performance
when the combined design gets larger. The increased routing
delay lies in the path between the FHT output and FHT input
multiplexer, i.e., the path to perform each iteration. According
to our experiments, there is still a good timing margin in
this path when targeting at 400G and 800G implementations,
since parallelizing 9 and 20 MAP decoders also relaxes the
minimum speed requirement of each decoder.

2) Chase decoder: Table II shows the synthesis results
of a single Chase decoder, which is configured to find 6
candidates for flipping and correcting up to 4 errors, as
is illustrated in Sec. III-C and performance given by the
green curve shown in Fig. 3. By using 8 and 20 parallel
Chase decoders, the achieved information rates out of the
SD-Hamming decoder are 428.4 and 854.4 Gb/s, respectively.
This allows for redundancy required by an outer code for 400
and 800 Gb/s information rate out of a concatenated coding
scheme. A lower hardware complexity of the Chase decoder
can be achieved by considering fewer flipping candidates.
When finding 5 candidates for flipping (see “flip 5 reduced”
in Fig. 4), synthesis results show that the CLB utilization
is reduced to 1.7%, at the cost of 0.1 dB in performance
compared with the Chase decoder above.

VI. CONCATENATED CODING

The target application of the SD-Hamming code is, as
mentioned, to concatenate it with a HD outer code for a
400G (and beyond) FEC solution. We have evaluated the
performance of (128,119) Chase decoding and (128,120)
MAP decoding respectively in a concatenated staircase and
Hamming code (CSHC) setting, as in 400G ZR [8]. In a
CSHC set-up with 16QAM modulation, the MAP decoder
achieved a 0.1 dB improvement over the Chase in terms of
gap to constrained capacity for 16QAM modulation (without
constellation shaping) at an overall output BER of 10−9

[20]. As shown in Sec. V-C1, the MAP decoder requires
15.5% and 33.6% of the CLBs on the UltraScale+ FPGA,
for 400Gb/s and 800Gb/s respectively. This leaves sufficient
resources for an efficient outer HD code. As an example,

TABLE I
SYNTHESIS RESULTS FOR MAP DECODING OF SD-HAMMING ON VIRTEX ULTRASCALE+ (XCVU9P-L2FLGA2104)

Input data
width

Inf. data
width

MAP
decoders

Est. Fmax
(MHz)

Inf. data rate
(Gb/s) CLBs CLB LUTs CLB Registers RAMB36E2 RAMB18E2

128×8 120 1 529 63.5 2475(1.7%) 14716(1.2%) 18987(0.8%) 2(0.1%) 0
9×128×8 9×120 9 419 452.5 22930(15.5%) 123644(10.5%) 171420(7.2%) 18(0.8%) 0
20×128×8 20×120 20 371 890.4 49643(33.6%) 275205(23.3%) 378635(16.0%) 40(1.9%) 0

TABLE II
SYNTHESIS RESULTS FOR CHASE DECODING OF SD-HAMMING ON VIRTEX ULTRASCALE+ (XCVU9P-L2FLGA2104)

Input data
width

Inf. data
width

Chase
decoders

Est. Fmax
(MHz)

Inf. data rate
(Gb/s) CLBs CLB LUTs CLB Registers RAMB36E2 RAMB18E2

128×5 119 1 503 59.9 5971(4.0%) 34217(2.9%) 44433(1.9%) 0 29(0.7%)
8×128×5 8×119 8 450 428.4 42384(28.7%) 259457(21.9%) 332719(14.1%) 0 232(5.4%)
20×128×5 20×119 20 359 854.4 93110(63.0%) 548568(46.4%) 822115(34.8%) 0 580(13.4%)

the HD product code considered in [3] was synthesized on
an Altera/Intel Arria 10 FPGA. The parallel implemented
decoders occupy 39% and 79% of ALMs (Adaptive Logic
Module) in the Arria 10 to achieve max gross rate at 455Gb/s
and 800Gb/s, respectively. This product code is based on BCH
(after Bose, Chaudhuri, and Hocquenghem) component codes
decoded over GF (210) capable of correcting t = 3 errors.
Concatenation of the MAP SD-Hamming and the BCH t = 3
product code should be quite feasible on the more powerful
UltraScale+ considered for 400Gb/s and most likely also for
800Gb/s. The staircase code used in 400G ZR is also based on
BCH t = 3 component codes. Comparing the number of BCH
decodings, the product code is comparable to a staircase code
with window size 4 and 1 iteration in terms of complexity.
Since the MAP and the Chase decoder, on the more powerful
UltraScale+ FPGA, uses around 16% and 29% of the CLB
resources, we conjecture that there will also be space for a
staircase code implementation at 400Gb/s, also with window
size more than 4 and/or more iterations. Thus, if we aim for
a fast low complexity set-up of a staircase code in terms
of window size and number of iterations, it should also be
feasible to implement along with especially the MAP but also
the Chase SD-Hamming on a single FPGA.

VII. CONCLUSION

In this paper, two approaches to decoding SD-Hamming
codes were presented, based on the fast MAP algorithm and
Chase algorithm, respectively. In both cases, VHDL design
and synthesis results towards 400 and 800 Gb/s on a single
Xilinx UltraScale+ FPGA were presented. Compared with
the Chase decoder for SD-Hamming (128,119), the MAP
decoder for SD-Hamming (128,120) features a lower hardware
complexity for FPGA implementation and achieves a higher
information data throughput. By parallelizing 9 and 20 MAP
decoders, 15.5% and 33.6% of CLBs are utilized to achieve a
maximum net data rate of 452 Gb/s and 890 Gb/s, respectively.
Furthermore, a slightly higher error correction performance
is obtained using MAP decoding of the (128,120) Hamming
code. It is further argued that, concatenating the MAP or
Chase based decoding of SD-Hamming with a HD product
code or a low complexity HD staircase code, both based on
BCH component codes, decoding of a combined concatenated
code at 400 and 800 Gb/s on a single Xilinx UltraScale+
FPGA is feasible.

REFERENCES

[1] ITU-T, OTU4 long-reach interface, Rec. G.709.2/Y.1331.2, July 2018.
[2] D. A. Morero et al., “Design Tradeoffs and Challenges in Practical Co-

herent Optical Transceiver Implementations,” in J. Lightwave Technol,
vol. 34, no. 1, pp. 121-136, 1 Jan.1, 2016.

[3] J. Dahl Andersen et al., “A configurable FPGA FEC unit for Tb/s optical
communication”, IEEE Int. Conf. Commun. (ICC ’17), 2017, pp. 1-6.

[4] ITU, Telecommunication Standardization Sector: Forward error correc-
tion for high bit-rate DWDM submarine systems. Rec. 975.1, 2004

[5] B. P. Smith et al., “Leveraging 400G ZR FEC technology,”
http://www.ieee802.org/3/B10K/public/17 11/lyubomirsky b10k 01
1117.pdf

[6] B. P. Smith, A. Farhood, A. Hunt, F.R. Kschischang, and J. Lodge,
“Staircase Codes: FEC for 100 Gb/s OTN,” in J. Lightwave Technol,
Vol. 30, pp. 110-117, January 2012.

[7] B. P. Smith and F. R. Kschischang, “A Pragmatic Coded Modulation
Scheme for High-Spectral-Efficiency Fiber-Optic Communications,” in
J. Lightwave Technol, vol. 30, no. 13, pp. 2047-2053, July. 2012.

[8] OIF Optical Internetworking Forum, “Implementation agreement
400ZR”, IA # OIF-400ZR 0.10-Draft.

[9] Y. Cai et al., “FPGA Investigation on Error-Flare Performance of a
Concatenated Staircase and Hamming FEC Code for 400G Inter-Data
Center Interconnect,” in J. Lightwave Technol, vol. 37, no. 1, pp. 188-
195, 1 Jan.1, 2019.

[10] L. M. Zhang and F. R. Kschischang, “Staircase codes with 6% to 33%
overhead,” J. Lightwave Technol, 32(10), 1999-2002, 2014.

[11] D. Chase, “A Class of Algorithms for Decoding Block Codes with
Channel Measurement Information,”, IEEE Transactions on Information
Theory, vol. IT-18, no. 1, pp. 170 – 182, Jan 1972.

[12] A. Ashikhmin and S. Litsyn, “Simple MAP decoding of first-order
Reed-Muller and Hamming codes”, IEEE Transactions on Information
Theory, IT-50, August 2004, pp 1812-1818.

[13] D. Morero and M. Hueda, “Novel serial code concatenation strategies
for error floor mitigation of low-density parity-check and turbo product
codes,” in Canadian Journal of Electrical and Computer Engineering,
vol. 36, no. 2, pp. 52-59, Spring 2013.

[14] I. B. Djordjevic, L. Xu and T. Wang, “On the reverse concatenated
coded-modulation for ultra-high-speed optical transport,” Opt. Fiber
Commun. Conf. Expo. Natl. Fiber Opt. Eng. Conf. (OFC/NFOEC’11),
2011, paper OWF3.

[15] I. B. Djordjevic et al., “GLDPC Codes with Reed-Muller Component
Codes Suitable for Optical Communications,” in IEEE Communications
Letters, vol. 12, no. 9, pp. 684-686, Sept. 2008.

[16] W. Kuang, R. Zhao and Z. Juan, “FPGA implementation of a modified
turbo product code decoder,” 2017 IEEE 9th International Conference
on Communication Software and Networks, 2017, pp. 71-74.

[17] R. J. McEliece, “On the BCJR Trellis for Linear Block Codes,” IEEE
Trans. Inf. Theory, vol. IT-42, pp. 1072-1092, July 1996.

[18] UltraScale Architecture Configurable Logic Block User Guide (UG574)
https://www.xilinx.com/support/documentation/user guides/ug574-
ultrascale-clb.pdf

[19] I. B. Djordjevic and D. Zou, “FPGA-based rate-adaptive LDPC-coded
modulation for the next generation of optical communication systems,”
2017 19th International Conference on Transparent Optical Networks
(ICTON), Girona, 2017, pp. 1-6.

[20] A. Bisplinghoff, S. Langenbach and T. Kupfer, “Low-Power, Phase-Slip
Tolerant, Multilevel Coding for M-QAM,” in J. Lightwave Technol, vol.
35, no. 4, pp. 1006-1014, 15 Feb.15, 2017.

