2010.13234v1 [cs.NI] 25 Oct 2020

arxXiv

DistPrivacy: Privacy-Aware Distributed Deep Neural
Networks 1n IoT surveillance systems

Emna Baccour', Aiman Erbad', Amr Mohamed?, Mounir Hamdi! and Mohsen Guizani?.

2

College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.
2CS department, College of Engineering, Qatar University.

Abstract—With the emergence of smart cities, Internet of
Things (IoT) devices as well as deep learning technologies have
witnessed an increasing adoption. To support the requirements
of such paradigm in terms of memory and computation, joint
and real-time deep co-inference framework with IoT synergy was
introduced. However, the distribution of Deep Neural Networks
(DNN) has drawn attention to the privacy protection of sensitive
data. In this context, various threats have been presented,
including black-box attacks, where a malicious participant can
accurately recover an arbitrary input fed into his device. In this
paper, we introduce a methodology aiming to secure the sensitive
data through re-thinking the distribution strategy, without adding
any computation overhead. First, we examine the characteristics
of the model structure that make it susceptible to privacy threats.
We found that the more we divide the model feature maps into
a high number of devices, the better we hide proprieties of
the original image. We formulate such a methodology, namely
DistPrivacy, as an optimization problem, where we establish a
trade-off between the latency of co-inference, the privacy level of
the data, and the limited-resources of IoT participants. Due to the
NP-hardness of the problem, we introduce an online heuristic that
supports heterogeneous IoT devices as well as multiple DNNs and
datasets, making the pervasive system a general-purpose platform
for privacy-aware and low decision-latency applications.

Index Terms—IoT devices, distributed DNN, privacy, sensitive
data, black-box, resource constraints.

I. INTRODUCTION

Deep Neural Networks have become widely ubiquitous due
to their ability to revolutionize a large variety of applications in
many research fields, e.g., image recognition. Such high per-
formance of DNN systems is related to the complex structure,
the number of layers, and the significant resources consumed
in the training and testing phases. More precisely, a typical
DNN consists of tens of layers associated with thousands of
neurons, incurring a computation and a memory occupation
of a terabyte of floating point operations per second (flops)
[1]. For example, VGG, which represents a state of the art
performance on visual recognition, has 15 million neurons,
144 million parameters and 3.4 billion connections [2].

Because of their high requirements in terms of memory and
computation, DNN tasks have been mainly restricted to highly
powerful machines, e.g., cloud/edge servers. Meanwhile, IoT
devices (e.g., sensors) were only responsible for collecting the
data. Authors, in [3]] [4]], decoupled the DNN network in a
way that the computation is distributed between edge servers
and conventional cloud. With such a server-centric approach,
the large data volume (e.g., videos) and growing transmission
latency have become problematic, particularly for decisions
that require prompt intervention. Moreover, system stability
might be highly related to bandwidth availability. To address

this challenge, deep learning tasks should be deployed as close
as possible to the devices collecting the data.

Nowadays, a pervasive environment is composed of thou-
sands of computing devices distributed in different locations
and able to connect together and form an IoT system. Some
of these devices mostly execute light-weight tasks. This nexus
between IoT units allows to distribute and push the DNN
computation in close proximity of data sources, thus, reducing
bandwidth bottlenecks and incurring less latency and cost.
More specifically, the deep neural network is divided into
segments and each segment is allocated within a helper. Each
helper shares the output to the next participant until generating
the final prediction. The collaborative inference has gained the
attention of the academia, particularly in mobile-cloud scenar-
i0s [5]-[7]. In fact, to minimize the transmission overhead,
many efforts have proposed to split the DNN network into
two parts, where the first few layers are hosted in the IoT
device while the rest are allocated in the remote servers to
benefit from their high computation capacities. Still, bottleneck
scenarios can occur. Recently, researchers have investigated
the feasibility of using the limited resources of IoT devices to
jointly allocate different segments of deep neural networks. In
this way, the entire or most of the inference can be done at the
proximity of data source [8]], [9]]. These efforts mainly explored
the optimal partitioning of DNN that minimizes the shared
data between devices. However, scheduling the participants to
conduct complete inference tasks, while being constrained by
computation and memory, was not taken into consideration
by previous works. Therefore, in order to support deep neural
processing in IoT systems, the design of DNN distribution
must be completely rethought by taking into account hardware
and physical constraints, which will be done in our work.

Furthermore, the advancement and distribution of deep
learning technologies have pointed out the security issues of
sensitive data. Indeed, when the trained model is split and
distributed among different helpers, an untrusted device can
recover the input fed by the previous helper, even if it does not
have insights about the model. Authors in [10]] proposed dif-
ferent attacks against collaborative inference, including black-
box attacks. In black-box settings, the malicious participant
only has knowledge about his segment and attempts to design
an inverse DNN network to map the received features to the
targeted input to recover the original data. This work proved
that attacking the inference is possible, when the neural system
is distributed into layers as done in [11]. Many countermea-
sures have been designed to enhance the privacy of deep
networks. One of these privacy measures is adding noise to the

intermediate outputs. However, if noise is added, the accuracy
of the system will drop. Another way to secure the data is to
perform inference on encrypted data. An obvious drawback of
such approach is that it requires more computation, suffers
from learning inefficiency, and cannot be applicable to all
DNNs nor supported by all IoT devices. Finally, authors in
[10] proposed to divide the model after deep layers as the in-
version becomes difficult. Knowing that IoT units have limited
resources, this method can only be applied for larger capacity
devices. In our work, we test black-box attacks on different
distribution scenarios and we prove that distributing the neural
network into layers is highly fragile against inversion threats.
Meanwhile, allocating parts of resultant feature maps into IoT
devices contributes to hiding proprieties of the original image
from untrusted participants. In this way, the black-box attack
will be inefficient and unable to recover the private data, using
only a small part of features, as illustrated in Figure [} In this
paper, we focus on surveillance IoT systems and we adopt
Convolutional Neural Networks (CNNs), as an efficient DNN
for image classification. As per our knowledge, we believe
that we are the first to use CNN distribution to enhance the
privacy of the system, without reducing the accuracy of results
or increasing the computational load.

The contribution of our study is three-fold: (1) First, we
conduct deep empirical experiments to test the efficiency
of black-box attack on different partition scenarios. In our
simulation, we tested 4 different datasets and 4 state-of-the-
art CNN networks. (2) We formulate our privacy-aware joint
inference, namely DistPrivacy, as an optimization problem,
aiming to minimize the classification latency, while consid-
ering the limited resources of participants and respecting the
required privacy of the original data. (3) Finally, we propose
an online heuristic that supports heterogeneous IoT devices as
well as multiple DNNs, making the pervasive system a general
platform for privacy-aware and low latency applications. Our
paper is organized as follows: Section [[] presents our proposed
DistPrivacy framework, the empirical study, the problem for-
mulation and the online heuristic. The experimental evaluation
is provided in section [[II] using different state-of-the-art CNN
networks. Finally, in section [[V] we draw the conclusions.

II. PRIVACY-AWARE DISTRIBUTED CNN FOR 10T DEVICES
A. Black-box Inversion Attack Against distributed CNNs

In this paper, we will handle the CNN privacy against black-
box attacks. This type of attack assumes that the adversary has
no knowledge about the weights or structure of the network.
More specifically, without knowing the model parameters,
the malicious participant cannot apply a gradient descent
optimization to map the received input to the original image
collected by the source device. The work in proved,
however, that the model can be reconstructed based only on
information revealed from the received input. Even without
collecting any insight, an inverse network can be trained to
identify the inversion mapping from the input to the original
image . Let fi(z) present a segment of the network
serving to execute a part of the inference, where z is the input
image. Conceptually, the inverse network can be considered as
g = (f3)~", trained with in = f}(z) as an input received from

Convolutional
deep network

image

Inverted - - - -
images "

Smart city with loT system

Fig. 1: Illustration of the privacy-aware distributed CNN.

a previous device and z as the i 1nver31on output. The loss func-
tion is expressed as: L(g")) = + El 1 lg(fo(zs)) — xl||§ (1)

Different from [10] that recovered the output of full layers,
we trained various networks to recover the original data,
when having only few feature maps. The black-box attack
is performed in three steps: (1) collect the training set of
the inverse network by participating in the inference process:
(fi(z1), fo(z2), ..., fi(xr)); (2) train the network; and (3)
recover the original image z by inputting ¢n received from
a previous participant.

Ret
ReLU 11 %
Conv 1
ReLU 34
.
RelLU 44) Conv 2 ""\

Number Number
of filters 512 256 128 64 32 16 4 of filters 8 4

() (b)
Fig. 2: Recovered images: (a) CELEBA, (b) MNIST.

We applied the black-box attack on four standard CNN
benchmark datasets: CIFAR10 trained with a small CNN (6
convolutional and 2 fully connected layers), MNIST trained
with LeNet (2 convolutional and 3 fully connected layers),
CELEBA with VGG19 (16 convolutional and 3 fully con-
nected layers), and Stanford CAR with VGG16 (13 convolu-
tional and 3 fully connected layers). Without loss of generality,
in Figure 2] we present the inversion results of MNIST and
CELEBA, for layers where the number of filters changes
(e.g., conv22/ReLLU22 receives 64 feature maps and outputs
128 feature maps). Accordingly, Table [} shows the average
Structural Similarity Index (SSIM) between original and re-
covered images from different datasets and under different
configurations, when a participant owns only few filters. The

TABLE I: SSIM of black-box inversion against different datasets.

Nb filters

per device/ | 512 | 256 | 128 |64 [32 |16 |8 |4 |2
Layer

e 09906 |056]04 [03 [0.26
s 08607 |049]034]0.13|0.1 [0.07
s 0.6 |0.51041]0.18]0.08]007]001
MNIST 0.99 | 0.28
MNTST

Conv2 07310
CELEDA 0.96 | 0.81 | 0.66 | 0.27 [0.09 | 0.1
CELEBA 0.76 | 0.69 | 071 059 [0.59 [0.4 [0.4
CELEDA 0.56 | 0.51 | 047|049 | 0.46 | 0.45 | 0.45 | 0.45
CELEBS 1026103903 |03 [03 [03 [03 [03 |03
o 0.98]0.92[0.93]0.88 |0.69 | 0.04
CAR

N 083074 059]047]05 |04 |026
3 068058058055 046|031]0.180.18
A4y [036]033]0.30]0.36]0.36]031]029]034]033

SSIM is a metric that measures the image quality degradation
and the similarity compared to the original sample.

Several conclusions can be drawn based on the illustrative
Figure [2| and Table [II First, the malicious participant can
recover the input image using black-box attack on the shallow
layers, if he/she receives all feature maps generated from the
previous layer. For example, the recovered images at ReLU11
or ReLLU22 of CELEBA have a high quality. When attacking
the network at deep layers, the inverted sample becomes vague,
for all datasets. To secure the network from inversion attack,
we propose that a participant does not receive the whole
output produced by the previous device, as done in [11].
Instead, the output feature maps will be distributed to more
than one IoT participant. Then, these untrusted participants
apply the attributed tasks (conv, ReLU, etc) on the received
segments, without being able to fully recover the original
image. As illustrated in Table [I| distributing the output of the
shallow layers into multiple devices contributes to reducing the
possibility to recover the images. Particularly, when sharing
the output of the layer ReLU11/CELEBA with two devices
(32 maps each) or four devices (16 each), the original image
becomes noisy, but still can be distinguished (Figure [2(a)).
When distributing the output into 8 participants (8 maps each),
recovering the image becomes not feasible. As we go deeper in
the network, retrieving the original data becomes more difficult
and a lower number of IoT devices is needed to distribute
the output and maintain the system security. Therefore, in the
rest of the paper, we will establish a trade-off between the
privacy level and the shared data load between different IoT
participants to execute the inference, while minimizing the
latency. Without loss of generality, the level of privacy will be
calculated in terms of SSIM. Note that the metric to evaluate
image degradation could vary depending on the dataset.

B. System Model

Our surveillance system comprises a set of image-
generating IoT units (e.g., Cameras), namely S = {s1, ..., $¢},
capturing images to be classified by N CNNs. Each IoT
device can request to run only one type of inference (e.g.,
Face recognition) and each image has ch channels (ch = 3
for RGB images). Let Z = {I,...,Ip} denote the set of D
heterogeneous IoT devices used to compute different segments
of the convolutional neural network. Without loss of generality,
we assume that the image-generating devices do not participate
in computing intermediate segments of the CNN. Different
IoT participants I; are characterized by limited resources,
including memory usage m;, computation capacity ¢;, and
bandwidth availability b;.

In this paper, we assume that all devices communicate
through the same transmission technology (eg., Wi-Fi or
cellular) with different transmission rates p;. We note that the
study of the wireless channel impact on the data is out of the
scope of this work. Finally, we assume that all devices are not
isolated and they can all reach each others. Else, a constraint
on the communication range can be added.

As described previously, N CNNs are deployed in our IoT
system, one network for each source s;. Let L, denote the
number of layers of the CNN n; € {1...N}. Each layer
l’C € {1,..., Ly, } results in .Plk feature maps. The output

of the layer lk]_ w111 be con51dered as the number of segments

to be computed by the next layer lflj'l. Each segment is char-

P

. . . k
acterized by a computation requirement o and a memory

demand m"*. Without loss of generality, the computational
load is measured as the number of multiplications required to
accomplish the layer goals. Accordingly, the computation of
layers that do not run any multiplication (e.g., ReLU, maxpool)
will be neglected [13]. The computation requirement of a
convolution layer segment p;x can be calculated as follows:
J

G = Star-Prriopi, (2)
where Sj1 denotes the spatial size of the filter correspond-
ing to the layer lkJrl and opy1 represents the spatial size
of the output feature map. The computation requirement
of a fully-connected layer can be calculated as follows:

c;? =ni_,.n5, (3)
nj represents the number of neurons of the layer [} k
is the number of neurons of the layer lk L We note that, in
our work, the fully connected layers w111 be computed on a
single device as the output of such layers cannot be recovered
[10]. Accordingly, {P ,..., Pz } are equal to 1 if I} is a
fully connected layer.

*
cand nj,_,

he memory demand of i3 can be

calculated as the number of stored weights multlphed by the
memory word-length (number of bits required to store each
weight) [[13]: =WI"Pb, (4)
Typically, b is equal to 4 blts if the single-precision flop
data type is used [14]. Finally, let OF ,, denote the memory
occupation of the output data communicated between the
participant I;; and I;» to offload segments of the layer I*
Next, we will introduce the optimal placement of dlfferent
segments in the IoT units participating in our system, while
taking into consideration the privacy against black-box attacks.

The optimization is executed periodically to cover the variation
of the network, and the inclusion and removal of participants.

C. Problem formulation

The proposed privacy-aware strategy relies on one decision
variable, namely A’. Lp- Al «1p is equal to 1, if the helper
I; computes the feature map p at the layer [of the request
r; 0 otherwise. We note that r € R() presents the request for
inference computation. In practice, r represents the index of
the source device that requested the classification of an image.
We remind that each device is related to a single CNN that
we will denote by r*.

The objective function models the total latency of comput-
ing the set of requests R(), in the distributed IoT system. This
latency is defined as the time necessary to transfer the output
of layers between participants and to compute different tasks,
and it is expressed as follows:

l 1
Lior = Z Zmaz

+t2bI VL € TUS), (5)

r€RQ l=1
Py P
.0l 1 j
where: O} ; = [(C" % o} x min(1, Z Al i) Z Al iyt
p1=1 p2=1
Py
.)
(Ac % 0f + Flanj) « Z A l,plAi*,l-H,pl) * b Lit
p1=1

©)

The binary variable C! is equal to 1, if the layer [is a conv

layer; Ac! is equal to 1, if [is an activation layer or a Maxpool;

and F'! is equal to 1, if [is a fully connected layer. The
objective function in Eq. (3) is composed of 2 parts:

(1) The transmission latency of intermediate segments p

belt“lzeen different IoT participants, which is presented by

;j : We remind that p; defines the data-rate of the considered

transmission technology equipped with I; and Ol is the size

of [— 1 segments shared between I; and I;. Ol g is equal to
0, if I; = I, including the case of a source dev1ce generating
the image and processing the first layer.
(2) The processing latency of different segments of layer [
on the IoT participants, which is expressed as follows:
Py I,p
b = p; Al % V L eTUS)
The computation time of the feature map p on the I; unit is
?proximated as the ratio between the computational demand
P required by the segment, and the number of multiplications
e(j) the unit I; is able to carry out in one second [11.
In practice, e(j) indirectly includes the available cores per
device to parallelize operations. Furthermore, the offloading
of different output feature maps of the same layer to next par-
ticipants and their computation are done synchronously. Thus,
the transmission and processing time is defined as the larger
latency among different participants to receive and accomplish
the layer task. Ultimately, our privacy-aware distributed deep
convolutional network can be formulated as follows:
min

L Lyor
(Avx 1 p)

(8a)

sty Aoy xmi? <mm; VI € TU{s1.5n}, (8b)

L

*

3

1—1
Z T*,l,p ?<e

VI; € TU{s1..sn}, (8¢)
reRQ l=1 p=1
L.« P_1
> 0L <bi VI €TU{s1..5n} (8)
r€ERQ =1 p=1 I;€Z
A 1 ifl<Le.,p< Py
Z m™,Lp = 1 0 Otherwise (8e)
1€ZU{s1..5n}
Pp_q)
> AL, SNFUSSIM) VI € T,1 < SP«(SSIM) (8D
p=1
S mtAl,, > FLaF WI<L
p=1 r* lp — HCpx (Sg)
1€TU{s1..5n}
1 ifl€{1,L~}
ALy, = { Fl=F=1 if SP.«(SSIM) <1
' 0 Otherwise (8h)
Vie{l..L«},pe{1.P_1}
ALip €10,1} (8i)

Equations (8b) and ensure that the constraints on com-
putational load and memory usage are respected for each
IoT participant or source device. Similarly, Eq. verifies
that the total transmitted output of the computed segments
respects the available bandwidth. Next, equation guaran-
tees that the computation of each segment p is assigned to
only one node and (8f) ensures that the number of feature
maps N f! received by any IoT device cannot allow the
malicious participant to recover the data with an accuracy
larger than the maximum tolerated SSIM. To illustrate the
security constraint, we suppose that the tolerated SSIM is
equal to 0.4. If we conduct an inference on CIFAR (Table m),
ReLU11 and ReLU22 layers should be distributed on 8 devices
(NfY(SSIM) = 8, N f*2(SSIM) = 16), and ReLU32 on
4 units (N f32(SSIM) = 32). We verify this constraint only
for the layers preceding the split point SP,.«(SSIM), as next
layers are recovered with a lower SSIM than tolerated, even
when receiving all filters. Finally, Eq. (8h) ensures that the
source devices do not participate in computing intermediate
segments and only handle the first and the last layers. We
emphasize that, the first and last layers are always computed
in the source device to protect the privacy of the original
image and the classification results. Also, as we chose not to
distribute fully connected layers F', all segments from the non
fully connected previous layer =F'~! will be offloaded to one
device (constraint), which exposes the data to inversion
risks, if [is lower than SP,« (case of MNIST). Therefore,
in such a scenario, constraint @) ensures that the first fully
connected layer is computed on the source device.

D. DistPrivacy: Online heuristic

The optimization in (§) is an NP-hard problem, which makes
finding the optimal solution extremely challenging in terms
of time. Because of this combinatorial complexity and the
real-time requirements of the classification, we propose an
online greedy algorithm, namely DistPrivacy, illustrated in
algorithm [I] In fact, when receiving an inference request,
different tasks of the CNN network are distributed among
participants guided by the following rules: all segments of
the first and the last layers are computed in the source
device, along with the first fully connected layer, in case the

tolerated SSIM is not reached at this level (line 9 — line 12).
Segments of intermediate layers are handled by un-trusted
participants (line 13 — line 23). Particularly, to align with the
problem formulation, the helper that achieves lower latency
should be selected. However, the chosen device can suffer
from bandwidth shortage and consequently cannot share the
resultant feature maps with next participants. Therefore, since
the greedy allocation does not have an overview of bandwidth
requirements, the selected helper is the one that has the
lowest nrm(j) = a.t(j) + B. 1/b; (line 16). nrm establishes
a trade-off between the latency and the eventual available
bandwidth. Without loss of generality, we fixed o and (3 to
0.7 and 0.3, respectively. This participant should respect the
memory and computation availability (condl) and the privacy
level constraint (cond4). Furthermore, the bandwidth within
participants that computed the layer [-1, should be available
to accomplish the transmission of segments to the current layer
l (cond2). Rejections will occur, if resources are exhausted.

Algorithm 1 DistPrivacy

1: Input: A® = 0, ¢;,m;, b, e(i), pi,VI; €, NfY, Li,7 =0.

2: condl”p—c v <G & ml < mj.

3: cond2” Lr_ =0, ;"P < b; VI; €T).

4 cond3™l=l < SP (SSIM) & F'=1 & F'=1=0

5t cond4’; Lo z Al < NFYSSIM) || 1> SP(SSIM))
6: for each r € RQ do

7: foreachl e {1..L,+} do

8: for each p € {1..P,_;} do

9: it (I = 1|0 = L & cond20™m 1P| >

1 & cond3:’l’p)) & condl?"P then

10: A, =1

11: Cr—cr—cif,mrznir—mi,’f,l; b; — Oi’rlp

12: else

13: selected =0

14: for each I; € Z do

o’ 1,p N

15: tG)=maz(,VI; € I) + ;P [e(d)

16: nrm(])—at(i) + 8. l/b

17: while nrm # 0 &selected = 0 do

18: [pt, nrm(pt)] = min(nrm)

19: if condlr’l’p& cond2;’tl_l’p& cond4;"tl’p then
20: AP =1

” l _ _ Lp - _ [I—1,p
21: cptfcpt—cr’f,mpt :mpt—mr‘f,bi:bi—Oi,pt’
22: selected =1
23: else Remove nrm(pt)
24: if nrm = () then
25: reJected—reJected+l
ol -1

26: Lior = Lior + maz(—5 + 17 SLI LI e TUS)

III. PERFORMANCE EVALUATION

In this section, our DistPrivacy system is evaluated under
different networking capacities. Particularly, the impact of
the number of IoT devices, their capacities, and the type
of requests, on the total latency and shared data is studied.
DistPrivacy has been validated on four benchmark CNNs in
a surveillance scenario of image classification to control a
critical area. The source devices capture 36x36 RGB sized
images (CIFAR), 28x28 gray images (MNIST) and 128x128
RGB images (CELEBA and Stanford CAR). Moreover, our
pervasive IoT system consists of three technological families

of devices, i.e, Raspberry Pi B+, LG Nexus 5 and STM32H7.
The former device is equipped with 1.4GHz 64-bit quad-core
processor and 1GB RAM, the second device is considered as
a powerful unit having 2.28 GHz processor and 2GB RAM,
and the last one, which is a small device (e.g,. smart watch), is
endowed with 400 MHz-cortex and 1 MB RAM. The number
of multiplications per second e, defined as the tenth of the
clock cycles per number of cores [11]], is equal to 560 for
RPi3, 800 for LG Nexus and 40 for STM32H7. The small IoT
devices are equipped with a low bandwidth technology (IEEE
802.11ah), having a data rate p equal to 7.2 Mb/s. Meanwhile,
the powerful machines (RPi3 and LG Nexus) are endowed
with IEEE 802.11n standard with a p equal to 72.2 Mb/s. We
note that all cameras are deployed with RPi3 system.

The proposed system is first evaluated on the data-collection
to decision-taking latency, for different privacy levels. The
measured latency is defined as the time between acquiring
the image and obtaining the classification, while the privacy
level is presented by the SSIM metric (see table[l). Second, we
evaluate the data shared between all participants to accomplish
all inferences. This data load includes indirectly the cost of the
network. In our simulation, we generate 320 requests through
a Poisson process with a data rate A\ equal to 3.

Figure [3(a) illustrates the total latency incurred by the
system for different privacy levels, when varying the number
of participants. We note that the capacities of devices are
uniformly distributed. When the number of devices is small,
the total latency to compute all the requests is lower when the
privacy level (SSIM) is equal to 0.8. This can be explained
by the fact that only the shallow layers should be distributed
on multiple devices (first 2 layers of MNIST, first 8 layers of
CIFAR and CAR, and first 4 layers of CELEBA). Furthermore,
the privacy level can be achieved by dividing the resultant
feature maps of the shallow layers into only 2 devices. In this
way, the total latency to offload the intermediate features is
minimized and the shared data between devices is reduced as
depicted in Figure In case the tolerated privacy level is
equal to 0.6 or 0.4, most of the layers should be distributed into
a higher number of devices. Hence, low number of participants
is not enough to satisfy security and resource availability. The
percentages in Figure [3(a)] depict the proportion of requests
that could not be processed due to the shortage of resources.
In such a scenario, the system keeps trying to re-compile the
rejected inferences, which justifies the high latencies and the
low data load. When more devices participate in the distributed
system, more resources are involved and tight privacy levels
(SSIM= 0.6 or 0.4) can respect the security constraint. In
this case, distributing the segments help to further parallelize
tasks and reduce latencies compared to the 0.8 level. Mean-
while, when more participants contribute to the inference, the
offloaded data increases (see Figure [3(b)), incuring higher
costs of transmissions and battery. To summarize, a trade-off
between security and shared data/cost should be established
as well as between the security level and latency when the
number of devices is low.

Figures and [3(d)| present the total latency and shared
data of the system, when varying the distribution of units’
capacities. The results indicate that a pervasive system with

=
o

-
o

Total latency (s)

Total latency (s)

.

%103 3 X 10°
J8.1% == Privacy level=0.8 == Privacy level=0.8 /
—e— Privacy level=0.6| 2.5 Privacy level=0.6
@3 42.7% ==o==DPrjvacy level=0.4 = =e=Privacy level=04
<7184% =
3 <
2 12.2 % e
22 o©l5
K °
= o
] g 1
O »
=1 7]
0 0.5
0 0
20 40 60 80 100 12C 20 40 60 80 100 120
Number of IoT devices Number of loT devices
(@) (b)
x10% x10°

=
S)

Il Privacy level=0.8
[Privacy level=0.6
[Privacy level=0.4

[Privacy level=0.8 _
[Privacy level=0.6
[privacy level=0.4

©

W

» (2]
Shared data (Mb)
N

N
-

30% - 70% 50% - 50% 70% - 30%
Type of IoT devices (Small loT - Large I0T)

(d

30% - 70%

50% - 50%
Type of 0T devices (Small IoT - Large loT)

(©)

70% - 30%

ES

-
o
)

Il Privacy level=0.8
[Privacy level=0.6
[prrivacy level=0.4

I

CIFAR CNN LeNet VGG19 VGG16 All
Type of requests

®

I Privacy level=0.8
[Privacy level=0.6
[Privacy level=0.4

Shared Eata (Mb)
o

CIFAR CNN LeNet

VGG19
Type of requests

©

Fig. 3: Performance of DistPrivacy under different configurations.

VGG16

limited-resources participants (70% small devices (STM32H7)
- 30% powerful devices (RPi3)) is not adequate for distributed
inference. When 50% of devices or more are powerful, the
system performs very well, as depicted in Figure Also,
following the latter configuration, all requests are served,
which is not the case of the 70%-30% system that rejects 29%
of the classification requests, when SSIM=0.4. Also, when
SSIM = 0.8, much higher latency is incurred, as less tasks are
parallelized and higher number of feature maps are computed
in low-performance devices.

Figures and depict the total latency and the total
shared data, when generating a set of requests comprising only
one type of CNN. When all requests are classified by LeNet (7
layers and 28x28 images), the latency of the system and data
load are very low as the network structure is only composed
of 8 feature maps and involves 2 participants to ensure the
privacy requirements. For a larger network (CIFAR CNN),
the latency is still low compared to the time needed to process
VGG16 and VGG19 requests, which is justified by the limited
number of layers (12 layers), the small size of images (32x32),
and the number of filters that does not exceed 128. VGG16
and VGGI19 are well known for their performance on image
classification thanks to their deep networks. However, their

memory occupation and computation requirements restrain
them from being processed on limited-resources devices. By
distributing such models, high computations could be paral-
lelized to achieve small decision-taking latency and the large
memory occupation could be shared between participants.
Collaborating to compute image classification, contributes not
only to enhance the privacy of sensitive data and prevent it
from inversion but also to reduce the latency, and pararellelize
the CNN tasks, which is not the case of adding noise or
encryption that require additional delays to achieve security.
Note that low privacy level (SSIM=0.8) presents lower latency
for VGG, because very high data sharing is required for tight
privacies (SSIM=0.6 or 0.4) and some requests are rejected and
re-sent to be classified when resources are available. Finally,
our system is general enough to be implemented in multiple
operating units and different CNN networks, deployed in the
same 10T system.

IV. CONCLUSION

In this paper, we explored the feasibility of recovering
private data of distributed CNN using black-box attack. We
discovered that distributing the feature maps into more par-
ticipants can strengthen the privacy of the origin image.
Therefore, we re-designed the deep learning solutions, which
require high computational and memory demands, to match
the constraints characterizing IoT units, aiming at minimizing
the black-box risks. This method has been formulated as an
optimization problem, where classification latency is reduced.
Next, due to the problem complexity, we proposed an online
solution that is adequate for real-time scenarios. Our simu-
lation unveiled different parameters that should be present to
achieve the privacy of distributed CNNs, including the number
of devices, their capacities, and the deployed networks. Future
works will encompass a comparison with existing distributed
CNN systems and security countermeasures

REFERENCES

V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” 2017.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014.

L. Li, K. Ota, and M. Dong, “Deep learning for smart industry: Efficient
manufacture inspection system with fog computing,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 10, pp. 4665-4673, 2018.

H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “Jalad: Joint
accuracy-and latency-aware deep structure decoupling for edge-cloud
execution,” 2018 IEEE 24th ICPADS, Dec 2018.

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ser. ASPLOS ’17, 2017, p. 615-629.

E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep
learning model co-inference with device-edge synergy,” 2018.

L. Zeng, E. Li, Z. Zhou, and X. Chen, “Boomerang: On-demand
cooperative deep neural network inference for edge intelligence on the
industrial internet of things,” IEEE Network, pp. 96103, 2019.

J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “Modnn:
Local distributed mobile computing system for deep neural network,” in
DATE’2017, pp. 1396-1401.

Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge
clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348-2359, 2018.

Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks against
collaborative inference,” in 35th ACSAC, 2019, p. 148-162.

S. Disabato, M. Roveri, and C. Alippi, “Distributed deep convolutional
neural networks for the internet-of-things,” 2019.

[1]
[2]
[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]
(11]

[12] S. J. Oh, M. Augustin, B. Schiele, and M. Fritz, “Towards reverse-
engineering black-box neural networks,” 6th ICLR, 2018.

[13] C. Alippi, S. Disabato, and M. Roveri, “Moving convolutional neural
networks to embedded systems: The alexnet and vgg-16 case,” in 2018
17th ACM/IEEE IPSN, 2018, pp. 212-223.

[14] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” 2015.

	I Introduction
	II Privacy-aware Distributed CNN for IoT devices
	II-A Black-box Inversion Attack Against distributed CNNs
	II-B System Model
	II-C Problem formulation
	II-D DistPrivacy: Online heuristic

	III Performance evaluation
	IV Conclusion
	References

