
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Enhancing End-to-End Transport with Packet Trimming

Permalink
https://escholarship.org/uc/item/3363b5x0

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2020-12-07
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3363b5x0
https://escholarship.org
http://www.cdlib.org/


Enhancing End-to-End Transport

with Packet Trimming

Abdulazaz Albalawi∗, Hamed Yousefi†, Cedric Westphal†, Kiran Makhijani†,

J.J. Garcia-Luna-Aceves∗

∗Department of Computer Science and Engineering, University of California, Santa Cruz, USA
†Futurewei Technologies, Santa Clara, USA

aalbalaw@ucsc.edu, hamed.yousefi@futurewei.com, cedric.westphal@futurewei.com, kiranm@futurewei.com,

jj@soe.ucsc.edu

Abstract—A new transport protocol is introduced to increase
the responsiveness of the network to congestion. The new
transport protocol, QUCO, reacts to congestion by selectively
dropping off parts of a payload packet (combined with mitigation
mechanisms to handle the loss of part of the payload). This packet
trimming scheme greatly reduces the variations in the number
of the packets going through the network. This allows to set
tighter targets on the number of packets in flight and on the
depth of the switch buffers. QUCO has less delay and much less
delay variations than TCP. The resulting reduction in jitter is
extremely useful, especially for media distribution.

I. INTRODUCTION

The tolerance to latency and packet losses in volumetric

media applications like AR/VR or holographic rendering is

extremely low. The problem is amplified with larger packet

sizes because a greater amount of data is lost. Such scenarios

make a compelling case for new means to mitigate packet-drop

on bottleneck nodes. One such scheme, qualitative communi-

cation, has been proposed by Li et al. [1] (Sec. II). It exploits

the fact that multi-media data frames are made up of parts

with varying degree of relevance.

This paper proposes QUCO, a set of QUalitative COm-

munications transport functions. Our proposal consists of a

set of transport control functions for qualitative communica-

tions (Sec. III) in which both losses and re-transmissions

are mitigated by discarding only some selected parts of the

packet. These functions may be integrated with any transport

protocol. Our design requires applications to compose packets

payloads into several data chunks. For example, the chunks

can be different layers of a scalable video stream, so that the

base layer is prioritized and the enhancement layers may be

omitted; the chunks can also be part of a workload generated

using a fountain code, so that the receiver only needs to

receive a sufficient number of chunks to decode. The chunks

can be different level of information with different priority

levels, such that it is preferable to receive the highest-priority

chunks in time, rather than wait for the whole packet to be

re-transmitted.

One key aspect of this mode of transmission is that the rate

of processing packets at the router increases upon a congestion

event, which is a desirable property. For instance, consider a

canonical example of a packet with two chunks. If the buffer

at the router exceeds a threshold (say, half utilization), then

the router drops one of the two chunks for the incoming

packets. Assuming negligible overhead, this means that the

packet processing rate goes from one to two packets per unit

of time. Any build up in the queue therefore disappears twice

as fast as with a typical transport protocol (Sec. IV). This

also implies that we can use smaller buffers in the network

and larger packets. As we move to very high bandwidths,

there is a trend toward larger (jumbo) packets to provide data

transmission at line rates. Whether a packet is small or large,

its header needs to be processed, hence larger packets offer

certain efficiency gains. However, as a result, each discarded

packet results in a larger quantum of data that needs to be

re-transmitted than in the past. Our scheme allows for an

improved network utilization with large packet sizes.

We make three main contributions: (a) a theoretical analysis

of the queue model using QUCO; (b) QUCO-AQM, an AQM

algorithm using qualitative packets; (c) an extensive simulation

evaluation of the QUCO flows from an end host’s view (Sec.

V).

Our analysis shows that QUCO achieves lower delays and

much lower delay variations than TCP, with full link utiliza-

tion. In particular, QUCO transmissions have a more predictable

buffer utilization, and hence more predictable end-to-end de-

lays. This is important for real-time (multimedia) applications,

such as AR/VR [2]–[4] or holographic communications.

We do not provide detailed analysis of different deploy-

ments or traffic profiles due to space limitation. Rather, we

motivate the use of new techniques as a way to reduce buffer

sizes and therefore delays in the network. We view this as a

promising avenue for future research (Sec. VI).

II. RELATED WORK

Reducing Internet delays has been a major goal [5] for

congestion control protocol [6].

LEDBAT [7] manages congestion by observing one-way

congestion delays. It allows background type flows to yield

bandwidth to the foreground flows thus achieving high link

utilization and predictable flow completion times. Alizadeh et

al. [8] proposed DC-TCP in the context of data centers. DC-

TCP leverages Explicit Congestion Notification (ECN) [9], a

mechanism used to address congestion before it becomes too



severe. In contrast to LEDBAT, QUCO aims to achieve pre-

dictable delays on per packet basis, instead of flow completion

times. QUCO can be viewed as a form of early congestion

notification similar to DC-TCP. However, instead of flipping

a bit in a packet header, it trims chunks off the packet.

Trimming methods have been proposed for data centers

before, such as ”cut payload” (CP) [10] and NDP [11]. The

goal in these prior schemes is to achieve fast re-transmissions

for data center workloads. However, they trim the whole

payload and only keep the header. This approach is too drastic

at Internet scale. Buffer sizing [12]–[14] and reducing the

buffer size [15] has been studied previously as well.

These prior works established that the buffer depth should

be C × RTT/
√
N , where C is the link capacity, and N is

the number of concurrent flows. Large buffers, and buffer-bloat

in particular, have introduced unwanted latency in the network

[16]. We contend that QUCO can reduce buffer depth to reduce

latency due to congestion. Abdullayev et al. [17] proposed

a mechanism that groups consecutive MPEG-2 TS (transport

stream) packets with the same priority into a single IP packet.

When network conditions deteriorate, large IP packets are

fragmented into smaller packets, which results in increasing

the probability of reception. QUCO generalizes this approach

to other applications.

The trade-off QUCO makes is between losing some infor-

mation and achieving predictable delays with shallow buffers

while minimizing re-transmissions. Our work is inspired from

packet-wash by Li et al. [1], which uses the concept of

selectively dropping chunks in a packet based upon some

congestion criteria. However, packet-wash does not specify

congestion management aspects.

III. DESIGN OF THE QUCO ALGORITHM

The tolerance to packet losses in volumetric multi-media

applications is extremely low. The problem is amplified with

larger packet sizes since a greater amount of data is lost. Such

data-intensive applications can afford to sacrifice a part of the

transmitted data for a more predictable end-to-end data rates.

A. Objective: In order to preserve smooth data delivery,

QUCO design needs to support nearly fixed-rate transmission.

According to Mathis’ equation Tmax = (MSS/RTT ) ∗
(1/

√
p), where throughput Tmax will be steady when the

packet loss probability p is low and the maximum segment size

(MSS) and round-trip times (RTT ) are constant. Thus, our

design goal is to maintain nearly constant Tmax by achieving

quasi-steady state in the bottleneck network node without

requiring re-transmission and without causing bufferbloat la-

tency.

We leverage packet trimming for this purpose (Sec. III-C).

Of course, dropping chunks off the payload of a packet is not

the end-all solution to congestion. It is an alternate outcome

of the quasi-steady state decision that would have otherwise

degraded Tmax. An application formats data into chunks. Then

the network is able to selectively remove the least-significant

part(s) of the chunks (Sec. III-B).

Secondly, we still need to adjust the sending rate through

feedback. As in TCP, we use a congestion window. The

receiver sends a chunk negative acknowledgment (NACK) to

indicate congestion to the sender (Sec. III-D).

QUCO achieves improved burst tolerance, high throughput,

and low latency, with support for commodity shallow-buffered

forwarding nodes. To this end, the network and end-points

cooperate to react in proportion to the extent of congestion. By

setting up aggressive congestion thresholds in the forwarding

nodes and mild reaction at the end-points, QUCO avoids

intermittent packet losses (and retransmissions).

Each QUCO operation is performed cooperatively. It re-

quires, a) a packetization function on the source side, b)

a trimming-aware queuing discipline in the network, and c)

QUCO-NACK congestion notification on the receiver as shown

in Fig. 1. These operations seamlessly plug into any reliable

transport protocol machinery.

Fig. 1: QUCO: a 3-chunk example. The sender, network, and receiver
react based on the level of congestion.

B. Packetization: Packetization takes place on the source

node in the application layer. A qualitative packet is composed

of different pieces of information (referred to as chunks) with

different significance. The application layer creates a stream

of chunks with different priorities. There are two cases to

consider.

In the first case, the application can tolerate to lose chunks

of lower priority (for instance, some speech or video encoded

bits may be less important than other). This translates naturally

into creating the chunks that compose the packet payload.

In the second case, all bits are equal. If chunks are dropped,

a recovery mechanism is necessary in this case. Two such

mechanisms are possible. One mechanism consists of ac-

knowledging the received chunks, instead of the received pack-

ets, and re-transmitting the missing chunks. This introduces a

re-transmission delay, which is only one RTT, because the

receiver gets the rest of the packet and therefore knows what

to re-transmit immediately, without waiting for a time-out to

expire. Another mechanism entails creating the chunks at the

source using network coding or a fountain code, so that any

combination of, say, k chunks at the receiver is good to decode

the payload.

The chunks may be encrypted separately to preserve the

integrity of the packet. The authors in [1] proposed a header

format to inject priority/significance factors, checksum and

boundaries of chunks.



C. Packet Trimming: Trimming operation will be performed

in the forwarding (bottleneck) node. The forwarding nodes

treat qualitative packets differently under congestion, i.e. they

may selectively drop chunks in a packet in response to the

network congestion. The forwarding nodes do not access a

chunk’s content, but only drop the chunk when necessary.

The forwarding nodes need to describe their own AQM

thresholds beyond which the chunks cannot be further dropped

as the packet would become useless. Other solutions, where

the information required for a forwarding node on how to

trim a packet can be programmed for a flow out of band or be

decided by the individual forwarding node, are also possible

and beyond the scope of this paper.

Under constrained network conditions, forwarding nodes

immediately react by (1) trimming the packet payload based on

the current buffer occupancy, and (2) modifying the metadata

of the qualitative packet header to ensure that receiver knows

about the number of dropped chunks, so it can notify the

source. The source can react accordingly.

D. Congestion Control: A stream of qualitative packets

adapts itself to some extent to congestion. The source node still

need to be notified about the chunk drops to react accordingly.

For this purpose, ECN bit may be used but it does not

provide the extent of congestion. In our design, the receiver

is responsible for providing feedback through chunk NACKs,

source nodes then manage their CWNDs less aggressively

based on number of chunks NACKed.

1) QUCO-AQM Algorithm: We employ a simple active

queue management scheme that is aware of qualitative packets.

Without loss of generality, we consider three thresholds

associated with different level of buffer occupancy (and thus

potential congestion) in each buffer: thlight, thmedium, thhigh.

One may consider three priority levels in each qualitative

packet: Gold, Silver, and Bronze. The forwarding node

drops the Bronze chunk if buffer occupancy exceeds, say,

50% (thlight), both Silver and Bronze chunks if exceeding,

say, 75% thmedium, and the entire payload -but not the

header- if exceeding, say, 90%. Clearly, when the buffer

occupancy is less than the minimum threshold, no action

is required. Fig. 1 shows how the router drops one chunk

of the incoming packet’s payload as the buffer occupancy

exceeds the light congestion threshold. Algorithm 1 gives a

pseudo-code description of how each forwarding node reacts

the congestion in proportion to the extent of congestion.

Algorithm 1: QUCO in a router — a 3-chunk example

Initialize thlight, thmedium, and thhigh

for each arriving data packet P do

if buffer utilization ≥ thlight then

if buffer utilization < thmedium then
PW(P , 1 chunk)

else if buffer utilization < thhigh then
PW(P , 2 chunks)

else
PW(P , 3 chunks) //only keep header

Enqueue P

QUCO fairly spreads the impact of congestion over a larger

number of flows. Thus, instead of dropping a packet and

accepting the next one, both packets may see their payload

cut in half. This is fair and has the added benefit of notifying

more flows of the congestion occurring inside the network.

It is also important to preserve fairness among different

flows at each forwarding element which makes a decision to

drop chunks from the qualitative packets. One mechanism to

achieve this is to increase the QoS level of the packet after

QUCO trimming operation, by increasing the ToS to the next

higher value.

2) Receiver: Like TCP, QUCO uses both positive and neg-

ative acknowledgements. Unlike TCP, NACK as in Algorithm

2 is a request for easing the network load and reducing

congestion through rate adaptation at the senders (see Fig. 1),

rather than a request for re-transmissions. Some applications

may tolerate receiving degraded packets; however, the receiver

may ask for the re-transmission of a dropped chunk if it so

wishes, both are supported. The partial dropping of a packet is

a warning that congestion is occurring. The receiver triggers an

adaptive congestion control by notifying the sender about the

network conditions. Receiving a more degraded packet (i.e.,

a packet with more dropped chunks) at the receiver means

higher congestion in the network.

Algorithm 2: QUCO at the receiver, upon lost chunk

for each packet arrival do

if chunk(s) have been dropped then
Send back a NACK/ECN for the degraded quality, with a reference

to the dropped chunk;

else
Send back an ACK;

3) Sender: In normal network conditions, QUCO senders

behave as TCP senders. They maintain congestion windows,

limiting the total number of unacknowledged chunks that may

be in transit end-to-end. The senders initiate in slow start,

where the windows grow quite aggressively. The congestion

window size will be increased by one with each ACK received,

effectively doubling the window size each RTT. In congestion

avoidance state (CWND>ssthresh): (1) the increase in

window follows TCP (i.e., linearly at the rate of 1
CWND

on

each new ACK, means 1 every RTT), and (2) the window

size decreases (by a constant factor β) in proportion to the

level of buffer occupancy. This allows the sender to decrease

its sending rate as a response to potential congestion in the

network unlike loss-based congestion control protocols. The

approach is shown in Algorithm 3. For example, the sender can

back off by β=10% (slight reduction as shown in Fig. 1), 25%,

and 50% (like TCP), in light, medium, and high congestion

scenarios, respectively, in congestion avoidance state.

This is how QUCO maintains low queue length, while still

ensuring high throughput. Unlike a TCP sender which can

only detect the existence of congestion, a QUCO sender can

react to the actual extent of the encountered congestion, due

to feedback in QUCO NACKs. Re-transmissions may still be

required; whether or not a packet is re-transmitted is up to

the application, which is beyond the scope of this paper.



Algorithm 3: QUCO at the sender — a 3-chunk exam-

ple

Initialize βlight, βmedium, and βhigh;

CWND ← 1

ssthresh ←∞

for each ACK do

if CWND ¡ ssthresh then
CWND ← CWND + 1 //Slow Start

else
CWND ← CWND + (1 / CWND)

for each NACK do

if 1-chunk drop then
ssthresh← max(βlight× CWND, 1)

else if 2-chunk drop then
ssthresh← max(βmedium× CWND, 1)

else if 3-chunk drop then
ssthresh← max(βhigh× CWND, 1)

CWND ← ssthresh

QUCO adjusts its window size as TCP if the packet is

dropped as a whole. Therefore, if QUCO is not supported, it

defaults back to TCP. If QUCO and TCP co-exist in a network,

it is necessary to put them in different queues as they react

differently to congestion and the concept of packet trimming

is unapplicable to TCP packets.

E. Discussion: As discussed above, QUCO trades off between

losing some information and achieving predictable delays with

shallow buffers while minimizing re-transmission.

QUCO adds some overhead, namely each packet is composed

of chunks with some associated meta-data. However, for a

relatively limited number of chunks within a packet, this is

not a significant addition, especially for larger payload sizes

or larger frames. There is a computational overhead as well,

but QUCO is involved only upon congestion. Namely the cost

of trimming the packets always serves a purpose.

QUCO can be associated with some differentiated levels of

QoS. Actually, Li [1] suggests increasing the QoS level of

a packet after a trimming operation. This is to ensure that a

packet that has been trimmed is less likely to be dropped later

on. In general, QUCO packets could be given a better than

Best Effort level of QoS due to the willingness of the sender

to gracefully reduce the congestion over the network.

IV. QUCO-BASED QUEUING MODEL

We motivate the benefit of dropping only part of the packets

when the network gets congested. In essence, QUCO increases

the per-packet processing rate at the cost of losing some

information in the packet. Current networks are stretched to

high utilization during peak hours. We would like to consider a

utilization where the incoming rate is higher than the capacity.

For illustrative purposes, we consider a packet composed

of two chunks. When QUCO is applied to the packet and one

chunk is dropped at first, then the processing rate for a packet

at the router is doubled. Therefore, twice as many packets can

be forwarded on the congested link (of course, with a loss of

half the data in the original packet). While we only present

analytical models for two-chunk packets, the models can be

generalized to the case of multiple chunks per packet.

Fluid Model Approximation: Consider a fluid system in

which requests arrive as a process of rate λ packets per second

and packets are processed at the server with a rate µ packets

per second. Each packet is composed of two chunks of equal

size. If λ > µ then the queue builds up in the server’s buffer.

When the system reaches a threshold T (say, when the buffer

is half full), it drops one chunk of all new incoming packet.

The per-packet processing rate increases to 2µ.

This system will stay empty if λ < µ. The system will

overflow if if λ > 2µ, given that 2µ is the maximum

processing rate. The system will converge to the threshold T
and keep the buffer half full if µ ≤ λ ≤ 2µ. Consequently, if

the incoming rate is between µ and 2µ, the system operates

with a buffer of constant size B, where B is the buffer

utilization threshold, and the wait time for a task is simply

B/C, where C = 1/µ is the link capacity. The three modes of

operation of such a system are therefore to have: (a) an empty

buffer (λ < µ), (b) a buffer at the threshold T (µ ≤ λ ≤ 2µ),

or (c) an overflowing buffer.

The waiting time for a stable system is either 0 or B/C.

Because the system has constant buffer size, the jitter is 0.

Further, the outgoing packet rate is equal to the link capacity

after filling up the buffer. This implies that the fraction α of

packets that are shrunk is equal to:

(1− α)λ+ α/2λ = µ or α = 2(1− µ/λ) (1)

Note that a similar fluid TCP model would have the same

buffer occupancy of 0 for λ ≤ µ. For λ > µ, the delay would

increase until the buffer is filled up (at rate µ/λ) then drop off

to half and repeat the process again. The waiting time for a

packet λ > µ will be 3/4B′ where B′ is the buffer size and the

delay will be spread uniformly over (B′/2, B0). Setting B to

be less than 3/4B′ ensures that the packet trimming approach

has a lower delay and a much lower jitter than the TCP fluid

model.

M/D/1 Model Approximation: Instead of a fluid model,

we consider that packet arrivals occur according to a Poisson

process with rate λ. For simplicity, packet lengths are assumed

to be identical (prior to any trimming operation), which results

in processing times that are deterministic. Packets are served

immediately if they arrive in an empty system, or put in a

queue if the server is busy processing a packet.

We assume the following policy: if the queue holds fewer

than or equal to B tasks, then the packet is processed with

rate µ (and mean service time 1/µ). If the queue holds more

than B tasks, then the service rate is 2µ. The arrival for any

state is simply for any state, while the service rate is µ for

states 0 to B, and 2µ for states B + 1 to k. Define by pk the

probability that the buffer holds k packets and let ρ = λ/µ.

Define by πµ
k to be the stationary distribution of the M/D/1

queue with arrival rate λ and service rate µ. This can be re-

cursively computed, cf for instance [18]. A coupling argument

shows that the system is stable for λ < 2µ and that for λ > µ,

once the buffer occupancy goes beyond B, the system behaves

exactly as the M/D/1 queue with rate 2µ. This means that we

can compute pk for k ≥ B as π2µ
(k−B)P (L > B) where L



is the buffer occupancy. An upper bound on the mean buffer

occupancy is therefore:

L = B +
1

2

(

ρ2/4

(1− ρ/2)

)

(2)

Fig. 2: Buffer occupancy probability for a QUCO system with 2
chunks per packet and buffer depth of 20 packets, threshold at 50%
occupancy

Fig. 3: Buffer occupancy probability for a QUCO system with 3
chunks per packet and buffer depth of 30 packets, thresholds at 50%
and 66.7% occupancy

Because the system is stable, the computation of α from

Eq. 1 still applies for µ < λ < 2µ. Figs. (2) and (3) show the

probability distribution of the buffer occupancy, with a clear

peak at the target threshold value. We can observe a fast drop-

off in the probability of a buffer occupancy over the highest

threshold.

This indicates that QUCO limits the jitter and is therefore

suited for real-time applications and real-time media in par-

ticular.

V. EVALUATION

We evaluate the performance of QUCO using the NS-3

simulator. We consider a single-flow scenario to show how

forwarding nodes and end-points (sender and receiver) per-

form; and a multiple-flow scenario to show QUCO’s fairness.

We also vary the buffer depth to verify that QUCO offers a

lower and more predictable delay with smaller buffers.

The preliminary results are compared to TCP New RENO

(TCP for short). We compare to New RENO because it is

an up-to-date version of TCP (70% of Internet traffic) and is

even used in QUIC (15%). Therefore it is a valid benchmark.

ECN-based protocols, on the other hand, are known to be

difficult to tune to make a meaningful comparison [19], and

are not widely deployed [20]. We think that QUCO can also

outperform ECN-based protocols as they do not react to

congestion immediately inside the network, but only after one

RTT.

A. Single-Flow Scenario Our first experiment shows the

performance over a simple network consisting of a single path

of four nodes with a single source at one end, sending data

to a single receiver at the other end. The source and sink

are connected via a 1.5Mbps bottleneck link. The buffer size

of the routers at the bottleneck link is set to be equal to the

bandwidth delay product (BDP), namely 15KB. The file size to

be transmitted is set to 6MB. Eack packet is 1500B, and can

carry three chunks each of size 500 bytes with three levels

of priority for QUCO. For TCP, the router’s queue is set as

a tail-drop. QUCO uses a simple active queue management

scheme where the number of chunks to be dropped at the

queue depends on three thresholds (light, medium, and high

congestion).

Figs. 4a and 4b show both the sender’s CWND and bottle-

neck’s buffer occupancy for TCP and QUCO.For TCP, packet

drop is the only way to detect congestion. Therefore, the

sender increases its sending rate until the buffer overflows.

This will either result in a timeout or a fast re-transmit event.

Then the sender halves its congestion window. This process

drains the queue empty for a while until it gets filled up again,

and the same cycle repeats. This affects the TCP throughput

and end-to-end delay for packets as shown in 4c and 4d,

respectively.

However, QUCO senders can detect not only the existence

of congestion in the network but also the level of conges-

tion. Once the queue exceeds the light congestion threshold,

QUCO starts dropping low priority chunks. This will cause

the receiver to send NACK of the missing chunk to the

sender (per Algorithm 2)), allowing the sender to reduce its

congestion window proportionally to the congestion reported

in the NACK. Since there is only one flow, the level of

congestion in the network never exceeds the low congestion

threshold, (50% in Fig. 4b). As a result, the queue never

empties in Fig. 4a. Thus, QUCO maintains the packet sending

rate while also maintaining high throughput (Fig. 4c) and low

end-to-end delay (Fig. 4d). The figures also confirm a much

lower jitter and predictable delay for QUCO.

Fig. 5a shows the performance from the receiver’s point of

view. The improved performance comes at the cost of 1-chunk

loss for only 7% of the packets (and 2-chunk loss for less

than 0.2% as shown in Fig. 5b), which is tolerable in many

applications. This clearly demonstrates the main strength of

QUCO for applications that need to receiving part of the data

in time, while maintaining high throughput and low end-to-end

delay.

B. Multiple-Flow Scenario We evaluate QUCO’s fairness

under a multiple-flow scenario. We use a dumbbell topology

with two senders and two receivers connected via a link with



(a) Sender’s CWND Size (b) Router’s Buffer Occupancy (c) Throughput (d) End-to-End Delay Sum

Fig. 4: Single-flow scenario

(a) Packets received vs time (b) Chunk losses

Fig. 5: Goodput at the Receiver

(a) QUCO CWND size (b) TCP CWND size

Fig. 6: Multiple-flow scenario

10Mbps capacity. The queue size is set to the BDP, which is

30KB. Sender 1 sends data first. Once it fully utilizes the link,

sender 2 starts sending data.

QUCO trims packets based on the congestion. This will

cause sender 1 to back off, allowing sender 2 to increase

its congestion window as shown in Fig. 6a. By adopting

a less aggressive window reduction with QUCO in-network

operations, the QUCO senders reach fairness state faster than

(a) Throughput (b) Delay

Fig. 7: Shallow buffer

TCP.

TCP flows reach fairness when they become synchronized

[21]. However, synchronization for TCP can take a while.

This is shown in Fig. 6b as both TCP flows struggle to

synchronize even though they have the same RTT. This affects

the application’s performance.

C. Shallow-Buffer Scenario The goal of this evaluation is to

highlight QUCO ability to achieve high throughput and low

latency compared to TCP when the switches have shallow

buffers. With the use of in-network trimming operations at

intermediate switches and with the senders reacting in pro-

portion to the level of congestion, QUCO is able to operate

with shallow buffers without loss of throughput as shown in

Fig. 7a. QUCO also maintains a low delay without any under-

utilization of the buffer compared to TCP as shown in Fig. 7b.

This is because TCP reacts to congestion in general instead of

the level of congestion as in QUCO. By dropping the window

in half, TCP causes under-utilization of the buffer, leading to

a loss in throughput.

VI. CONCLUSIONS AND NEXT STEPS

We argue that dropping chunks off a packet is a potentially

beneficial approach to address network congestion, as long



as either the dropped chunks are dispensable or a mitigation

mechanism (re-transmission, network coding) is in place.

Dropping chunks avoids dropping entire packets and increases

the per packet processing rate during congestion events. Be-

cause the end points still receive some information, they can

react quicker to congestion events. This of course requires

the packets to be modified to support shedding chunks, either

by having different levels of information within a packet(say,

important, helpful, and ”nice to have” chunks within a packet);

or by having the chunks encoded using some fountain code

to allow transmission of a stream of chunks until enough are

received at the end point to recover the original data.

The introduction of “qualitative packet” is promising, and

we described QUCO as a protocol taking advantage of this idea.

Our simulation results show a greater delay predictability and

much lower delay variations with QUCO, even in the case of

smaller buffers.

REFERENCES

[1] R. Li et al, “A framework for qualitative communications using big
packet protocol,” ACM SIGCOMM NEAT, pp. 22–28, 2019.

[2] C. Westphal, “Challenges in Networking to Support Augmented Reality
and Virtual Reality,” in IEEE ICNC, Jan. 2017.

[3] D. He, C. Westphal, and J. Garcia-Luna-Aceves, “Network Support
for AR/VR and Immersive Video Application: A Survey,” in ICETE

SIGMAP, July 2018.
[4] D. He, C. Westphal, and J. Garcia-Luna-Aceves, “Joint rate and FoV

adaptation in immersive video streaming,” in Proceedings of the ACM

SIGCOMM Workshop on Virtual Reality and Augmented Reality Net-

work, pp. 27–32, 2018.

[5] B. Briscoe at al, “Reducing internet latency: A survey of techniques and
their merits,” IEEE Communications Surveys Tutorials, 2016.

[6] M. Polese et al, “A survey on recent advances in transport layer
protocols,” CoRR, vol. abs/1810.03884, 2018.

[7] S. Shalunov et al, “Low extra delay background transport (LEDBAT),”
RFC, vol. 6817, pp. 1–25, 2012.

[8] M. Alizadeh et al, “Data center TCP (DCTCP),” in ACM SIGCOMM,
2010.

[9] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit
congestion notification (ECN) to IP.” IETF RFC3168, 2001.

[10] P. Cheng et al, “Catch the Whole Lot in an Action: Rapid Precise Packet
Loss Notification in Data Centers,” in Usenix NSDI, 2014.

[11] M. Handley et al, “Re-architecting Datacenter Networks and Stacks for
Low Latency and High Performance,” in ACM SIGCOMM, 2017.

[12] G. Appenzeller et al, “Sizing router buffers,” in ACM SIGCOMM, 2004.
[13] A. Vishwanath et al, “Perspectives on router buffer sizing: Recent results

and open problems,” ACM CCR, vol. 39, 2009.
[14] A. Dhamdhere and C. Dovrolis, “Open issues in router buffer sizing,”

SIGCOMM Comput. Commun. Rev., vol. 36, Jan. 2006.
[15] M. Enachescu et al, “Routers with very small buffers,” in IEEE INFO-

COM’06, 2006.
[16] N. Cardwell et al, “BBR: Congestion-based congestion control,” ACM

Queue, 2016.
[17] J. Abdullayev et al, “A Dynamic Packet Fragmentation Extension to

High Throughput WLANs for Real-Time H264/AVC Video Streaming,”
in CFI’15.

[18] L. Kleinrock, Theory, Volume 1, Queueing Systems. New York, NY,
USA: Wiley-Interscience, 1975.

[19] M. Kwon and S. Fahmy, “PTCP increase/decrease behavior with explicit
congestion notification (ECN),” in IEEE ICC, April 2002.

[20] A. Mandalari et al, “Measuring ECN++: Good News for ++, Bad News
for ECN over Mobile,” IEEE Communications Magazine, 2018.

[21] E. Altman et al, “Fairness analysis of TCP/IP,” in IEEE Conf. on

Decision and Control, Dec 2000.


	Introduction
	Related Work
	Design of the QUCO Algorithm
	A. Objective:
	B. Packetization: 
	C. Packet Trimming:
	D. Congestion Control:
	1) QUCO-AQM Algorithm: 
	2) Receiver: 
	3) Sender: 

	E. Discussion:

	QUCO-based Queuing Model
	Evaluation
	A. Single-Flow Scenario
	B. Multiple-Flow Scenario
	C. Shallow-Buffer Scenario

	Conclusions and Next Steps
	References



