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Abstract—Graph classification has practical applications in
diverse fields. Recent studies show that graph-based machine
learning models are especially vulnerable to adversarial pertur-
bations due to the non i.i.d nature of graph data. By adding or
deleting a small number of edges in the graph, adversaries could
greatly change the graph label predicted by a graph classification
model. In this work, we propose to build a smoothed graph
classification model with certified robustness guarantee. We have
proven that the resulting graph classification model would output
the same prediction for a graph under l0 bounded adversarial
perturbation. We also evaluate the effectiveness of our approach
under graph convolutional network (GCN) based multi-class
graph classification model.

I. INTRODUCTION

Graph has strong capability to represent natural relational

data such as citation network, bio-medical molecular, social

network etc., which provides wide opportunities to utilize

graph based machine learning models.

Graph classification, or the problem of assigning labels to a

graph in a dataset, has found practical applications in diverse

fields, including malware detection[1], learning molecular

fingerprints [2], and anticancer hyperfood prediction[3]. For

example, in chemoinformatics, graphs can be used to represent

molecules, with nodes signifying atoms and edges denoting

chemical bonds of atom pairs, and a label of a graph given

by a graph classification algorithm could denote molecular

properties such as the anti-cancer activity, solubility, or toxi-

city. While there exist many classic approaches, graph neural

networks (GNNs) represent the state-of-the-art in frequently

applied tasks on graph data and have attracted great attention

recently [4], [5], [6].

Despite of their remarkable performance, GNNs have been

shown to be vulnerable to adversarial attacks [7], [8], i.e.,

deliberately designed and small perturbations in the graph

structure or node features of a graph could lead to drastically

degraded performance of a GNN model. Such observation

poses great challenges in applying GNNs to real-world appli-

cations, especially safety-critical scenarios such as healthcare

and transportation. Therefore, ensuring the robustness of GNN

models is of significant importance to the wide applicability

of these models.

Compared with traditional machine learning models, it

is especially challenging to ensure the robustness of GNN

models due to the non-i.i.d. nature of graph data. Specifically,

the adversarial effects of an attack against a node or edge

can propagate to other nodes or edges via the graph structure,

making the space of possible attacks very large. Until now,

there are only very few mechanisms that can effectively defend

against the adversarial attacks in GNNs [9]. Most proposed

mechanisms are best-effort and heuristic methods for training

GNN models intended to be robust to adversarial attacks, and

they are most likely to fail given suitably powerful adversaries

as observed from the robustness research in traditional ma-

chine learning models.

On the other hand, certifiable robustness ensures that a

classifier whose prediction at any point is verifiably constant

within some set around the point. By offering a theoretically

justified guarantee of robustness, adversarial attacks can be

provably defended. The research line of providing certifiable

robustness for GNN models has emerged in very recent

studies [10], [11]. However, these studies tend to be tied to

internal GNN model details, such as the types of aggregation

and activation functions, and cannot easily generalize across

different types of GNN models. Moreover, their computational

complexities are often very high (e.g., solving an NP-hard

problem) and do not immediately scale to large GNN models.

Providing robustness guarantee for graph classification

model in these applications is an important but unsolved

problem. In this paper, we focus on providing robustness

guarantee for graph classification models based on randomized

smoothing[12], [13], [14], which turns any base classifier into

a robust classifier via adding random noise (usually Gaussian)

to the input data. There are several challenges originate from

the inherent nature of graph data though, including how to

add commonly used Gaussian noises to the discrete graph

structure and how to provide discrete l0 certification instead

of l2 in graph data. We address the above challenges by using

discrete random noise sampled from Bernoulli distribution and

deriving the analytical bound for the robustness guarantee of

the smoothed GNN classifier in the l0 norm metric.

The contributions of this paper are summarized as follows:

• We propose a certifiable robustness method for graph

classification models that can achieve both scalability and

general applicability.

• We propose to use Bernoulli distribution as the random

noise to perturb the graph data and smoothen the decision

boundaries of the classic GNN models by ensemble

prediction.

• We evaluate our approach based on graph convolutional

network (GCN), and empirically demonstrate the effec-

tiveness of our approach for multi-class graph classifica-

tion.
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The rest of the paper is organized as follows. First, the

related works is introduced in Section II. Then, our proposed

method to provide certifiable robustness of graph classifica-

tion models based on randomized smoothing is illustrated in

Section III. Next, experimental results are given in Section IV.

Finally, Section V makes the conclusion.

II. RELATED WORK

Our work is related to two categories of recent research:

graph classification and graph adversarial attacks.

A. Graph classification

There are several approaches of graph classification, includ-

ing kernel-based approaches which measure similarity between

graphs[15], [16], and neural network approaches which lever-

age machine learning framework to learn graph features[17].

Inspired by recent progress of Convolutional Neural Network

(CNN), two approaches, convolutional approach[4], [18], [5]

and pooling approach[15], [19], [20], [21] are proposed with

the aim to generalize the convolution and pooling operation in

graph neural network. Among these approaches, graph neural

network approach, especially GCN, has been widely used

since it provides state-of-the-art performance in many cases.

B. Attack and Defense in Graph-based Learning

Machine learning models are vulnerable to attacks. Two of

the main attack scenarios are evasion attacks [22], [23] and

poisoning attacks [24], [25], [26], [27], [28], focusing on test

time and training time, respectively. Compared to non-graph

data, attacks and defenses on graph data are less investigated.

Previous attacks on graph-based learning are mainly focusing

on transductive setting, and thus are mostly poisoning attacks

[29], [30]. Little evasion attacks on graph-based learning are

investigated [31]. With the development of new inductive

learning algorithms on graph data, the risk of evasion attacks

increases. Evasion attacks are often instantiated by adversarial

examples, which are crafted by making small, often imper-

ceptible perturbations to legitimate inputs, with the goal of

misleading a learned classifier to misclassify the resulting

adversarial inputs. Note that adversarial examples generated

from one model usually are also harmful for other model,

known as transferability [32]. In this paper, we investigate

how we could improve the robustness of graph-classification

algorithms against evasion attacks.

III. CERTIFIED ROBUSTNESS FOR GRAPH CLASSIFICATION

In this section, we will introduce notations and our approach

to provide certified robustness guarantee for graph classifica-

tion model.

A. Notations and Graph Classification Model

Given a set of graphs D = {(G1, c1), (G2, c2), · · · , },
where the number of nodes may differ in each graph. For

an attributed graph G = (A,X), we have adjacency matrix

A ∈ {0, 1}n×n and feature matrix X ∈ {0, 1}n×d, where n
denotes the number of nodes in corresponding graph and d is

the number of node features. For each graph, it has related

label c ∈ C, where C denotes the set of labels. The goal of

graph classification is to learn a function f : G → C, where

G is input space of graphs.

B. Attack model

We consider the attack scenario where an attacker can only

change the topology of graph G by removing existing edges

or adding new edges into the original edge set, forming a new

graph G̃. For simplicity, we use a binary vector xG ∈ {0, 1}
N

to represent the flattened adjacency matrix A, whereN denotes

the length of vector. Then, the adversarial perturbation vector

ǫ is introduced to model whether a corresponding edge is

perturbed or not, and ǫi denotes the i-th element of ǫ.

Specifically, ǫi = 1 if the corresponding edge is perturbed,

otherwise, ǫi = 0. Formally, given the binary vector xG of

original graph G, by perturbing the edges according to the edge

perturbation vector ǫ, the new binary vector x̃G of perturbed

graph can be represent as:

x̃G = xG ⊕ ǫ, (1)

where the operator ⊕ denotes the “exclusive or” binary oper-

ation.

C. Achieving Certifiable Robustness with Randomized

Smoothing

With randomized smoothing, we construct a new,

“smoothed” classifier g from an arbitrary base GNN classifier

f . When queried at a specific unlabeled graph G, the smoothed

classifier g returns whichever label the base classifier f is

mostly likely to return when the topology of graph G is

perturbed by certain random noises:

Pr(ǫi) =

{
β ǫi = 0

1− β ǫi = 1
, ∀i ∈ {1, 2, · · · , N} (2)

where i is i-th element of binary vector ǫ. In our scenario

each element in the binary vector has probability β to keep

unchanged and has probability 1−β to flip the structure. Then,

the smoothed classifier is defined as:

g(xG) = argmax
c∈C

Pr(f(xG ⊕ ǫ) = c) (3)

where c is the class which has largest probability measure

under noise perturbation ǫ. Certifying robustness against any

adversarial attack is to certify that g(xG ⊕ δ) = c for all

‖δ‖0 = L, where L denotes certified perturbation size.

Next we will introduce how to derive the certified per-

turbation size of smoothed classifier g. Given the smoothed

classifier g defined in (3), one can certify the model’s output

against adversarial perturbation within range L. Formally, we

have the following theorem:

Theorem 1. Given a graph represented with xG ∈ {0, 1}
N ,

a graph classification model f : G → C, and a smoothed

classifier g defined in (3). Suppose cA ∈ C and there exists

pA, pB ∈ [0, 1] such that

Pr(f(xG ⊕ ǫ) = cA) ≥ pA ≥ pB ≥ max
c 6=cA

Pr(f(xG ⊕ ǫ) = c).

(4)



Here, pA denotes the lower bound probability of the most

probable class cA and pB denotes the upper bound probability

of the “runner-up” class of f under random noise ǫ. Then,

g(xG ⊕ ǫ) = cA for all ‖δ‖0 < L, where L is certified

perturbation size and can be calculated by solving the follow

optimization problem:

L =argmax l

s.t.‖δ‖0 = l,
µ1−1∑

k=µ2

Pr(xG ⊕ ǫ⊕ δ ∈ Hk)+

(pA −

µ1−1∑

k=1

Pr(xG ⊕ ǫ ∈ Hk)) ·
Pr(xG ⊕ ǫ⊕ δ ∈ Hµ1

)

Pr (xG ⊕ ǫ ∈ Hµ1
)

>

(pB −

µ2−1∑

k=1

Pr(xG ⊕ ǫ ∈ Hk)) ·
Pr(xG ⊕ ǫ⊕ δ ∈ Hµ2

)

Pr (xG ⊕ ǫ ∈ Hµ2
)

(5)

The region H(e) and density ratio h(e) are defined as [33]:

H(e) = {z ∈ {0, 1}N} :
Pr(xG ⊕ ǫ = z)

Pr(xG ⊕ ǫ⊕ δ = z)
(6)

h(e) = (
β

1− β
)e (7)

where e = −N,−N + 1, · · · , N − 1, N . The region

H(−N),H(−N + 1), · · · ,H(N) is ranked in an ascend-

ing order according to the density ratio h(−N), h(−N +
1), · · · , h(N). And we denote them as H1,H2, · · · ,H2N+1

according to their orders. We define µ1, µ2 as follows:

µ1 = argmin
µ′∈{1,2,··· ,2N+1}

µ′, s.t.

µ′∑

k=1

Pr(xG ⊕ ǫ ∈ Hk) ≥ pA

µ2 = argmin
µ′∈{1,2,··· ,2N+1}

µ′, s.t.

µ′∑

k=1

Pr(xG ⊕ ǫ ∈ Hk) ≥ pB

(8)

Proof: Here, we first restate the Neyman-Pearson Lemma

under discrete space [33], and then provide the proof for

Theorem 1.

Lemma 1. Assume X and Y are two random variables in the

discrete space {0, 1}n with probability distribution Pr(X) and

Pr(Y ), respectively. Let ψ : {0, 1}n → {0, 1} be a random

or deterministic function. Let T1 = {z ∈ {0, 1}N : Pr(X=z)
Pr(Y=z) }

and T2 = {z ∈ {0, 1}n : Pr(X=z)
Pr(Y=z)} for some t > 0. Assume

T3 ⊆ T2 and T = T1 ∪ T3. If Pr(ψ(X) = 1) ≥ Pr(X ∈ T ),
then Pr(ψ(Y ) = 1) ≥ Pr(Y ∈ T ). If Pr(ψ(X) = 1) ≤
Pr(X ∈ T ), then Pr(ψ(Y ) = 1) ≤ Pr(Y ∈ T ).

We first define two random variables as follow:

X = xG ⊕ ǫ

Y = xG ⊕ δ ⊕ ǫ
(9)

which represent the random samples after adding noise to the

binary vector xG and xG⊕δ . Our goal is to find the maximum

perturbation size ‖δ‖0 such that following condition hold:

Pr(f(Y ) = cA) > Pr(f(Y ) = cB) (10)

We first define two regions Q1,Q2 such that Pr(X ∈ Q1) =
pA,Pr(X ∈ Q2) = pB . Specifically, we gradually add the

region H1,H2, · · · ,H2N+1 to the Q1,Q2 up to Pr(X ∈
Q1) = pA, Pr(X ∈ Q2) = pB . In particular, we define

µ1, µ2 as:

µ1 = argmin
µ′∈{1,2,··· ,2N+1}

µ′, s.t.

µ′∑

k=1

Pr(xG ⊕ ǫ ∈ Hk) ≥ pA

µ2 = argmin
µ′∈{1,2,··· ,2N+1}

µ′, s.t.

µ′∑

k=1

Pr(xG ⊕ ǫ ∈ Hk) ≥ pB

(11)

Moreover, we define Hµ1
,Hµ2

as any subregion of Hµ1
,Hµ2

such that:

Pr(X ∈ Hµ1
) = pA −

µ1−1∑

k=1

Pr(X ∈ Hk)

Pr(X ∈ Hµ2
) = pB −

µ2−1∑

k=1

Pr(X ∈ Hk)

(12)

Then, the region Q1,Q2 can be represent as:

Q1 =

µ1−1⋃

k=1

Hk ∪Hµ1

Q2 =

µ2−1⋃

k=1

Hk ∪Hµ2

(13)

Based on the condition of equation 4, we have:

Pr(f(X) = cA) ≥ pA = Pr(X ∈ Q1)

Pr(f(X) = cB) ≤ pB = Pr(X ∈ Q2)
(14)

Define the function ψ(z) = I(f(z) = c). Then, we have:

Pr(ψ(X) = cA) = Pr(f(X) = cA) = Pr(X ∈ Q1)

Pr(ψ(X) = cB) = Pr(f(X) = cB) = Pr(X ∈ Q2)
(15)

Moreover, we have
Pr(X=z)
Pr(Y=z) > hµ1

,
Pr(X=z)
Pr(Y=z) > hµ2

if and

only if z ∈
⋃µ1−1

j=1 Hj , z ∈
⋃µ2−1

j=1 Hj separately. We also have
Pr(X=z)
Pr(Y=z) = hµ1

,
Pr(X=z)
Pr(Y =z) = hµ2

for any z ∈ Hµ1
, z ∈ Hµ2

.

Note that Q1 =
⋃µ1−1

k=1 Hk∪Hµ1
and Q2 =

⋃µ2−1
k=1 Hk∪Hµ2

,

According to Neyman-Pearson Lemma mentioned before, we

can obtain that:

Pr(f(Y ) = cA) ≥ Pr(Y ∈ Q1)

Pr(f(Y ) = cB) ≤ Pr(Y ∈ Q2)
(16)



To reach our goal, it’s sufficient to have:

Pr(Y ∈ Q1) ≥ Pr(Y ∈ Q2)⇔

Pr(Y ∈

µ1−1⋃

k=1

Hk ∪Hµ1
) > Pr(Y ∈

µ2−1⋃

k=1

Hk ∪Hµ2
⇔

µ1−1∑

k=1

Pr(Y ∈ Hk) + (pB −

µ1−1∑

k=1

Pr(X ∈ Hk))/hµ1
>

µ2−1∑

k=1

Pr(Y ∈ Hk) + (pA −

µ2−1∑

k=1

Pr(X ∈ Hk))/hµ2

(17)

Next, we present a practical algorithm evaluating the g(xG)
and provide the certified robustness guarantee of g around xG .

Given a base graph classifier f and a graph G, the evaluation

includes two stages. Firstly, we need to identify the most

probable class cA. Then, we need to estimate the lower bound

probability pA and upper bound probability pB under random

noise corrupted input xG ⊕ ǫ.

Our approach is implemented based on Monte Carlo

method. We first sample M random noises and use cor-

respondingly perturbed graphs as input. Denote the most

frequently appeared class when querying the output as cA.

Formally, we have:

cA = argmax
c∈C

ηc

s.t. ηc =

M∑

m=1

I(f(xGm
⊕ ǫ = c)),

(18)

where ηc is counter of class c appeared during the sampling,

and I is the indicator function.

Then, the lower-bound probability pA can be estimated

using one-sided Clopper-Pearson method:

pA = LCB(ηc,M, 1− α), (19)

where LCB(·) denotes lower-confidence-bound function

which returns one-sided lower confidence interval for the

Binomial parameter p such that ηc ∼ Binomial(M,p) with

probability 1− α.

For the upper bound probability pB , it’s very hard to give

accurate maximum probability among remain classes if |C| >
2. In actual algorithm, we just take: pB = 1−pA. And in this

situation, pB < 1−pA leads 1−pA < pA, which is pA > 0.5
in return. If pA <= 0.5, the algorithm will abstain.

To solve the optimization problem in equation (5), the key

is calculating two probabilities Pr(xG ⊕ ǫ ⊕ δ ∈ H(e)) and

Pr (xG ⊕ ǫ ∈ H(e)). Formally, we have:

Pr (xG ⊕ ǫ ∈ H(e)) =

min{N,N+e}∑

k=max{0,e}

βN−(k−e)(1−β)k−e·θ(k),

(20)

Pr (xG ⊕ δ ⊕ ǫ ∈ H(e)) =

min{N,N+e}∑

k=max{0,e}

βN−k(1−β)k·θ(e, k),

(21)

where θ(k) is:

θ(e, k) =






0, if (e + l) mod 2 6= 0

0, if 2k − e < l
(

N−k
2k−e−l

2

)(
l

l−e

2

)
, otherwise

(22)

After we calculate the two probabilities, the optimization

problem can be solved iteratively. Our whole algorithm is

summarized in Algorithm 1.

Algorithm 1 Certification and Prediction

Input: f , xG , β, M, α
1: counts ←− SAMPLE(f , β, xG , M);

2: ĉA, ĉB ←− top two classes in counts;

3: ηA, ηB ←− count [ĉA], count [ĉB];

4: pA ←− LCB(ηA, M, 1− α);

5: if BPV(ηA, ηA + ηB , 0.5) ≤ α and pA > 1
2 then

6: L = RADIUS(pA, pB , xG);

7: return (ĉA, L);

8: else

9: ABSTAIN;

10: end if

11: return ABSTAIN or (ĉA, L)

In our algorithm, the function BPV(ηA, ηA + ηB , p) ≤ α
returns the p-value of two-sided hypothesis test that ηA ∼
Binomial(ηA+ ηB, p). The function RADIUS solves equation

(5) and returns the certified perturbation size L. The function

SAMPLE(f , β, xG , M) randomly generates M samples with

noise control level β, gives prediction for each xG ⊕ ǫ, and

returns the frequency of each class.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our pro-

posed certifiable robustness method. We first describe our

experimental setup. We then demonstrate the effectiveness of

our method and study the performance of our method under

different scenarios.

A. Experimental Setup

We evaluate our method for graph classification on a

synthetic dataset. The synthetic dataset consists of 480

graphs with different topologies, including cycle-type, star-

type, wheel-type, lollipop-type, hypercube-type, grid-type,

complete-type, and cicular ladder-type topology. Our goal is

to classify these graphs into different categories of topology.

We use the well-established GCN algorithm [4] to train the

base graph classifier. Specifically, we establish a two-layer

GCN model and train it beforehand using 320 samples. After

obtaining the trained GCN model, we implement our algorithm

on it and retrain the model, and finally make predictions on

160 test samples. For the m-th testing sample, we can obtain

its prediction result and corresponding certified perturbation

size Lm.



To study the performance of our method, we use the certified

accuracy as the evaluation metric, which is defined as follows.

CA(r) =

∑M
m=1 I(g(xGm

⊕ ǫ) = c)I(Lm > r)

M
,

where r ∈ Z+ represents the certified perturbation size for

our graph classifier and I is an indicator function. The first

indicator is to count the number of testing sample that is

correctly predicted by our algorithm, and the second indicator

is to count the number of testing sample that has its certified

perturbation size Lm larger than r. Therefore, we use r to

represent the certified perturbation size of our graph classifier.

To show the performance of our certification method under

each specific setting, we calculate the certified accuracy for

different r varying from 0 to 16.

B. Experimental Results

We first study the impact of the noise level (1 − β) on

the certified accuracy of our method. Specifically, we show

the certified accuracy with respect to the certified perturbation

size r under different settings of the noise level. We vary

the noise level by changing the value of β from 0.7 to 0.99.

As shown in Figure 1, we can observe that β influences the

trade-off between the certified accuracy and radius. We can

see that as the value of β decreases, the maximum certified

perturbation size increases, which means our method is able

to certificate the robustness for the graph classifier with higher

perturbations, but the certified accuracy decreases. On the

other hand, as the value of β increases, the maximum certified

perturbation size decreases, which means our method is able

to certificate the robustness for the graph classifier with higher

perturbations, but the certified accuracy increases.

Figure 1: Impact of β on our certification method.

Next, we study the impact of confidence level 1−α on the

performance of our certification method. Specifically, we show

the certified accuracy with respect to the certified perturbation

size r when the value of α is 0.01, 0.001, and 0.0001, respec-

tively. As shown in Figure 2, we can see that the confidence

level does not have much impact on the certified accuracy

when r is small. With the increase of the certified perturbation

size r, the certified accuracy tends to be influenced by α.

This is reasonable since smaller α returns a more relaxed

estimation of probability. Hence we have a lower bound of

certified perturbation size.

Figure 2: Impact of α on robustness metric.

Finally, we study the influence of sample time N on the

performance of our method by setting N as 1,000, 5,000,

and 1,0000, respectively. When the certified perturbation size

r is small, the certified accuracy is not influenced by the

sample time, since most testing samples have small certified

perturbation size, a small sample time N is enough to give a

tight estimation of pA. With the increase the sample time, the

maximum certified perturbation size increases, which means

our method tends to certificate the robustness of the graph

classifier with higher perturbations. The reason is that larger

sample time implies a tighter bound of pA, which leads to a

high bound of the certified perturbation size.

V. CONCLUSION

In this work, we have proposed an certification method

to build a smoothed graph classification model with certified

robustness guarantee. We have proven that the resulting graph

classification model would generate the same prediction result

for a graph under bounded adversarial perturbations. Our

approach could be applied for a wide category of graph

classification models. We have conducted extensive experi-

ments on synthetic datasets to demonstrate the effectiveness

of our proposed method on a two-layer graph convolutional

network (GCN) model. In the future, we will study the certified

robustness for other graph-based learning algorithms.

ACKNOWLEDGEMENT

The work of Z. Gao, R. Hu, and Y. Gong was supported

in part by the U.S. National Science Foundation under grants

US CNS-2029685 and CNS-1850523.



Figure 3: Impact of N on robustness metric.
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