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Abstract—The evolution of Internet of things (IoT) towards
massive IoT in recent years has stimulated a surge of traffic
volume among which a huge amount of traffic is generated
in the form of massive machine type communications. Con-
sequently, existing network infrastructure is facing challenges
when handling rapidly growing traffic load, especially under
bursty traffic conditions which may more often lead to congestion.
By proactively predicting the occurrence of congestion, we can
implement necessary means and conceivably avoid congestion.
In this paper, we propose a machine learning (ML) based model
for predicting successful preamble transmissions at a base station
and subsequently forecasting the possible occurrence of conges-
tion under bursty traffic conditions. The model is composed of
a recurrent neural network ML algorithm which is built based
on the long short-term memory architecture. Through extensive
simulations, we demonstrate that the proposed model achieves
precise predictions on successful preamble transmissions relying
merely on the data collected priori to congestion occurrence.

I. INTRODUCTION

Machine type communications (MTC), which refer to facili-
tating communications among machines without (or with little)
human intervention, have appeared as an integral component
of fifth generation (5G) networks. Currently, the 3rd generation
partnership project (3GPP) is developing specifications which
enable 5G mobile and wireless networks to support massive
machine type communications (mMTC). At a density of one
million devices per square kilometer, mMTC will focus on pro-
viding wireless connectivity to a huge number of devices that
may transmit data packets, which are typically small-sized,
in a periodic or sporadic manner. Among potential scenarios
for mMTC applications, critical infrastructure surveillance, en-
vironmental monitoring, intelligent transportation, smart city,
and smart agriculture are a few examples.

With the increasing popularity of mMTC, how to upgrade
the existing random access (RA) procedure adopted in long-
term evolution advanced (LTE-A) to 5G networks becomes an
imperative research task. For MTC, various RA techniques
have been considered. Among them, multichannel slotted
ALOHA schemes have been proposed for medium access
of RA channels (RACH) [1]. However, the throughput of
multichannel ALOHA schemes is not satisfactory in many
mMTC scenarios due to the limit of the amount of available
radio resources versus the number of devices [2]. Therefore
it is necessary to improve such methods to accommodate
medium access of mMTC devices.

A next generation nodeB (gNB) can receive numerous ac-
cess requests simultaneously and it relies on a pre-determined

set of orthogonal preambles to handle different requests and
avoid collision during the initial access procedure. Under
normal traffic conditions where the transmission intervals for
MTC devices are pre-scheduled or known beforehand, the
current RA scheme is sufficient to process all access requests.
However, under abnormal conditions especially for bursty
traffic, the access success probability could drop drastically
due to the sudden jump of the number of access requests. A
traffic burst occurs when a large number of devices attempt
to transmit uplink data (almost) simultaneously, for instance,
after a power failure or when a mission critical event occurs.

The LTE-A RA procedure lets each device randomly select
one of the available preambles in a given RA slot, where
the number of orthogonal preambles is limited. The same
procedure for random access is adopted in 5G new radio (NR)
Phase I as NR is also built based on the same medium access
mechanism, i.e., orthogonal frequency-division multiplexing
(OFDM). When a massive number of devices simultaneously
request for medium access, a very high number of RA attempts
would cause heavy preamble collisions. To diminish collision
at the gNB, certain improvements which reduce the number
of attempts per RA slot have been proposed. However, most
of these schemes are reactive, meaning that no action is taken
until congestion has occurred. In this paper, we propose a
proactive solution which is built based on a recurrent neural
network (RNN) machine learning (ML) algorithm to predict
the number of successfully detected preambles in future RA
slots. By proactive, it is meant that our prediction is performed
based on gNB’s observation over a short period of time prior
to the occurrence of traffic congestion. Although other ML
based solutions for network traffic prediction exist, they are
not focused on bursty traffic in mMTC scenarios. Nor are they
operated in a proactive manner. The accuracy of the model is
validated via simulations under different traffic conditions.

The rest of this paper is structured as follows. An overview
on RA and the RACH congestion problem is given in Sec. II
together with a summary of the related work. Network scenario
and assumptions are described in Sec. III and afterwards
Sec. IV outlines the proposed ML based traffic prediction
model. Performance evaluation of the proposed model is
presented in Sec. V. Finally, the paper is concluded in Sec. VI.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, an overview of the LTE-A/NR RA procedure
is provided. We present also an observed research gap related
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Fig. 1: Contention based RA procedure for LTE-A and NR.

to mMTC RA congestion and summarize existing work.

A. Random Access in LTE-A and 5G NR

For contention based RA, 5G NR supports the same 4-
step RACH handshake procedure as adopted in LTE-A [3].
Specifically, the Zadoff-Chu sequences are used for generating
RA preambles for initial access. When an MTC device needs
to start a data transmission, it initiates RA during an allowable
RA time slot by randomly picking a preamble. If more than
one device selects the same preamble and the gNB does not
sense a collision, a contention resolution process is required.
A contention based RA procedure consisting of 4 steps is
illustrated in Fig. 1.

The transmission of a preamble from a device to its gNB is
known as MSG-1. If the gNB detects the message successfully,
it replies with an RA response (RAR) message, MSG-2, with a
specific radio access radio network temporary identifier (RA-
RNTI). Afterwards, the device sends MSG-3 as a connection
request based on its RA-RNTI, followed by an acknowledg-
ment from the gNB as MSG-4. If a device does not receive
the contention resolution message, it declares a failure for its
access attempt and the same procedure will start again.

Although increasing RACH resources seems to be a solution
to improve the performance of RA, it is constrained by the
number of orthogonal preambles available in a slot. According
to [4], there are 64 preambles per slot that can be allocated
in a cell with a coverage radius of 7.4 km and a delay spread
of 6 µs. Among these 64 preambles, a small amount of them,
typically 10, are reserved for contention-free transmissions.

B. Collision Observation and Traffic Prediction

If an MTC device fails to transmit a preamble, it will wait
for a short random time interval within a backoff window and
restart a new RA preamble transmission until its retry limit has
been reached. Consequently, upon a sudden incident, for in-
stance, a traffic burst after a power reset, an enormous number
of devices might compete for channel access simultaneously
causing network performance degradation in terms of both
higher collision and increased access delay.
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Fig. 2: Number of total arrivals and successful preamble detections
in LTE-A RA under bursty traffic: 30k devices and 54 preambles [5].

When RACH congestion happens, a gNB cannot estimate
the total number of devices attempting for RA (which includes
both initial arrivals and retransmissions) in a given RA slot.
Instead, the gNB has only knowledge on how many preambles
have been successfully detected at each RA slot but not beyond
the current RA slot. As an example, we illustrate in Fig. 2 the
total number of arrivals per RA slot which consists of both
new arrivals and the retransmissions from unsuccessful devices
versus the number of successful preamble transmissions. It
is evident that, out of those total arrivals, the gNB can only
decode correctly a few of them. In this figure we observe
that congestion starts occurring around RA slot index 400,
afterwards a spike of new arrivals and retransmission emerges.

Once congested, the gNB notices a sharp descend in number
of successful attempts but it does not know how many devices
are transmitting simultaneously since a collision could be
caused by two or more concurrent transmissions. In Sec. IV
below, we propose an RNN model to predict the number of
successful preamble detections based on gNB’s observation
before congestion happens. It is worth mentioning that while
our previous work [5] predicted the number of total arrivals
including both initial and retransmissions, this paper focuses
on predicting the number of preambles successfully detected
at the gNB. Another difference between them is that the initial
data set used for traffic prediction in this study is merely
the data collected up to a point after which congestion might
happen (e.g., when the RA slot index is close to 400 in Fig. 2)
and the prediction can be long-term (e.g., for RA slot index
of 2000), whereas all data accumulated up to the prediction
instant are needed for arrival estimation performed in [5].

C. Related Work versus This Study

Congestion avoidance in LTE-A networks has been studied
intensively. In [6], a list of improvements to alleviate traffic
overload caused by MTC devices has been released where
mechanisms such as access class barring (ACB) and extended
access barring (ECB) are among the most eminent ones. ACB
allows MTC devices to transmit their connection requests with
different probabilities based on a barring rate broadcast by the
associated eNB. In order to maintain the quality of human type



communications (HTC), dedicated RACH for MTC devices
was also proposed in [6]. However, in certain traffic scenarios,
dedicated RACH could lead to poor performance due to
RACH underutilization. In addition, ECB introduces more
strict constraint on devices such that certain classes of devices
are restricted from obtaining access when congestion occurs.

On the other hand, ML based solutions have recently
attracted lots of attention as a means to predict wireless traffic
and resolve congestion issues [7]. In [8], a Gaussian process
based prediction model for 4G traffic data was proposed,
however, without considering initial access. In [9], a delay-
aware RA scheme for mMTC devices was proposed through
an online hierarchical stochastic learning algorithm. In [10],
reinforcement learning based eNB selection methods were
studied as an effective solution to support efficient RA and
avoid congestion for a large number of devices. Moreover,
to solve the RACH congestion problem of MTC in LTE-A
networks, [11] modeled the ACB decision process using a Q-
learning algorithm. However, ACB schemes cannot provide
higher access efficiency when the number of MTC devices
accessing a gNB is very large. Although various approaches
for achieving efficient MTC in LTE-A have been proposed,
how to efficiently handle RA opportunities for a massive
number of devices under bursty traffic conditions in NR
networks requires further investigation.

In contrast to the aforementioned existing work, our ap-
proach exhibits the following three salient features. First, the
proposed prediction model is based on an RNN model and is
dedicated to dealing with bursty traffic. Second, it presents
a prediction of preamble detections for initial access that
happens priori to data transmission. Third, the prediction is
performed in a proactive manner as mentioned above.

III. NETWORK SCENARIO AND ASSUMPTIONS

Consider an MTC network under bursty traffic conditions
based on a traffic model specified by 3GPP. Bursty traffic
conditions occur when a large number of devices attempt to
transmit event-driven data abruptly and concurrently.

Although the Poisson arrival process is regarded as probably
the most popular traffic model for HTC traffic sources, it is
not recommended for MTC traffic since it does not capture
the burstiness of MTC traffic distributions. According to [6],
under bursty conditions, the access intensity at RA slot i, A (i),
is given by

A (i) = N

∫ ti+1

ti

p (t) d (t) . (1)

The above integral is done over an interval [ti, ti+1], where ti
is the time at access opportunity i, t is defined in the range
[0, T ], when T is the observation window and N is the number
of devices that are active during time T . Each MTC device
is activated at time t where 0 ≤ t ≤ T with probability p(t)
following beta distribution with parameters α = 3, β = 4 as

p(t) =
tα−1(T − t)β−1

Tα+β−1B(α, β)
(2)
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Fig. 3: Typical structures of feed-forward and recurrent NNs.

where B(·) is the beta function. For bursty traffic, T is
considered to be 10 and 60 seconds long respectively.

The number of active devices in our MTC scenario is
considered to be 10k, 20k, or 30k per slot respectively.
Furthermore, we do not consider any channel impairment such
as path loss, fading, or inter-cell interference in this study.

IV. PROPOSED RNN BASED TRAFFIC PREDICTION MODEL

In this section, we propose an ML based traffic prediction
model for bursty traffic in mMTC networks by exploiting the
capability of recurrent neural networks.

A. Properties of Recurrent Neural Networks

A neural network (NN) is a network of computational nodes
(neurons) consisting of three or more layers. The first layer
in an NN is the input layer, and the nodes in this layer
contain the input data used for training. The last layer is
the output layer which produces the outputs of the entire
neural network. Between these two layers, there exists one
or multiple hidden layers with multiple hidden nodes which
perform computations and transfer information from input
nodes to output nodes. In regular NN architectures, data is
processed in a feed-forward only fashion, where the input
data is computed in the first hidden layer, and the result in
each node will be passed to the corresponding nodes in the
next layer. Feed-forward neural networks (FFNNs) have been
applied to time series prediction for data sets.
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Fig. 4: Structure of the LSTM-RNN model with two hidden layers.

Unlike FFNNs, RNNs use feedback loops to process a
sequence of inputs, and the output from one layer could be
fed back to the same or a previous layer. Fig. 3 illustrates the



types of layers and the differences between an RNN and an
FFNN. Improved performance for time series tasks has been
achieved in RNNs [12]. In this work, we adopt a long short-
term memory (LSTM) network which is an enhanced version
of RNNs as the basis for our prediction model, since it allows
learning of long-term dependencies of a system. The length
of a sequence that an RNN can interpret is rather limited,
especially in comparison with LSTMs. Therefore, an LSTM
based prediction model is a better choice for this study since
a bursty traffic condition brings out a comparatively long
sequence of data. One of the important features of LSTM
networks is that it introduces gates to specify how much past
information could be let through. In our proposed model, this
feature is adopted for MTC traffic prediction.

B. LSTM Prediction Model

To estimate the number of successful preamble detections at
the gNB and predict the congestion status, an LSTM model is
developed. The model is structured as a multi-step prediction
with two hidden layers where a set of input seeds from
traffic arrival values are used as the basis for new, predicted
values. The input seed, denoted as Yn, consists of a set of
n number of input values Yn = (y1, y2, ..., yn) and it is
used to predict the next value, denoted as ŷn+1. In order
to predict the value after ŷn+1, i.e., f(Yn+1) = ŷn+2,
the set of input values will include the previous estimated-
output so that Yn+1 = (y1, y2, ..., yn, ŷn+1). This approach
is implemented by introducing a sliding window, where the
window size |Y | either is fixed or increases by one at each
prediction. Specifically, (3) is the function for a fixed sliding
window at two consecutive time steps (denoted as t0 and t1),
showing that ŷn+2 is estimated based n− 1 observed values,
y2, y3, ..., yn, plus one estimated value, i.e., ŷn+1.

t0 : f (y1, y2, ..., yn) = ŷn+1,

t1 : f (y2, y3, ..., ŷn+1) = ŷn+2.
(3)

Furthermore, (4) shows the function when an increasing win-
dow is adopted. Note that the difference between (3) and (4)
is that the y1 term at time t1 is included as an input in (4)
only. In other words, with the fixed sliding window prediction,
after n steps, the new predictions are purely based on the
previous predicted values. On the other hand, in the increased
sliding window prediction, the initial input will always be
used for predictions at each step. Thus higher computational
complexity is expected in the latter case.

t0 : f (y1, y2, ..., yn) = ŷn+1,

t1 : f (y1, y2, ..., yn, ŷn+1) = ŷn+2.
(4)

One salient feature of the developed LSTM model in this
study is that the model exploits the advantages of both fixed
and increasing sliding window functions. The hidden states in
our LSTM model keep track of the previous computations at
the current time-step, such that when predicting the value at
time t + 1, the function adopts only the summarized values
stored in the hidden states. This ensures that the model always
includes the information from the originally collected values

Fig. 5: Successful (detected) attempts of a bursty traffic scenario when
30k MTC devices in the network.

when predicting, however, without increasing computational
complexity. The architecture of the adopted LSTM-RNN is
illustrated in Fig. 4.

In addition to the input-output relationship, Fig. 4 illustrates
also how the evaluation for the next time-step is based on the
previous time-steps. Herein, we provide the collected values
for the first n number of inputs. Each of the first n inputs to
the LSTM-RNN model generates a single output. For instance,
the input at time t = 1, i.e., yt=1 generates output value ŷt=2

at time t = 2. During each round, the impact of the previous
input data series exists due to the feedback process of hidden
layers. However, after the first n inputs, there is no detected
data. That is, only predicted data exist. Therefore, the previous
prediction is fed to the LSTM-RNN model as the input. For
instance, the predicted value at time t = n + 1 is fed as the
input at t = n+ 2. Another feature of our model is that even
without detected values after n rounds, the predicted values
still have impact from the first n number of collected data.

TABLE I: Simulation parameters of the LTE-A RA process
RACH Parameter Value
Number of contention-based preambles 54
Physical RACH configuration index 6
Max. number of transmissions 10
Backoff value ( in terms of subframes) 20

V. TRAFFIC ANALYSIS AND PERFORMANCE EVALUATION

Real-life datasets for bursty traffic are not easily available
for ML based traffic prediction studies. Therefore, we follow
the model proposed by 3GPP [6] to generate traffic based
on simulations through proper parameter configurations. The
proposed prediction model has been implemented in a custom-
built simulator written in Python (v3.6.7) [13]. Based on
the parameters listed in Table I, different traffic patterns
have been generated in our simulations. In Fig. 2 above,
we have illustrated the generated bursty traffic for 30k MTC
devices including both initial and retransmissions together with
the successful preamble detections. In Fig. 5, the successful
detections are highlighted. Note that the data shown herein
is smoothened through a Savitzky-Golay [14] filter with a
window size of 97 and a 2nd degree polynomial in order
to improve the quality of the generated data. This filtering
mechanism is performed to create continuous values from the



(a) 10k MTC devices (b) 30k MTC devices

Fig. 6: Scenario 1: Multi-step prediction using 100 RA slots as input
seed with 10k and 30k MTC devices respectively.

discrete simulation output. As detected data, we input only
a part of the data shown in Fig. 5 to the developed LSTM
network. Accordingly, we define a parameter, seed length L
corresponding to the number of input seeds, in Fig. 4, i.e.,
L = n. When L = 100, for instance, we only take data
corresponding to the first 100 RA slot indexes as data inputs.

Three traffic groups, each consisting of 10k, 20k, and 30k
MTC devices respectively, are considered in our simulations.
This is a reasonable configuration in terms of number of
mMTC devices since it is meant for the number of active
devices arriving within one RA slot which varies from 62.5 µs
to 1 ms depending on the numerology adopted in 5G NR. Two
test scenarios, homogeneous (Scenario 1) and heterogeneous
(Scenario 2), are defined. The LSTM network is configured
with 2 hidden layers. The model was trained through an
Adam optimization function with a learning rate of 0.0001
per iteration. This rate is selected from a set of learning
rates considering the tradeoff between learning output and
efficiency. In addition, the hyperbolic tangent (tanh) function
is used as the activation function of the model.

A. Homogeneous Scenario

In test Scenario 1, the multi-step prediction model is trained
on each traffic group independently. This training model is
tested based on the data from the respective group. Thus
the model predicts upcoming access attempts in an mMTC
network where the number of active devices in a cell is known.
To assure that the model is able to learn the features of the
data set, the data sets of each group were trained separately.

Fig. 6 depicts the prediction results of the LSTM network
corresponding to 10k and 30k devices respectively. In both
configurations, the predicted curves fit the original ones pre-
cisely showing that very high accuracy has been achieved by
the model. Owing to a lower traffic intensity with 10k devices,
the prediction accuracy is even higher than the 30k MTC
case. To verify the accuracy, the mean squared errors (MSEs)
between the collected and predicted traffic are calculated and
listed in Table II.

B. Heterogeneous Scenario

In test Scenario 2, the multi-step prediction model is trained
based on the traffic generated simultaneously from a combi-

(a) 30k devices, L = 100 (b) 30k devices, L = 400

Fig. 7: Scenario 2: Multi-step prediction trained based on a combi-
nation of data from 20k and 30k devices but tested on data from 30k
devices with different seed lengths.

TABLE II: Effect of using different input lengths measured in MSE
between real and predicted traffic

Seed length MSE for 10k group MSE for 30k group
100 0.0070 1.9281
300 0.0059 1.7874
400 0.0054 0.4937

nation of two groups, e.g., 10k & 20k and 10k & 30k etc.
Accordingly, the model is evaluated by predicting the number
of successful detections in a dynamic network environment
where the number of active devices is unknown. This repre-
sents a more complicated situation where the number of active
nodes, i.e., nodes with packets to send, is unknown to the gNB.

To predict successful preamble detections in the heteroge-
neous scenario needs to deal with the data generated from two
groups without group identification. Herein, we present the
results for a heterogeneous group with 20k and 30k devices
where the model was trained based on the whole group.

The performance of the predicted model is illustrated in
Fig. 7 considering that the traffic is only generated from
the 30k device group. As shown in the figure, with a short
seed length of 100 RA slots, the prediction is not accurate.
However, when the seed length is increased to 400, the
obtained prediction result has achieved very high accuracy.
From this observation it is clear that when more training data
or input seeds are utilized in the LSTM network, the model
could reach more accurate predictions.
C. Number of Nodes/Neurons in a Hidden Layer

The number of nodes in a hidden layer, referred to as width,
is a crucial parameter which affects the performance of the
LSTM network. In general, there is no single rule on how to
determine the width of an LSTM since it depends on several
factors such as the complexity of the dataset, the amount of
features, and the number of data points.

In Fig. 8, we exhibit the impact of width on the prediction
results in this study. As shown in the figure, the accuracy of
the prediction is heavily depending on this parameter, W of
the LSTM network. When W = 1100, the model predicts
more accurately the number of successful preamble detections
than that of W = 500. However, the prediction accuracy does
not improve when further increasing W . This is because too



A. ADDITIONAL SIMULATION RESULTS

Forecasting traffic for 30k active devices

(a) 500 hidden nodes and 2 hidden layers 2 hidden layers

2 hidden layers

Effect of Different Number of Hidden Nodes in 2-layer LSTM for Forecasting
Traffic based on 30k Active Devices.

60

(a) 500 nodes/neurons in a hidden layer.

A. ADDITIONAL SIMULATION RESULTS

Forecasting traffic for 30k active devices

2 hidden layers (b) 1100 hidden nodes and 2 hidden layers

2 hidden layers

Effect of Different Number of Hidden Nodes in 2-layer LSTM for Forecasting
Traffic based on 30k Active Devices.

60

(b) 1100 nodes/neurons in a hidden layer.

A. ADDITIONAL SIMULATION RESULTS

Forecasting traffic for 30k active devices

2 hidden layers 2 hidden layers

(c) 1500 hidden nodes and 2 hidden layers

Effect of Different Number of Hidden Nodes in 2-layer LSTM for Forecasting
Traffic based on 30k Active Devices.

60

(c) 1500 nodes/neurons in a hidden layer.

Fig. 8: Effect of different number of hidden nodes in 2-layer LSTM network for forcasting on 30k MTC devices. The green and red curves
in the sub-figures represent the detected and predicted values respectively.

many nodes may overfit the data causing poor generalization
on data not used for training, while too few hidden nodes
underfit the model, and is not sufficiently accurate [15]. Note
that the accuracy of the LSTM model is further improved by
its ability to decide which new information to integrate into
the model and which unnecessary information to ignore.

D. Congestion Status Assessment

Finally, we present a traffic congestion assessment method
which could be used by a gNB to forecast congestion status
based on its predicted successful preamble detection. Such an
assessment is made based on a simple single-layer FFNN in
which logistic regression is applied to predict a binary class,
i.e., congestion or non-congestion by utilizing the well-known
sigmoid function f(x) = (1+ e−x)−1 where x is the input to
the function which provides the probability estimate.

The results shown in Table III are obtained based on a
heterogeneous scenario with a combination of 20k and 30k
devices, for both short- (1000 slots) and long-term (2000
slots) forecast. Clearly, when the seed length is too short, the
assessment is not precise enough. With a longer input seed,
however, our method is able to predict the correct class with
sufficiently high accuracy. Therefore, this method provides the
gNB with a capability for congestion status assessment solely
based on its prediction of successful preamble detection.

TABLE III: Accuracy of congestion classification assessment

Classification AccuracySeed length Length of the traffic
forecast = 1000 slots

Length of the traffic
forecast = 2000 slots

100 0.5% 5%
200 10% 10%
300 80% 80%
400 90% 90%

VI. CONCLUSIONS

Based on the principle of recurrent neural networks, we have
proposed a traffic prediction model for successful preamble
detections in mMTC networks under bursty traffic conditions.
Although RNNs have been a popular tool for time series data
analysis, its applicability to mMTC networks remains unclear
as the data in our scenarios is univariate. To ensure the best
foundation for our model, we first analyze simulated traffic
patterns to learn more about different traffic conditions. Based
on the information gathered, an LSTM network is trained

in one-step prediction, and the predictions are utilized in a
recursive multi-step prediction scheme for successful pream-
ble detections. According to the obtained simulation results,
the proposed LSTM-RNN model with appropriate network
configurations can precisely predict the number of preamble
detections. Moreover, the model is capable of assessing the
occurrence of congestion right before a traffic burst.
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