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Massive Unsourced Random Access for Massive

MIMO Correlated Channels

Xinyu Xie, Yongpeng Wu, Junyuan Gao, and Wenjun Zhang

Abstract—This paper investigates the massive random access
for a huge amount of user devices served by a base station
(BS) equipped with a massive number of antennas. We con-
sider a grant-free unsourced random access (U-RA) scheme
where all users possess the same codebook and the BS aims
at declaring a list of transmitted codewords and recovering
the messages sent by active users. Most of the existing works
concentrate on applying U-RA in the oversimplified independent
and identically distributed (i.i.d.) channels. In this paper, we
consider a fairly general joint-correlated MIMO channel model
with line-of-sight components for the realistic outdoor wireless
propagation environments. We conduct the activity detection for
the emitted codewords by performing an improved coordinate
descent approach with Bayesian learning automaton to solve
a covariance-based maximum likelihood estimation problem.
The proposed algorithm exhibits a faster convergence rate than
traditional descent approaches. We further employ a coupled
coding scheme to resolve the issue that the dimensions of the
common codebook expand exponentially with user payload size
in the practical massive machine-type communications scenario.
Our simulations reveal that to achieve an error probability of
0.05 for reliable communications in correlated channels, one must
pay a 0.9 to 1.3 dB penalty comparing to the minimum signal to
noise ratio needed in i.i.d. channels on condition that a sufficient
number of receiving antennas is equipped at the BS.

Index Terms—activity detection, correlated channel, internet
of things, massive MIMO, unsourced random access.

I. INTRODUCTION

The next generation of cellular technologies will proliferate

in wirelessly connecting sensors, machines, and wearable

biomedical devices, thereby form the architecture of the In-

ternet of things (IoT). Massive machine-type communications

(mMTC) is a representative IoT application scenario where

a base station (BS) equipped with multiple antennas renders

service to a large number of machine-type users [1]. Typically,

in a certain period of time, only a small fraction of users within

the system are operational and transmit abbreviated messages

in the order of 100 bits. The characters of sporadic traffic pat-

terns and small data payloads raise higher demands for more
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efficient multiple-access schemes that aim to accommodate the

burgeoning number of users.

Employing conventional grant-based random access (RA)

schemes to mMTC systems would manifest high energy

consumption and latency, thus, grant-free RA protocols have

recently attracted significant attention, where users send data

immediately to the BS without approvals. A typical type of

grant-free RA scheme is based on the allocation of pilot

signals [2]–[4], where unique pilots are randomly selected by

active users for activity detection (AD) and channel estimation

(CE) before data transmission. However, the confined pilot

resources limit the support for more potential users.

As a prospective alternative, a novel modality of grant-free

unsourced random access (U-RA) is introduced [5], [6], where

users compulsively utilize the same codebook and the BS only

needs to acquire a list of transmitted messages without the

obligation of associating them to the specific active users.

Although it is found in [5] that existing approaches like

ALOHA and CDMA perform poorly under U-RA, lots of

revised coding schemes are proposed to promote the prop-

erties [7]–[9]. Recently, the application of U-RA is ulteriorly

extended to the block-fading massive MIMO channel [10],

[11], where modified coupled coding schemes similar to [9] is

proposed to overcome the problem that the dimensions of the

coding matrix grow exponentially with the user payloads. The

inner decoder at the receiver side in [10] conducts AD to the

transmitted codewords following the multiple-measurement

vector (MMV) CS recovery paradigm and employs the ap-

proximate message passing (AMP) algorithm [2]. Neverthe-

less, a covariance-based maximum likelihood (ML) estimation

scheme is adopted in [11] to instantiate the AD problem,

and the corresponding coordinate descent (CD) solution [12]

surpasses the performance of AMP. Also, the AMP algorithm

must regard the large-scale fading coefficients (LSFCs) as

either deterministic known parameters or random parameters

with known prior distribution information. In contrast, the

covariance-based scheme and its CD solution treat the LSFCs

unknown to the system and avoid the trouble of individually

measuring these parameters. However, the aforementioned lit-

erature only considers independent and identically distributed

(i.i.d.) massive MIMO channels, which may be impractical

because, in realistic outdoor wireless propagation environ-

ments, antennas at both the BS and user terminal are subjected

to high correlations. Furthermore, the CD method in [12]

practices a random coordinate selection policy and reveals a

slow convergence rate during actual operations.

Concentrating on the U-RA scheme, the main objective of

http://arxiv.org/abs/2008.08742v2


this paper is to realize reliable communications between a

large number of machine-type users and the massive MIMO

BS under spatially correlated channels. Toward this end, we

consider a rather generic joint-correlation channel model that

takes line-of-sight (LOS) components into account. Only a

small fraction of all potential users are active and transmit

corresponding codewords from a common codebook using

coherent blocks. We follow the paradigm of the covariance-

based recovery problem for AD of the emitted codewords,

where the BS and users only have access to partial information

about the correlated channels and treat arguments like LSFCs

unknown. We introduce an improved coordinate-wise descent

algorithm with Bayesian learning automaton (BLA) for ML

estimation to achieve a faster convergence rate than conven-

tional CD approaches in [11], [12]. We further resort to a

concatenated coding strategy to reduce the size of the common

codebook. Exhaustive simulations indicate that to satisfy the

error probability needed for feasible communications (e.g.,

error probability Pe < 0.05), there is a 0.9 to 1.3 dB gap

between the SNR required in our proposed scheme under

correlated channels and that for i.i.d. channels when different

numbers of antennas are set at the BS.

Throughout this paper, scalar variants and constants are

denoted by non-boldface letters, while bold lowercase and

uppercase letters denote column vectors and matrices, re-

spectively. [Y]mn indicates the (m,n)-th entry of the matrix

Y ∈ CM×N and yn denotes the n-th column of Y. We

signify the conjugate, transpose, and conjugate transpose by

superscripts (·)∗, (·)T , and (·)H , respectively. The operator

⊙ denotes the Hadamard product of two matrices with the

same size. We denote the Euclid norm of vector y and the

Frobenius norm of matrix Y by ‖y‖2 and ‖Y‖F, respectively.

The mathematical expectation operator is represented by E{·}.

|X | calculates the number of elements in set X and X\Y
represents the set {z : z ∈ Y, z /∈ X ,X ⊆ Y}. [M ] represents

the set of integers {1, 2, . . . ,M}.

II. CHANNEL AND SYSTEM MODEL

A. Correlated Channel Model

We consider a single-cell massive MIMO network system

comprised of a total number of Ktot multiple-antenna users.

They communicate to a single BS equipped with a massive

number of M antennas through the uplink synchronizing

scheme. We denote the set of all users within the system by

Ktot with |Ktot| = Ktot. Each user k ∈ Ktot is provided with

Nk transmitting antennas and N =
∑Ktot

k=1Nk counts the sum

amount of transmitting antennas at the user terminal.

We consider a rather general joint-correlated MIMO channel

between user k ∈ Ktot and the BS [14], the M ×Nk channel

matrix Hk is modeled as

Hk = Ur,kH̃kU
H
t,k

= Ur,k

(
H̄k +Pk ⊙ Ĥk

)
UH

t,k, (1)

where H̃k = H̄k + Pk ⊙ Ĥk, Ur,k ∈ CM×M and Ut,k ∈
CNk×Nk are deterministic unitary matrices, H̄k ∈ CM×Nk is

a deterministic matrix modeling the LOS components with at

most one nonzero element in each row and each column, Pk ∈
RM×Nk is a deterministic matrix with real-valued nonnegative

entries, and Ĥk ∈ CM×Nk is a random matrix whose entries

are i.i.d complex variables with zero-mean. We normalize Hk

such that

E
{

tr
(
HkH

H
k

)}
= NkM. (2)

For convenience but without loss of generality, we assume

that nonzero elements in H̄k have indices of (d, d) for 1 ≤
d ≤ min (Nk,M). We further define

Ωk = E

{
H̃k ⊙ H̃∗

k

}
= H̄k ⊙ H̄k +Pk ⊙Pk. (3)

The (m,n)-th entry of Ω, i.e., [Ωk]mn, describes the average

power coupling between the m-th receive eigenmode and n-th

transmit eigenmode. To be consistent with the normalization

of Hk in (2), the power constraint of (3) can be expressed as

M∑

m=1

Nk∑

n=1

[Ωk]mn = NkM. (4)

The transmit and receive correlation matrices of Hk are

Rt = E
{
HH

k Hk

}
= Ut,kΛt,kU

H
t,k, (5)

Rr = E
{
HkH

H
k

}
= Ur,kΛr,kU

H
r,k, (6)

where Λt,k and Λr,k are diagonal matrices with [Λt,k]nn =∑M

m=1 [Ωk]mn for n ∈ [N ] and [Λr,k]mm
=

∑Nk

n=1 [Ωk]mn

for m ∈ [M ], respectively. In massive MIMO environments,

these covariance matrices tend to be low-rank with a small

number of significant eigenvalues [15], indicating that many

entries in H̄k and Pk are approximately zero. If further

postulate that the scatters between different users and the BS

are independent with each other, we have

lim
M,Nk,Nk′→∞

E

{
H̃H

k H̃k′

}
= 0Nk×Nk′

. (7)

If M is sufficiently large, the eigenvectors in Ur,k for

different users tend to be equal, i.e., Ur,k = Ur for k ∈ Ktot. In

this paper, we stick to the assumption that each user only has

the knowledge of Ut,k and the BS only knows the statistical

parameter Ur. Such information between a transmitter-receiver

pair can be obtained over time utilizing averaged uplink and

downlink channel measurements in Time Division Duplexing

(TDD) systems using channel reciprocity [16]. Since the

information is much more robust to minor changes in the

surroundings and remains valid for a longer time than the

channel state information (CSI), we only need to update it

at relatively long intervals.

Note that the channel model described in (1) encompasses

many of the existing statistical MIMO channel models. For

instance, if H̄k = 0 and Pk is a rank-one matrix, the

Kronecker model is retrieved [13], [17]. Setting Pk to have

arbitrary rank while fixing Ut,k and Ur,k to be Fourier

matrices, the virtual channel representation for uniform linear

arrays (ULA) is recovered [18]. If further let Ut,k and Ur,k to

be arbitrary unitary matrices, we acquire the Weichselbergers

channel model [19].



B. System Model

We consider a block-fading channel with coherent blocks

of D signal dimensions where the channel parameters remain

constant. There are Ktot users within the system but only

a small set of Ka users denoted by Ka transmit messages

synchronously. We assume that each active user k ∈ Ka is

appointed to send a W -bit message m(k) = mT
ik

from the

same message set M = {mik : ik ∈ [2W ]}. Each message

mik corresponds to a codeword to be emitted over S entire

coherent blocks during S successive time slots, such that each

codeword has the length of C = DS. We abide the framework

of U-RA in [5] where all users own a C×2CR-sized common

codebook with R =W/C being the coding rate. The objective

of the BS is to produce a list L = {m(k) : k ∈ Ka} of

transmitted messages during these blocks without matching

them to the original users. In the U-RA scheme, the error

event probability is defined on the per-user basis in contrast

to global for all users, i.e., per-User probability of misdetection

and probability of false-alarm, expressed respectively as

pmd =
1

Ka

∑

k∈Ka

P (m(k) /∈ L) , (8)

pfa =
|L\ {m(k) : k ∈ Ka}|

|L|
. (9)

We provisionally assume that the codewords corresponding

to the messages generated from active users are transmitted

using only one block, i.e., S = 1 and C = D. All potential

users are allotted to the same coding matrix A ∈ CD×2CR

=
[a1, . . . , a2CR ] with each column ai, i ∈ [2CR] representing

a codeword whose entries are taken from the i.i.d. complex

Gaussian distribution with zero mean and unit variance, such

that ‖ai‖
2
2 = D. If a specific active user k ∈ Ka wishes to

send a message m(k) = mik , the corresponding codeword to

be emitted is drawn from the ik-th column of A. Note that the

unitary matrix Ut,k is posited to be known to the users, hence

we directly employ it as the precoding matrix. The sending

signals at all transmitting antennas can be written as

Xk = ABkU
T
t,k, (10)

where Bk ∈ {0, 1}2
CR×Nk is a binary matrix with each row

being all-zero but ones in the ik-th row for k ∈ Ka, while

contains all zeros for k ∈ Ktot\Ka.

Having the knowledge of Ur, the received signals from all

users at the BS with M receiving antennas can be modeled as

Y =
[
X1G

1

2

1 · · ·XKtot
G

1

2

Ktot

]


HT

1
...

HT
Ktot


U∗

r + ZU∗
r

= ABG
1

2 H̃+ Z̃, (11)

where Gk = gkINk
for k ∈ Ktot is the matrix of (unknown)

LSFCs with gk measuring the average antenna transmission

power, G = diag [G1, . . . ,GKtot
] is a diagonal matrix of

order N , B = [B1, . . . ,BKtot
] ∈ {0, 1}2

CR×N , H̃ =
[H̃1, . . . , H̃Ktot

]T ∈ CN×M , Z ∈ CD×M is the matrix of

additive white Gaussian noise with entries generated from the

i.i.d. complex Gaussian distribution, i.e., [Z]dm ∼ CN
(
0, σ2

)
,

and Z̃ = ZU∗
r is the matrix of the equivalent noise samples.

Note that we assume the LSFCs of all antennas of a certain

user are the same since the signals transmitted by these

antennas take similar paths to the BS on the macro scale.

III. COVARIANCE BASED ACTIVITY DETECTION

A. Problem Formulation

Based on the independency of coupling matrices H̃k, k ∈
Ktot between different users (7), the covariance matrix of H̃

in (11) can be approximated by

E

{
H̃H̃H

}
= diag [Λt,1, . . . ,Λt,Ktot

] = Λ, (12)

where Λ ∈ CN×N is a block diagonal matrix with each block

Λt,k ∈ C
Nk×Nk having the expression as (5).

We make a crucial observation from (11) and (12) that the

columns ym of Y,m ∈ [M ], can be equivalently viewed as

independent samples from a multivariate complex Gaussian

distribution, i.e., ym ∼ CN (0,Σy). Note that similar obser-

vation is made under i.i.d. channels based on the spatially

white user channel vectors [11]. By computing E
{
ymyH

m

}
,

the covariance matrix Σy takes on the form

Σy = ABG
1

2Λ(G
1

2 )HBHAH

= AΓAH + σ2ID, (13)

where Γ = BG
1

2Λ(G
1

2 )HBH = diag [γ1, . . . , γ2CR ] with

γi =
∑N

n=1[B]2in[G]nn[Λ]nn, i ∈ [2CR]. Notice that γi takes

nonzero value only when the i-th row of B has nonzero

elements, in other words, at least one active user transmits

the i-th codeword. Hence, we define γ = [γ1, . . . , γ2CR ] as the

activity pattern of the codewords. Note that since the elements

of G are embedded in γ to be estimated, we do not need any

information about the LSFCs.

In order to determine which codewords are transmitted

during the time slot, the BS is supposed to recover γ from the

observed sample covariance Σ̂y = 1
M
YYH of the received

signals. It is hardly possible for the estimator at the BS to gain

knowledge of the active user number Ka due to the sporadic

traffic pattern in mMTC. Therefore, we adopt the hard decision

strategy by pre-assigning suitable fixed thresholds at each time

slot. The transmitted message list is recovered as

L =
{
mi : γ̂i > ζ, i ∈ [2CR]

}
, (14)

where ζ is the pre-assigned threshold and γ̂ = [γ̂1, . . . , γ̂2CR ]
is the estimation of γ.

B. Maximum Likelihood Estimation

The likelihood of Y given γ is expressed as

P (Y|γ) =
M∏

m=1

1

det (πΣy)
exp

(
−yH

mΣ−1
y ym

)

(a)
=

1

[det(πΣy)]
M

exp
[
−M tr

(
Σy

−1Σ̂y

)]
, (15)



where det(·) and tr(·) are the determinant and trace operations

of a matrix, respectively, and (a) is derived based on the

observation that the columns of Y are i.i.d.. By harnessing

the log-likelihood cost function f (γ) = − 1
M

logP (Y|γ),
maximizing the likelihood in (15) can be converted into

resolving the following problem

minimize
γ

f (γ) = log det (Σy) + tr
(
Σ−1

y Σ̂y

)
(16a)

subject to γ ≥ 0 (16b)

Note that in (15), p (Y|γ) depends on Y only through the

sample covariance matrix Σ̂y, therefore Σ̂y is a sufficient

statistic for the estimation of γ. For the same reason, we

refer to our paradigm of estimation as the covariance-based

approach. The constraint that γ ≥ 0 in (16b) ensures the

positive definiteness of the covariance matrix Σy. It is worth

mentioning that leveraging Σ̂y ∈ CD×D instead of exploiting

the row sparsity of Y ∈ CD×M by some compressed sensing

approaches [10] results in a remarkable dimensional reduction,

making this approach peculiarly attractive for some massive

MIMO systems where M > D.

C. Iterative Descent Algorithm

Existing descent algorithms are well adapted to the problem

of optimizing f(γ) over a natural parameter space of R2CR

+

with 2CR dimensions. Paper [12] suggests a CD algorithm

where at each step f(γ) is optimized in regard to only

one of its objects γi, i ∈ [2CR] abiding by the updating

rules summarized in Algorithm 1, Line 16-18. After adequate

iterations over the whole collection of coordinates, the opti-

mization function will ultimately converge to its minimum.

However, such an algorithm practices a random selection

policy at the whole coordinate set, which may result in a low

convergence rate. An intuitive explanation for this situation

is that only a small section of arguments in γ indicating the

active codewords require plentiful rounds of estimation such

that f(γ) will precisely approach its minimum, while others

can be vaguely estimated with a few rounds since they take

small values and have limited effects on the overall results.

In order to enhance the estimation accuracy after limited

iterations, we introduce an alternative coordinate selection

strategy illustrated as a multi-armed bandit (MAB) problem

[20]. At each iteration of descent, an arm representing a certain

coordinate is pulled and produces a random reward. The

reward function is derived by measuring the descent degree

of f(γ) when updating the coordinate i ∈ [2CR] at the q-th

iteration and takes on the form

rqi =
dΣ−1aia

H
i Σ−1

1 + daHi Σ−1ai
− log

(
1 + daHi Σ−1ai

)
. (17)

The objective of the MAB problem is to maximize the

accumulative sum of rewards received during Q iterations,

i.e.,
∑Q

q=1 r
q
iq

with iq ∈ [2CR] the chosen arm at the q-th

iteration. As information of the arms payouts are gathered, we

are forced to choose between exploiting the arm that currently

yields the largest reward and exploring other arms that may

Algorithm 1 Activity Detection via Coordinate Descent

1: Input: Sample covariance matrix Σ̂y = 1
M
YYH of the

received signal Y, interger Q, Qmod.

2: Initialize: Σ = σ2ID , γ0 = 0, and α1 = α2 = β1 =
β2 = 1.

3: for q = 1, 2, . . . , Q do

4: if q mod Qmod == 1 then

5: Update ψq
i = rqi for i ∈

[
2CR

]
.

6: end if

7: Generate ǫq1 ∼ Beta(α1, β1) and ǫq2 ∼ Beta(α2, β2).
8: Select lq = max

l∈{1,2}
{ǫq1, ǫ

q
2}.

9: Generate z ∼ Bernoulli(ǫqlq ).
10: Update (αlq , βlq ) = (αlq + z, βlq + 1− z).
11: if z == 1 then

12: Select iq = max
t∈[2CR]

{
ψq
1 , . . . , ψ

q

2CR

}
.

13: else

14: Select iq ∈
[
2CR

]
randomly.

15: end if

16: Set d = max

{
aH
iq
Σ−1Σ̂yΣ

−1aiq−aH
iq
Σ−1aiq

(aH
iq

Σ−1aiq )
2

,−γiq

}
.

17: Update γqiq = γq−1
iq

+ d and γqi = γq−1
i for i 6= iq .

18: Update Σ−1 = Σ−1 −
dΣ−1aiqa

H
iq

Σ−1

1+daH
iq
Σ−1aiq

.

19: Calculate rq+1
iq

according to (17).

20: Update ψq+1
iq

= rq+1
iq

and ψq+1
i = ψq

i for i 6= iq.

21: end for

22: Output: The estimation γ̂ = γ
Q.

lead to higher rewards in the future. This dithering is resolved

by the so-called ǫ-greedy exploration approach, where we take

the probability ǫ to perform the previous greedy action (see

Algorithm 1, Line 12) and 1−ǫ to the later completely random

action (see Algorithm 1, Line 14). The appropriate setting of

the Bernoulli distribution probability parameter ǫ will lead to

a tradeoff between exploration and exploitation.

Instead of simply assigning a fixed probability in advance,

we suggest that dynamically optimizing the argument ǫ can be

formulated as a two-armed Bernoulli bandit (TABB) problem.

In the TABB problem, one must ceaselessly extract one of the

two arms and implement a Bernoulli trial based on the inherent

information of the chosen arm, with each trial leading to a

payout of either a reward 1 or a penalty 0. To maximize the

unknown expected total payouts, we must achieve a tradeoff

between exploiting existing knowledge about the arms and ex-

ploring new information. Many efficient methods have arisen

to solve the problem and we are inclined to apply the BLA

approach [21]. By taking advantage of the potential Bayesian

prior information of the arms, BLA exhibits a characteristic of

self-correcting and converges to the best decision of choosing

the optimal arm.

Following the process of BLA, two different Bernoulli

distribution probability parameter ǫ1 and ǫ2 act as two arms

in the TABB problem with each arm having the Bayesian

prior satisfying the probability density function of a Beta



distribution, i.e., ǫl ∼ Beta(αl, βl) with f(x;αl, βl) =
Γ(αl+βl)

Γ(αl)+Γ(βl)
xαl−1(1 − x)βl−1 for l ∈ {1, 2}, where Γ(·) is

the Gamma function and αl, βl > 0. We initialize with

α1 = α2 = βl = β2 = 1. At the q-th iteration round, these two

arms both generate random samples denoted by ǫq1 and ǫq2. We

select the arm lq ∈ {1, 2} with the larger value and practice a

Bernoulli trial with an outcome z ∼ Bernoulli(ǫqlq ). Then the

chosen arm renewals its distribution by updating parameters

(αq
lq
, βq

lq
) to (αq+1

lq
, βq+1

lq
) = (αq

lq
+z, βq

lq
+1−z), resulting in

a new arm chosen in the next round. As more observations are

obtained, BLA will gradually prefer to select the arm which

is most likely the optimal one.

We establish the framework of the CD algorithm with BLA

in Algorithm 1. Note that we only renewal the whole set

of ψq
i , i ∈ [2CR] each Qmod rounds to reduce computation

complexity, whereas in other rounds, ψq
i takes the most

recently available value. We can also treat the noise variance

σ2 unknown and estimate it along with γ. In section V, we

will perform a numerical experiment to demonstrate that our

proposed algorithm achieves a higher convergence rate than

the original CD approach in [12].

IV. COMPLEXITY REDUCTION VIA COUPLED CODING

In realistic communication systems, it is impractical to

transmit messages within just one coherence block. Especially

in U-RA, on account of the scale of the common codebook

increasing proportionally to the message length, the system be-

comes impracticable even for relatively small-sized messages.

To reduce the codebook size, we turn to the coupled coding

scheme in [9], [11] which consists of inner and outer codes.

At the outer tree encoding step, the W -bit message to be

transmitted over S coherence blocks is split into S message

fragments containing W1, . . . ,WS data bits, respectively, with∑S

s=1Ws =W . We define {W1, . . . ,WS} as the data profile.

These fragments are distributed over S J-bit chunks in order.

We fix W1 = J whereas Ws < J for s = 2, . . . , S. To fill the

s-th chunk, the tree encoder appends Vs = J−Ws parity check

bits behind the data bits. These check bits are formed based

on the pseudo-random linear combinations of the data bits of

the previous blocks. Then at the inner encoding step, each J-

bit chunk with index value j is mapped to the corresponding

codeword drawn from the j-th column of the inner codebook.

To decode and reconstruct the message list at the BS, at first,

the inner (ML) decoder performs AD to the received signals

and obtains a list of emitted J-bit chunks at each time slot,

represented by {L1, . . . ,LS}. Obviously, most of the message

sequences in L1 × L2 × · · · × LS are unqualified. At the

outer tree decoding step, the goal of the tree decoder is to

recognize all possible message sequences fitting perfectly the

random parity check rules and acquire a transmitted message

list L. The decoder treats the chunks in L1 as the stage-one

roots. There are |L2| possible choices viewed as leaves to each

root at the ensuing stage, but only a few of them satisfy the

parity check constraints while others are eliminated, so are the

circumstances in the following stages where remaining leaves

at the preceding stage will be treated as roots. Eventually,

the tree decoder acquires the valid message sequences by

traversing all the remaining valid paths from stage 1 to S.

The performance of the system with concatenated coding

scheme is described in terms of per-user probability of mis-

detection (8) and probability of false-alarm (9) as well.

V. SIMULATION RESULTS

In order to compare with the previous literature, we follow

the same system settings as [11]. The massage of length W =
96 is divided into S = 32 blocks of size J = 12 based on the

data profile {12, 3, 3, . . . , 3, 0, 0, 0} and encoded by the tree

encoder. Then the codewords are separately emitted within S
time slots over S fading blocks of D = 100 dimensions each.

During the simulation of the iterative algorithm proposed in

Section III, we take Q = 4 × 104 and Qmod = 2J/2 = 2048.

We define the estimation error of the algorithm as

eγ = ‖γq − γ‖2 . (18)

We present the outcomes in Figure 1, where the red solid line

denotes the performance of our CD algorithm with BLA and

the blue solid line denotes the CD algorithm with random

coordinate selection in [12]. Note that the proposed algo-

rithm reveals better estimation accuracy than the conventional

method at the very beginning since the algorithm is most likely

to update the coordinates that yield deep descents of f(γ) in

the first few steps, and for the same reason the estimation

error rapidly decreases somewhere along the red curve. These

two algorithms achieve the same performance after adequate

iterations. It can be observed that the traditional approach

converges to the outcome with the minimum error after about

3× 104 iterations while our method takes only approximately

1.2 × 104 iterations, indicating that the suggested algorithm

leads to a faster convergence rate without losing accuracy.

The average SNR of a generic active user k ∈ Ka over a

coherent block is given by

εk =
1

Nk

Nk∑

n=1

‖aik‖
2
2 gkE{‖hk,n‖

2
2}

E{‖Z‖2F}
=
gk
σ2

(19)

where hk,n is the n-th column of the M × Nk matrix H̃k.

For convenience, we fix the LSFCs of all users to a constant,

i.e., gk ≡ g for k ∈ Ktot. We evaluate the system performance

by the sum of the two types of error probabilities, i.e., Pe =
pmd + pfa. Let there be Ka = 300 single-antenna active users

when we alter the number of antennas at the BS, simulation

results are illustrated in Figure 2. If we wish to achieve a total

error rate Pe < 0.05, when M = 300, the SNR required for

i.i.d. channels is approximately 0.2 dB and takes the value

of 1.5 dB for correlated channels. When M = 400, these

values reduce to −3.3 dB and −2.4 dB, respectively. It can

be observed that with the growth of M , the SNR needed for

reliable communications is immensely decreased, especially

when M > Ka. It suggests that the system error probability

can be decreased as desired simply by increasing the number

of receiving antennas.



Fig. 1. Estimation errors of two coordinate descent algorithms.

Fig. 2. Error probability as a function of SNR with different values of M .
Ka = 300, D = 100, W = 96, S = 32, J = 12.

VI. CONCLUSION

In this paper, we investigate the problem of massive con-

nectivity under the scheme of U-RA. In view of realistic prop-

agation environments, we consider a general joint-correlated

channel model with LOS components. Facing the problem

of signal recovery at the massive MIMO BS, we follow

the rationale of the covariance-based recovery problem and

introduce the CD algorithm with BLA to conduct AD to

the active codewords corresponding to transmitted messages.

We point out that the proposed algorithm has a remarkable

error to iteration boundary and leads to a faster convergence

rate than conventional descent approaches. We take advantage

of a coupled coding strategy to further reduce the system

complexity. Our simulations indicate that if sufficient numbers

of receiving antennas are equipped at the BS, the SNR required

for a certain error probability Pe = 0.05 in our scheme suffers

from a 0.9 to 1.3 dB loss to the results in i.i.d. channels.
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