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Abstract—Sparse channel estimation for massive multiple-
input multiple-output systems has drawn much attention in
recent years. The required pilots are substantially reduced when
the sparse channel state vectors can be reconstructed from a
few numbers of measurements. A popular approach for sparse
reconstruction is to solve the least-squares problem with a convex
regularization. However, the convex regularizer is either too loose
to force sparsity or lead to biased estimation. In this paper,
the sparse channel reconstruction is solved by minimizing the
least-squares objective with a nonconvex regularizer, which can
exactly express the sparsity constraint and avoid introducing
serious bias in the solution. A novel algorithm is proposed for
solving the resulting nonconvex optimization via the difference
of convex functions programming and the gradient projection
descent. Simulation results show that the proposed algorithm is
fast and accurate, and it outperforms the existing sparse recovery
algorithms in terms of reconstruction errors.

I. INTRODUCTION

Channel estimation for massive multiple-input multiple-

output (MIMO) systems has drawn increasing attention in re-

cent years. Due to the large-scale antenna arrays, conventional

channel estimation techniques require a large number of time

slots as the pilot training overhead. Sparse channel estimation

[1]–[5] has the advantage to reduce pilot training overhead

substantially by exploiting the channel sparsity in angular

domain. Sparse channel estimation requires to reconstruct a

sparse channel state vector from a few number of randomly

projected measurements. Thus, a sparse channel estimation

process also refers to a sparse channel reconstruction. A sparse

channel reconstruction is to resolve an underdetermined linear

system of equations to achieve a sparse solution closest to the

real angular-domain channel vector. A unique sparse solution

can be obtained through solving an optimization of least

squares constrained with a ℓ0-norm term, where the ℓ0-norm

constraint term is used to enforce sparsity in the solution

by limiting the number of non-zero elements. Since ℓ0-norm

is discrete and nonconvex, the ultimate sparse reconstruction

problem is a combinational optimization problem and is

NP-hard [6].
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Common approaches to solving sparse reconstruction in-

clude greedy approach and ℓ1-relaxation optimization. Repre-

sentative greedy algorithms include the orthogonal matching

pursuit (OMP) [7], [8], the CoSaMP [9] and the least angle

regression (LARS) [10]. These methods work well when the

vector is sufficiently sparse, but their performances degrade

seriously when the sparsity is reduced. The most popular ap-

proach for sparse reconstruction is the ℓ1-relaxation optimiza-

tion, where the nonconvex ℓ0-norm constraint is relaxed and

approximated by the convex ℓ1-norm constraint. Numerous

algorithms have been developed for solving the relaxed convex

optimization of sparse reconstructions, such as the iterative

shrinkage-thresholding algorithm (ISTA) [11], the fast iterative

shrinkage-thresholding algorithm (FISTA) [12], the gradient

projection sparse recovery algorithm (GPSR) [13] and the

sparse reconstruction by separable approximation (SpaRSA)

[14]. These ℓ1-relaxation based algorithms can guarantee to

converge theoretically within a finite number of iterations.

However, the ℓ1-norm constraint is a loose relaxation of the

ℓ0-norm constraint, and does not always provide an accurate

sparse solution.

In this paper, we propose a novel algorithm for sparse

channel reconstruction for massive MIMO systems. More

specifically, we introduce the top-(K, 1) norm [15] to represent

exactly the ℓ0-norm constraint instead of its approximation.

Then, we express the problem of sparse reconstructions as the

optimization of least squares objective penalised by a noncon-

vex regularizer term, which is represented using the top-(K, 1)
norm. To solve the resulting nonconvex optimization problem

of sparse reconstructions, we employ the difference of con-

vex functions (DC) programming [16]. In specific, the DC

programming solves nonconvex optimization by decomposing

the nonconvex objective into a form of DC and performing

iterations through a primal-dual method [16]. At each iteration,

the DC algorithm solves a convex subproblem, which is an

approximation of the original nonconvex problem. We express

the subproblem as a bound-constrained quadratic program

(BCQP) with a simple nonnegativity constraint, such that it

can be efficiently solved by the gradient projection descent

method. The proposed DC gradient projection algorithm is a

http://arxiv.org/abs/2102.07803v1


double-layer iteration algorithm, which shares the same global

convergence property with general DC algorithms [16]. Nu-

merical results show that the proposed DC gradient projection

algorithm can accurately reconstruct the sparse channel vectors

both in the noiseless and noisy scenario. The proposed DC

gradient projection algorithm can achieve solutions that have

lower reconstruction errors compared to existing algorithms,

including the OMP algorithm and several ℓ1-relaxation algo-

rithms.

II. SYSTEM MODEL

We consider a downlink massive MIMO system, where the

base station (BS) has N antennas and each user equipment

(UE) has a single antenna. We let the vector hs ∈ CN denote

the spatial-domain channel between the BS and a UE, and

let the vector ha ∈ C
N denote channel in virtual angular-

domain. Assuming a narrowband blockfading channel, the

spatial-domain channel vector hs is given by [17]

hs =

√

N

Np

Np∑

l=1

β(l)
α(φ(l)) (1)

where Np is the number of paths; l = 1 is the index for

the line-of-sight path; 2 ≤ l ≤ Np is the index for non-

line-of-sight paths; β(l) is the complex path gain; α(φ(l)) is

the corresponding array steering vector that contains a list of

complex spatial sinusoids to represent the relative phase shifts

for the incident far-field waveform across the array elements.

For the N -element uniform linear array, the array steering

vector α(φ(l)) is given by

α(φ(l)) =
1√
N

[1, e−j2πφ(l)

, ..., e−j2πφ(l)(N−1)]T (2)

where φ(l) denotes the spatial direction of the lth path, and

it is related to the physical angle θ(l) by φ(l) = d
λ
sin θ(l)

for − 1
2 ≤ φ(l) ≤ 1

2 and −π
2 ≤ θ(l) ≤ π

2 , where λ is the

wavelength, and d = λ
2 is the antenna spacing.

The spatial-domain channel vector hs in (1) can be trans-

formed into the virtual angular-domain by [17]

ha = Uhs (3)

where U denotes the discrete Fourier transform (DFT) matrix

having the size N ×N , and it can be expressed using a set of

orthogonal array steering vectors as

U = [α(φ1),α(φ2), ...,α(φN )]H (4)

where φi = 1
N
(i − N+1

2 ) for i = 1, 2, ..., N is the spa-

tial direction predefined by the array having half-wavelength

spaced antennas. The massive MIMO channels have strong

spatially correlations and much-lower degrees of freedom than

the number of antennas. Since the BS is usually located at

an elevated position far away from the UE, the number of

scattering clusters around the BS is limited and each scattering

cluster has a small angular spread. Thus, the majority of

channel energy ‖ha‖22 is occupied by a limited dimensions in

angular domain. Consequently, the massive MIMO channels

have a sparse angular-domain representation, and only a small

number of nonzero elements exist in the angular-domain

channel vector ha.

For the pilot-aided downlink channel estimation schemes,

the BS transmits the known pilots P to the UEs. The received

pilot symbols at the UE can be expressed as [18]

r = Phs +w (5)

where r ∈ CM is the received pilots; P ∈ CM×N is the

downlink pilot matrix transmitted over M time slots; hs ∈ CN

is the spatial-domain channel vector; w is the received noise

vector and w ∼ CN (0, σ2
nI).

By the relationship between the spatial-domain channel hs

and the angular-domain channel ha in (3), the channel vector

hs in (5) can be replaced by hs = UHha. Thus, the received

pilot symbols in (5) can be rewritten as

r = PUHha +w. (6)

By writing Φ = PUH , eq. (6) can be expressed as

r = Φha +w (7)

where Φ ∈ C
M×N . We aim to estimate the sparse channel

vector ha ∈ CN from the lower-dimensional measurements

r ∈ CM for M ≪ N . Since the pilot length M depends on

the sparsity level of channel vector ha instead of the number

of BS antennas, the overheads of pilot transmission and CSI

feedback can be largely reduced.

In this paper, we adopt the Gaussian random measurement

matrix Φ ∈ RM×N , which has the real-form elements fol-

lowing the standard Gaussian distribution. Thus, the real and

imaginary parts of all the complex variables in (7) can be

written as

ℜ(r) = Φ · ℜ(ha) + ℜ(w)

ℑ(r) = Φ · ℑ(ha) + ℑ(w) (8)

where ℜ(·) and ℑ(·) denote the real part and imaginary part of

a complex vector. Eq. (8) implies we can equivalently treat a

complex channel vector ha as a concatenated real-form vector

x = [ℜ(ha)
T ,ℑ(ha)

T ]T . (9)

In the remainder, we uniquely refer x as the sparse channel

vector.

III. DC GRADIENT PROJECTION SPARSE

RECONSTRUCTION ALGORITHM

A. Exact Sparsity Constraint Representation

According to (8) and (9), the sparse channel estimation

problem can be uniquely expressed using the real-form un-

derdetermined linear system

y = Φx+ n (10)

where y ∈ RM denotes the compressed measurements;

Φ ∈ RM×N is the measurement matrix; x ∈ RN represents

the sparse channel vector; n ∈ RM is the Gaussian noise

vector and n ∼ N (0, σ2I). Sparse channel reconstruction is



to obtain a solution of x̂ from compressed measurements y and

measurement matrix Φ such that x̂ ≈ x. This ℓ0-minimization

problem is NP-hard and it is defined as

min
x

‖x‖0
s.t. ‖y −Φx‖22 ≤ τ (11)

where τ is a nonnegative real-form parameter. Problem (11)

can be rewritten in an equivalent form as [19]

min
x

‖y −Φx‖22
s.t. ‖x‖0 ≤ K (12)

where K is the bound of the number of nonzero elements of

vector x, and it is uniquely determined by the parameter τ in

problem (11).

To represent exactly the sparsity constraint ‖x‖0 ≤ K in

(12), we introduce the top-(K, 1) norm. The top-(K, 1) norm

‖x‖K,1 is defined as the sum of the largest K elements of the

vector x in terms of absolute value, namely

‖x‖K,1 := |x(1)|+ |x(2)|+ · · ·+ |x(K)| (13)

where |x(i)| denotes the element whose absolute value is the

ith-largest among the N elements of the vector x, i.e., |x(1)| ≥
|x(2)| ≥ · · · ≥ |x(N)|. The constraint ‖x‖0 ≤ K is equivalent

to the statement that the (K+1)th-largest element of the vector

x is zero, i.e., ‖x‖K+1,1 − ‖x‖K,1 = 0. Thus, we have an

equivalent relationship between the following two statements

[15]

‖x‖0 ≤ K ⇔ ‖x‖1 − ‖x‖K,1 = 0. (14)

The problem (12) can be rewritten as

min
x

‖y −Φx‖22
s.t. ‖x‖1 − ‖x‖K,1 = 0 (15)

where the sparsity constraint ‖x‖0 ≤ K is exactly represented

by ‖x‖1 − ‖x‖K,1 = 0. Using an appropriate Lagrange

multiplier ρ, we rewrite the problem (15) as the following

unconstraint optimization problem

min
x

1

2
‖y −Φx‖22 + ρ(‖x‖1 − ‖x‖K,1) := F (x) (16)

where ρ is the regularization parameter that balance the data

consistency and penalty term. Due to the nonnegativity of the

penalty term ρ(‖x‖1 − ‖x‖K,1) ≥ 0, it can be ensured that

the unconstrained problem (16) is equivalent to the constraint

problem (15) when the penalty parameter ρ is taking infinite

limit, which can be proved in a similar way with Theorem

17.1 of [20].

To this end, we exactly represent the ℓ0-constraint ‖x‖0 ≤
K using the DC constraint ‖x‖1 − ‖x‖K,1 = 0 so that the

sparse reconstruction problem (12) is expressed in the equiv-

alent form of (15). Then we transform the problem (15) into

a unconstraint minimization problem (16). The problem (16)

is a nonconvex optimization problem, because the subtracted

top-(K, 1) norm ρ‖x‖K,1 in the penalty term results in a

nonconvex regularizer ρ(‖x‖1 − ‖x‖K,1).

B. DC Programming Algorithm Framework

Our goal now is to solve the nonconvex unconstraint opti-

mization problem (16). We employ the DC programming and

decompose the objective function F (x) in problem (16) as the

difference of the two convex functions of f(x) and g(x)

min
x

1

2
‖y −Φx‖22 + ρ‖x‖1

︸ ︷︷ ︸

f(x)

− ρ‖x‖K,1
︸ ︷︷ ︸

g(x)

. (17)

At the tth-iteration, we solve the following convex subproblem

min
x

f(x)− xT ∂g(xt−1). (18)

The second convex function g(x) in (17) is linearized by

xT ∂g(xt−1) in (18), where ∂g(xt−1) is the subgradient of

g(x) at the (t− 1)th update xt−1, that is

∂g(xt−1) = ρ∂‖xt−1‖K,1 (19)

where ∂‖xt−1‖K,1 denotes the subgradient of ‖xt−1‖K,1. The

subgradient ∂‖x‖K,1 of ‖x‖K,1 is defined as [15]

∂‖x‖K,1 := argmax
w

{
N∑

i=1

xiwi

∣
∣
∣

N∑

i=1

|wi| = K,wi ∈ [−1, 1]
}

.

(20)

A subgradient wt−1
x ∈ ∂‖xt−1‖K,1 can be simply obtained

by assigning the sign of the first K largest elements of |xt−1|
to the corresponding elements of wt−1

x , i.e., (wx)
t−1
(i) =

sign(xt−1
(i) ), where the subscript (i) represents the ith element

of a vector, and setting the other elements of wt−1
x to be zeros.

The DC algorithm framework for sparse reconstruction is

outlined as follows:

1. Start: Given a starting point x0, and a small threashold

parameter ǫ > 0.

2. Repeat: For t = 1, 2, . . .
Select a subgradient wt−1

x ∈ ∂‖xt−1‖K,1;

Solve the convex subproblem (18), i.e., min
x

f(x) −
ρxTwt−1

x , and obtain xt;

Increment t;
3. End: Until terminate condition satisfies.

C. DC Gradient Projection Algorithm for Sparse Reconstruc-

tion

Following the aforementioned DC algorithm framework to

solve the problem (16), at the tth iteration we need to solve a

nonsmooth convex subproblem (18), which is

min
x

1

2
‖y −Φx‖22 + ρ‖x‖1 − ρxTwt−1

x (21)

where wt−1
x = ∂‖xt−1‖K,1. We turn it into a constraint

quadratic problem and solve it using the projected gradient

descent method. We split the positive and negative part of x,

and represent x as the difference of its positive part u and its

negative part v, that is

x = u− v,u ≥ 0,v ≥ 0 (22)



where u = (x)+,v = (−x)+, where (·)+ represents a

nonnegative-clipper operation that retains the nonnegative ele-

ments and sets negative elements be zeros. More precisely,

(x)+ represents for each element x in vector x we take

(x)+ = max{0, x}; (−x)+ represents for each element −x
in vector −x we take (−x)+ = max{0,−x}. Noticing that

‖x‖1 = 1Tu+ 1Tv, the subproblem (21) can be written as a

bound-constrained quadratic program (BCQP)

min
u,v

1

2
‖y−Φ(u− v)‖22 + ρ1Tu+ ρ1Tv − ρuTwt−1

u

−ρvTwt−1
v

s.t. u ≥ 0,v ≥ 0 (23)

where wt−1
u and wt−1

v represent the positive and negative part

of wt−1
x , i.e., wt−1

u = (wt−1
x )+, wt−1

v = (−wt−1
x )+. Let z

denote the concatenation of u and v, i.e., z = [uT ,vT ]T , we

rewrite (23) into a compact form

min
z

1

2
zTBz+ cT z := G(z),

s.t. z ≥ 0 (24)

where

z =

[
u

v

]

, B =

[
ΦTΦ −ΦTΦ

−ΦTΦ ΦTΦ

]

,

c =

[
ΦTy

−ΦTy

]

+ ρ1T − ρwt−1
z

where 1T represents the all-ones column vector in the same

size with z; st−1
z = [(st−1

u )T , (st−1
v )T ]T ∈ ∂‖zt−1‖K,1 is a

subgradient of ‖zt−1‖K,1, and wt−1
z can have either zero-

valued or one-valued elements for zt−1 ≥ 0.

Now, we can apply the gradient projection descent to solve

the subproblem (24). The kth-step update is expressed as

z(k+
1
2 ) = Proj

(

z(k) − αk∇G(z(k))
)

,

z(k+1) = z(k) + βk(z(k+
1
2 ) − z(k)) (25)

where αk > 0 is the step size which can be determined by the

Barzilai-Borwein (BB) approach, and βk ∈ (0, 1] is another

step size can be found by line search [13]; Proj(·) represents

the operation of orthogonal projection that projects the vector

to the nonnegative orthant; ∇G(z(k)) represents the gradient

of G(z) in terms of z(k) which is calculated as

∇G(z(k))=

[
ΦTΦ(u(k) − v(k))

−ΦTΦ(u(k) − v(k))

]

+

[
−ΦTy

ΦTy

]

−ρwt−1
z + ρ1T . (26)

In summary, the DC algorithm can be simplified as itera-

tively performing the following two steps until convergence:

(a) wt−1
z ∈ ∂‖zt−1‖K,1

(b) zt = argmin
z≥0

{
1

2
zTBz+ cT z

}

(27)

where B and c are defined in (24). The subproblem (b) in (27)

is solved by applying the gradient projection descent (25). We

summarize this DC gradient projection algorithm for sparse

reconstruction (DC-GPSR) in Algorithm 1.

Algorithm 1 DC gradient projection descent algorithm for

sparse reconstruction (DC-GPSR)

Input: measurements y, measurement matrix Φ and a

small number ǫ
Output: reconstructed x̂

Initialization: u0, v0, z0 ← [(u0)T , (v0)T ]T

1: for t = 1, 2, . . . do

2: Compute the subgradient wt−1
z ∈ ∂‖zt−1‖K,1

3: for k = 1, 2, . . . do

4: Compute gradient ∇G(z(k)) by (26)

5: Perform gradient projection descent (25) for ob-

taining z(k+1)

6: Check convergence, set z∗ ← z(k+1) and proceed

to step 7 if convergence is satisfied; otherwise return to

step 3.

7: end for

8: zt ← z∗

9: Check the terminate condition ‖zt − zt−1‖2 ≤ ǫ, and

return to step 1 if not satisfied; otherwise terminate with

approximate solution zt = [(ut)T , (vt)T ]T , and obtain the

reconstruction x̂ = ut − vt.

10: end for

IV. NUMERICAL RESULT

In this section, the performance of the proposed DC-GPSR

algorithm is numerically evaluated and compared with existing

recovery algorithms. In our simulation, the number of BS

antennas is set as N = 256; the sparsity level of the angular-

domain channel is set as 16; the dimension of measurements

is set as M = 128. The real and imaginary part of the channel

vector is concatenated together being a sample of sparse

channel vector. Thus, we are reconstructing a sparse vector

x̂ ∈ R512 with a number of nonzero elements K = 32 from

compressed measurements y ∈ R128. A random Gaussian

matrix drawn from standard Gaussian distribution is adopted

as the measurement matrix Φ; The terminate condition for our

proposed algorithm is set as ‖x̂t − x̂t−1‖2 ≤ 10−30.

A. Performance in a Noiseless Scenario

We perform the proposed DC-GPSR algorithm in noiseless

scenario to reconstruct a channel vector. The optimal sparse

channel vector is denoted by xopt; and the reconstructed

vector is denoted by x̂. The CPU time of running DC-

GPSR algorithm is 0.086 seconds on a desktop computer

equipped with 3.2 GHz Intel Core i7-8700 CPU. The objective

evolutions versus iterations are shown in Fig. 1 and Fig. 2. The

reconstruction errors versus iterations is shown in Fig. 3. The

optimal and reconstructed vectors are plotted in Fig. 4. We

plot the results of conventional GPSR algorithm [13] in Figs.

1–4 as comparisons.

Figure 1 shows the objective values versus iterations, where

the red dots indicate iterations of the DC-GPSR algorithm, and

the solid line shows the objective evolutions of gradient projec-

tion for solving the subproblem at each iteration. The dashed

line shows the objective of conventional GPSR algorithm for



Figure 1: Objective values versus iterations; DC-GPSR

objective is 1
2‖y−Φx̂‖22 + ρ(‖x̂‖1 − ‖x̂‖K,1), and GPSR

objective is 1
2‖y −Φx̂‖22 + ρ‖x̂‖1

Figure 2: Objective values ( 12‖y−Φx̂‖22 + ρ‖x̂‖1) versus

iterations for DC-GPSR and GPSR algorithm

comparison. We can see the proposed DC-GPSR algorithm

quickly decreases its objective after the sixth outer-step, and

terminates at the the eighth step, while the objective of GPSR

is stuck at a relatively large value.

We investigate the values of least square objective with

the ℓ1-norm penalty, i.e., ‖y −Φx̂‖22 + ρ‖x̂‖1, and show the

values versus iterations in Fig. 2. The solid line marked by

the red dots indicates the result of DC-GPSR, and the dashed

line indicates the result of GPSR. We also draw the optimal

values of the penalty term ρ‖xopt‖1. We can see the DC-GPSR

algorithm arrives and stays at the value of ρ‖xopt‖1 after

the sixth iteration, which is also the optimal value that the

objective ‖y−Φx̂‖22+ρ‖x̂‖1 can achieve when ‖y−Φx̂‖22 = 0
and ρ‖x̂‖1 = ρ‖xopt‖1. However, the GPSR cannot achieve

this optimal value with a gap. It is meaningful to observe this

is the gap of minimal objective values between GPSR and

DC-GPSR, because it help us understand the approximation

error from relaxing the ℓ0-norm by the ℓ1-norm.

Figure 3: Normalized squared-ℓ2-error of reconstructions

versus iterations for DC-GPSR and GPSR algorithm

Figure 4: Illustration of the optimal sample and the final

reconstructions by DC-GPSR and GPSR algorithm

Figure 3 shows the normalized squared-ℓ2 error

(‖xopt − x̂‖22/‖xopt‖22) versus iterations for reconstructions by

DC-GPSR and GPSR algorithm. Fig. 4 illustrates the optimal

sample and the finally reconstructed vectors by DC-GPSR

and GPSR algorithm. We can see the proposed DC-GPSR

algorithm achieves an accurate reconstruction with a small

error on the order of 10−28, which is far more accurate than

the reconstruction by the GPSR algorithm with error on the

order of 10−3.

B. Performance in a Noisy Scenario

We perform sparse reconstructions by DC-GPSR in the

noisy scenarios for 1, 000 channel vector samples, and com-

pare the normalized mean square error (NMSE) with several

existing reconstruction algorithms. The NMSE is defined as

NMSE =
1

m

m−1∑

i=0

‖xi − x̂i‖22
‖xi‖22



Figure 5: Reconstruction NMSE in noisy scenarios by

different sparse reconstruction algorithms

where m = 1000 is the number of samples. For the ith
channel vector sample xi, we add noise ni ∈ R128 on

the compressed measurements yi to form a noise-corrupted

compressed measurements y′
i, then we reconstruct the sparse

vector x̂i from y′
i and measurement matrix Φ. The signal-to-

noise ratio (SNR) is defined as

SNR =
‖xi‖22

E(‖ni‖22)
=
‖xi‖22
M · σ2

where the subscript i = 1, 2, ..., 1000 is the sample index; E(·)
is the expectation operator; M is the dimension of compressed

measurements; σ is the standard deviation of the noise that

follows zero-mean Gaussian distribution.

The benchmark algorithms include ISTA [11], GPSR [13]

and OMP [8]. The results of reconstruction NMSE are shown

in Fig. 5. We can see the proposed DC-GPSR has a lower

reconstruction NMSE compared with the existing sparse re-

construction algorithms. Although DC-GPSR performance de-

grades due to noise, the DC-GPSR algorithm exhibits consid-

erable robustness in the noisy scenario. For example, when

the SNR is 25 dB, the reconstruction NMSE of DC-GPSR

algorithm is 6.07 × 10−6, which is sufficiently accurate for

most of the applications.

V. CONCLUSION

A novel sparse reconstruction algorithm DC-GPSR was

proposed for the sparse channel estimation in massive MIMO

systems. The sparse recover problem was formulated as a

least squares problem with a nonconvex regularizer. The non-

convex regularizer is an exact representation for the ℓ0-norm

constraint, which leads to more accurate sparse solution than

the convex ℓ1-norm regularizer. In the proposed DC-GPSR

algorithm, the nonconvex optimization problem is decomposed

and approximated by a list of convex subproblems; the convex

subproblems are expressed as BCQP problems and solved

by the gradient projection descent method. The proposed

DC-GPSR algorithm shares the global convergence property

with the general DC algorithm. Numerical results showed

the DC-GPSR algorithm is fast, accurate and robust, and it

outperforms several existing sparse recovery algorithms.
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