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Abstract—A novel framework of intelligent reflecting surface
(IRS)-aided multiple-input single-output (MISO) non-orthogonal
multiple access (NOMA) network is proposed, where a base station
(BS) serves multiple clusters with unfixed number of users in
each cluster. The goal is to maximize the sum rate of all users
by jointly optimizing the passive beamforming vector at the IRS,
decoding order and power allocation coefficient vector, subject to
the rate requirements of users. In order to tackle the formulated
problem, a three-step approach is proposed. More particularly, a
long short-term memory (LSTM) based algorithm is first adopted
for predicting the mobility of users. Secondly, a K-means based
Gaussian mixture model (K-GMM) algorithm is proposed for user
clustering. Thirdly, a deep Q-network (DQN) based algorithm is
invoked for jointly determining the phase shift matrix and power
allocation policy. Simulation results are provided for demonstrat-
ing that the proposed algorithm outperforms the benchmarks,
while the performance of IRS-NOMA system is better than IRS-
OMA system.

Index Terms—Deep reinforcement learning, Gaussian mixture
model (GMM), Intelligent reflecting surface (IRS), Non-orthogonal
multiple access (NOMA)

I. INTRODUCTION

With the increasing demand for large capacity in wire-

less networks, the conventional multiple access schemes can-

not guarantee the quality of connectivity. Therefore, pursuing

spectrum efficiency has become the leading focus point in

wireless networks, especially in the fifth-generation (5G) era

where data volume and access volume are exploding. Al-

though various techniques have been invoked for improving

spectrum efficiency, such as large-scale multiple-input multiple-

output (MIMO) [1], millimeter-wave communications [2], ultra-

massive and ubiquitous wireless connectivity, which are the

goals of next-generation wireless networks, are still far from

realized. Intelligent reflecting surfaces (IRSs), which have the

capability of proactively modifying the wireless communication

channels by controlling a large number of passive reflective

elements, are recognized as a promising technique to enhance

both spectrum efficiency and energy efficiency of wireless

networks. Additionally, in order to further improve spectrum

efficiency and user connectivity of IRS-aided wireless networks,

power domain non-orthogonal multiple access (NOMA) tech-

nique [3] can be leveraged, whose core idea is to superimpose

the signals of two users at different powers for exploiting the

spectrum more efficiently by opportunistically exploring the

users’ different channel conditions.

The aid of IRSs, both spectrum efficiency and energy effi-

ciency of wireless networks have witnessed significant improve-

ment. The authors in [4] jointly designed and implemented

a novel IRS-aided hybrid wireless network, which showed

that the IRS can be useful to achieve significant performance

enhancement in typical wireless networks, compared to the

traditional networks comprising active components only. In [5],

a jointly active beamforming and passive beamforming design

algorithm was proposed for physical layer security in wireless

networks. By invoking NOMA technique in IRS-aided wireless

networks, spectrum efficiency can be further enhanced when

comparing to the conventional OMA schemes, such as Time-

division multiple access (TDMA) [6] and Frequency-division

multiple access (FDMA) [7]. Mu et al. [8] exploited IRS-aided

NOMA system and developed a novel algorithm by utilizing

the sequential rank-one constraint relaxation approach to find

a locally optimal rank-one solution. Fu et al. [9] considered

jointly optimizing the transmit beamformers at the base station

(BS) and the phase shift matrix at the IRS for a IRS-empowered

NOMA network, which proved that performance gain was

achieved. Reinforcement learning (RL) has shown great poten-

tials to revolutionize communication systems. Additionally, RL

was proved to be capable of tackling dynamic environment in

IRS-aided wireless networks. In order to obtain the beneficial of

NOMA technique, a novel framework for the deployment and

passive beamforming design of a IRS with the aid of NOMA

technology was proposed in [10]. Cui et al. [11] developed

a K-means-based online user clustering algorithm to reduce

the computational complexity and derive the optimal power

allocation policy in a closed form by exploiting the successive

decoding feature.

Although the aforementioned research contributions have laid

a foundation on solving challenges in IRS-aided wireless net-

works and on leveraging NOMA for improving the spectrum-

efficiency of networks, the dynamic environment derived from

the movement of ground mobile users is ignored in the previous

research contributions. Before fully reap the advantages of

IRSs and NOMA technique, how to design the phase shift

matrix of the IRS and resource allocation policy based on the

mobility information of users is still challenging. In contrast to

the conventional MIMO-NOMA system, additional decoding

rate conditions need to be satisfied to guarantee successful

successive interference cancellation (SIC) in IRS-NOMA sys-

tems. Additionally, both the active beamforming and passive

phase shift design affect the decoding order among users and

user clustering, which makes the decoding order design, user

clustering and passive beamforming design highly coupled.

Sparked by the above background, we aim to find the
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maximum sum rate in the downlink IRS-aided MISO-NOMA

network. Our contributions are summarized as follows: 1) We

propose a novel framework for IRS-NOMA aided wireless

network, where an IRS is employed to enhance spectrum

efficiency by proactively reflecting the incident signals. 2) We

conceive a long short-term memory (LSTM) algorithm based on

the concept of rejection method for randomly generating users’

intial positions in a fixed range and predicting future positions

of users. 3) We adopt a K-means based Gaussian mixture

model (K-GMM) algorithm for dynamic user clustering. 4) We

demonstrate that the proposed DQN algorithm is capable of

solving the joint phase shift design and resource allocation

problem in IRS-aided wireless networks. Additionally, IRS-

NOMA scheme outperforms IRS-OMA scheme in terms of sum

rate.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider a downlink multi-cluster

system, where the BS is equipped with M transmitting antennas

and a fixed number Λ of single antenna users are served by the

US, all users are partitioned into M clusters where the number

of users in each cluster is pm. Furthermore, in order to improve

the spectrum efficiency, in each cluster, NOMA technology

is applied for transmission. It is worth noting that the direct

transmit link between the BS and users is blocked by obstacles.

To enhance the quality-of-service (QoS), an IRS with K low-

cost passive elements is employment to assist the MISO-NOMA

network.

Base Station(BS)

Cluster 1

Cluster 2

Cluster M 

User1 User 2 User 3
User p1

User1 User 2 User 3 Userp!

User1 User
 2 User

 3
User

 p
M

Interlligent Reflecting Surfaces(IRSs)
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Obstacles

M

K passive elements

Fig. 1. Illustration of the IRS-aided MISO-NOMA network.

In the light of the system description, the baseband equivalent

channels from the BS to IRS and the IRS to user p in

the cluster m are denoted by GGG ∈ CK×M , hhhHm,p ∈ C1×K ,

respectively, while um,p denotes the p-th user in m-th cluster.

Then, assume φk = βke
jθk denotes the reflection coefficient of

k-th element, while βk and θk denote the amplitude and phase

of kth element in the IRS. Besides, denoteΘΘΘ = [φ1, φ2, · · · , φk]
as the reflection coefficients matrix of the IRS, while φk,

k=1,2,3,· · · ,K as the diagonal element. Therefore, the received

signal at um,p is expressed as

ym,p = hhhHm,pΘΘΘGGG
M∑

m=1

ωωωmxm + nm,p, (1)

where xm denotes the received signal of cluster m transmitted

from the BS, nm,p ∼ CN (0,σ2) indicates the additive white

Gaussian noise (AWGN) at user p of cluster m with zero mean

and variance σ2, and using ωωωm represents the corresponding

beamforming vector for the m-th cluster. We use sm,p to denote

the required signal from um,p, then the mixed signal received

by the k-th cluster is formulated as

xm =

pm∑

p=1

αm,psm,p, (2)

where the αm,p and sm,p as the power allocation coefficient and

the transmitted information for user um,p, respectively, while

satisfied
∑Pm

p=1 αm,p = 1. Then we use the B as the resolution

bits, so the discrete one is expressed as

| βk |2= 1, θk ∈ {2πn
2B

, n = 0, 1, 2, · · · , 2B − 1}. (3)

Based on (1), the received signal of user um,p is given by

ym,p =hhhHm,pΘΘΘGGGωωωmαm,psm,p
︸ ︷︷ ︸

Desired signal

+hhhHm,pΘΘΘGGGωωωm

pm∑

λ=1,λ6=p

αm,λsm,λ

︸ ︷︷ ︸

intra−cluster interference

+ hhhHm,pΘΘΘGGG

M∑

γ=1,γ 6=m

ωωωγsγ

︸ ︷︷ ︸

inter−cluster interference

+nm,p, (4)

where hhhHm,pΘΘΘGGGωωωm

∑pm

λ=1,λ6=p αm,psm,p denotes the intra-

cluster interference from other users in the same cluster and

hhhHm,pΘΘΘGGG
∑M

γ=1,γ 6=mωωωγsγ represents the inter-cluster interfer-

ence from other clusters. For beamforming matrix ωm, the zero-

forcing (ZF)-based linear method is applied, the corresponding

ZF pre-coding constraints are expressed as
{
hhhHγ ΘΘΘGGGωωωm = 0,
hhhHmΘΘΘGGGωωωm = 1,

(5)

where hhhγ represents the combined channel of the γ-th clus-

ter. Then, we denote hhhH = hhhHMΘG, in which hhhHM =
[h1,p, h2,p, · · · , hM,p]

H . Therefore, the optimal transmit pre-

coding beamforming vector is given by

WWW = [ωωω1,ωωω2, · · · ,ωωωM ] = hhh(hhhHhhh)−1. (6)

Then, we denote hhhHm,pΘΘΘGGG = υυυHΦm,pΦm,pΦm,p, where ΦΦΦ =

diag(hhhHm,p)GGG, υυυ = [υ1, υ2, · · · , υk]H where υk = ejθk , and

ΓΓΓγ =
∑M

γ=1,γ 6=mωωωγ , so the signal-to-interference-plus-noise

ratio (SINR) of um,p is given by

τm,p =
| υυυHΦΦΦm,pωωωmαm,p |2

pm∑

λ=1,λ6=p

| υυυHΦΦΦm,pωωωmαm,λ |2 + | υυυHΦΦΦm,pΓΓΓγ |2 +δ2m

.

(7)

Similarly, the SINR for um,q to decode the received signal

sm,p is expressed as

τm,q,p =
| υυυHΦΦΦm,qωωωmαm,p |2

pm∑

λ=1,λ6=p

| υυυHΦΦΦm,qωωωmαm,λ |2 + | υυυHΦΦΦm,qΓΓΓγ |2 +δ2m

.

(8)

It is worth pointing out that all the users have to meet



QoS requirement and to guarantee success SIC under a given

decoding order. Therefore, the following constraint has to be

satisfied

τm,p ≥ τm,p̃, (9)

where τm,p̃ represents the minimum received SINR that the

weakest user um,p̃ has to achieve. Therefore, among all the

users, the success SIC decoding is subjected to

Rm,a→m,b ≥ Rm,b→m,b, (10)

when decording order Ωm,a > Ωm,b, for users a and b in any

cluster m.

Proposition 1. For any two users a and b in cluster m, given

the optimal decoding order, Rm,a→m,b ≥ Rm,b→m,b is the

necessary constraint for Rm,a→m,b ≥ Rm,b→m,b̃.

Proof. See Appendix A.

Proposition 1 indicates that when the optimal decoding order

of NOMA is given, the constraint (9) can be removed, while

the performance of NOMA networks will not be affected.

B. Problem Formulation

In this paper, we will design a novel protocol for achieving

maximum sum rate of all users in the IRS-aided MISO-NOMA

network by jointly optimizing the passive beamforming vector

υυυ at the IRS, decoding order ΩΩΩ and power allocation coefficient

vector ααα, subject to the rate requirements at Λ users. Thus, the

optimization problem is formulated as

max
ΩΩΩ,υυυ,ωωω,ααα

M∑

m=1

Pm∑

p=1

Rm,p (11)

s.t. Rm,a→m,b ≥ Rm,b→m,b, (11a)

M∑

m=1

|| ωωω ||2≤ P , (11b)

| βk |2= 1, θk ∈ {2πn
2B

, n = 0, 1, · · · , 2B − 1},
(11c)

ΩΩΩ ∈ Π, (11d)

where ωωω = {ωωω1,ωωω2, · · · ,ωωωM}, ααα = {ααα1,ααα2, · · · ,αααm},

αααm = {αm,1, αm,2, · · · , αm,p}, P represents the transmit

power. Constraint (11a) guarantees that the SIC can be be per-

formed successfully. Constraint (11b) is the total transmission

power constraint. Constraint (11c) represents the considered

IRS assumption. Finally, constraint (11d) denotes the set of

all the possible decoding orders. Since users are considered

as roaming continuously, the optimal decoding order has to

be re-determined at each timeslot for success SIC, which is

naturally a dynamic problem. Since the conventional convex

optimization is non-trivial to tackle the formulated dynamic

problem, machine learning algorithms will be introduced in the

following sections.

III. PROPOSED SOLUTIONS

A. Positions predicting based on deep learning method

1) Training samples selection: In our proposed model, we

use the rejection method for generating training samples.

Firstly, a fixed number of N0 positions for each user is

randomly generated during the intimal time period. Afterward,

all these position points are served as training samples for

the first LSTM training. Additionally, in order to achieve the

expected results, the training samples vary over time. After each

training, the LSTM model will predict N positions.

2) Training and prediction: Algorithm 1 demonstrates the

use of rejection method and LSTM model to generate initial

users’ positions and predict their future positions.

Algorithm 1 Positions generation and predictions

Input: LSTM network structure

Initialization: Parameters of LSTM network

Maximum training samples Nmax, all Λ users

Generate N = N0 positions using rejection method

Repeat:

Input training sample set N

Predict pospospos = N positions

Set N = N0 +N as training samples

End

Until N = Nmax

Return: Matrix pospospos

B. Clustering based on K-GMM model

In this section, we propose a three-step user clustering

approach based on K-GMM algorithm.

1) Step 1: All users provide their own channel state infor-

mation (CSI) feedback to the transmitter and the transmitter

forms a CSI set SSS for all users, that is

SSS = {h1, h2, · · · , hΛ}. (12)

We initialize all users into M clusters and use SSSm to denote

the CSI set for cluster m. Besides, in order to normalize user

channels, the channel vector of all users is defined as

h̃Λ =
hΛ

|| hΛ || . (13)

2) Step 2: We randomly selects m users as the centers of

clusters, the initial value of GMM and the definition of gain

difference and correlation is expressed as

da,b =|| h̃a | − | h̃b ||< ρ1, Cor(a, b) =
| h̃a · h̃b |

| h̃a | · | h̃b |
> ρ2,

(14)

where ρ1 and ρ2 denote the pre-defined correlation real number

thresholds while satisfying ρ1, ρ2 ≥ 0. Afterward, the users are

roughly partitioned into M clusters. Denote the Cm, h̃pm
and

SSSm as the center of m-th cluster, a user in the mthe cluster and

the initially formed user set, respectively. Therefore, the center

can be reformulated

C̃m =
1

| Cm |
∑

hpm∈SSSm

h̃pm
. (15)



3) Step 3: The GMM model consists of m Gaussian distri-

butions, each Gaussian distribution is called a ”component” and

these components are linearly added together for any user λ,

which can be expressed as

P (h̃λ|κκκ) =
pm∑

m=1

Ψmp(h̃λ|κm), (16)

where Ψm ≥ 0,
∑

Ψm = 1 denotes the weights of each Gaus-

sian distribution, p(h̃λ|κm) is the probability density function

of the m-th Gaussian distribution while κm = (C̃m,Ψ
2
m), so

the expression of probability density is

p(h̃λ|κm) =
1√
2πδm

exp(− (h̃λ − Cm)2

2δ2m
). (17)

The learning process of the GMM model is to estimate

all the probability density function p(h̃λ|κm) of M Gaussian

distributions. The probability of occurrence of each observation

sample is expressed as a weighted probability of M Gaussian

distributions.

Proposition 2. Input observation data SSS and M GMM models,

iteratively converge to a small number ǫ and output parameter

κκκ of all the GMM models. The parameters of GMM are derived

by the EM algorithm.

Proof. See Appendix B.

From equation (14) to (17), the parameters to be esti-

mated are κκκ = {Ψ1,Ψ2, · · · ,ΨM ;κ1, κ2, · · · , κM} and κM =
(µM , δ

2
M ). Therefore, the 3M parameters have to be estimated

in this model. The maximum likelihood estimation (MLE)

method is adopted to estimate κκκ, so that the log-likelihood

function L(κκκ) = logP (h̃λ|κκκ) of the observation data SSS is

maximized, which can be expressed as

L(κκκ) = logP (SSS|κκκ) =
Λ∑

λ=1

[log(
M∑

m=1

Ψmp(h̃λ|κm)]. (18)

The initial values of µ and δ2 for each Gaussian distribution

are given. As mentioned above, K-means algorithm is applied

to obtain the cluster center as the initial µ value. For δ2, our

purpose is to get the maximum value of log-likelihood function

L(κκκ), so L(κκκ) can be differentiated in a single sample as

d(tr(L̃(κ)) = − tr(δ
−2dδ2 − δ−2)(h̃− C)(h̃− C)T δ−2dδ2

2
,

(19)

d(tr(L̃(κ))

dδ2
= − tr(δ

−2 − δ−2)(h̃− C)(h̃− C)T δ−2

2
. (20)

Thus the initialize values are given by

µm = C̃m, δ
2
m =

1

pm

pm∑

λ=1

(h̃λ − Cm)(h̃λ − Cm)T . (21)

The probability of user h̃λ in the m-th Gaussian distribution

is

χh̃λ,m
=

Ψmp(h̃λ|κm)
M∑

m=1

Ψmp(h̃λ|κm)

, ∀λ ∈ {1, 2, · · · ,Λ}. (22)

Recalculate the parameters, we can achieve

µ̃m =

Λ∑

λ=1

χh̃λ,m
h̃λ

Λ∑

λ=1

χh̃λ,m

, Ψ̃m =

Λ∑

λ=1

χh̃λ,m

Λ
, (23)

δ̃2m =

Λ∑

λ=1

χh̃λ,m
(h̃λ − µm)2

Λ∑

λ=1

χh̃λ,m

. (24)

Repeat the calculation of E-step and M-step, when || κt+1−
κt ||< ǫ is satisfied, the judgment is converged, which means

that the parameters of the GMM is obtained and user clustering

is finished.

C. Phase shift design based on deep Q-network model

In this section, the deep Q-network based algorithm is

proposed for phase shift design of the IRS. In the DQN model,

we select the BS as an agent, the BS can control resource

allocation from BS to users and phase adjustment of the IRS.

The BS observes the state of user clustering at each time slot.

Given a state space S, the phase shift and power allocation

policies are obtained in this space. When the BS carries out an

action Atι , it will directly adjust the IRS to the most suitable

phase at the current timeslot, which belongs to the decision-

making process, representing by D. Accordingly, Q-function is

given by

QStϕ+1
,Atι+1

= QStϕ ,Atι
+ ψ(RStϕ ,Atι

+ β ·maxQ̃S̃tϕ ,Ãtι
−QStϕ ,Atι

), (25)

where ψ and β represent learning efficiency and discount

parameter, respectively. Q-learning model may suffer from

memory problems. In order to solve this problem, we use the

Function Approximation(FA) method to introduce a function

with weights ϑϑϑ to approximate the Q-table. Thus, the new Q

value is re-calculated by

Q∗(S,A) = E[R+ βmaxQ∗(S
′

, A
′

)|S,A], (26)

where Q∗(S,A) is the Q value function of DQN, then, the loss

function is expressed as

Loss(ϑϑϑ) =
∑

(y −QStϕ+1
,Atι+1

,ϑtǫ+1
), (27)

where y represents the output value calculated by the current

Q-value at the next timeslot, which is given by

y = RStϕ ,Atι
+ β ×maxQ̃S̃tϕ ,Ãtι

. (28)

IV. SIMULATION RESULTS

A. Positions prediction and user clustering

As discussed in the system model, we consider a total of 10

users partitioned into 5 clusters. In the light of the schemes,

we randomly select 5 users as a reference point and the initial

cluster center can be calculated by equation (15). The process

of iteration follows the convergence condition || κt+1−κt ||< ǫ.

It is worth noting that we set the value of ǫ as 1e-15 and IRS is

deployed at the origin of coordinates and size is ignored. Fig. 2

shows the user clustering at time t0, there are four colors to
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represent users in each cluster and the number of users of each

cluster is no more than 3. Additionally, the big circles are the

position where the passive beamforming is aligned with the

launch.

B. Impact of IRSs

we assume that the CSI is known and the attenuation process

of the signal in the channel all follow the Rice distribution.

Under this assumption, we analyze the sum rate over the total

transmit power and the number of elements of the IRS. We

randomly select one of clustering results, which is [1,3,1,2,3].

Besides, the resolution bits B is set as 5.

1) Sum Rate versus Total Transmit Power: Fig. 3 shows the

relationship between transmit power and sum rate when the

number of elements is fixed as 25. It is observed that the sum

rate of all IRS-NOMA schemes increase with the increment

of P . It can also be observed that, the performance is capable

of being improved over iterations. The proposed algorithm can

converge after roughly a number of 500 iterations. Thus, the

sum rate will not increase by adding more iterations after

500 iterations. Furthermore, we observe that the ”Random

phase shifts” approach performs worse when comparing to the

proposed approach in terms of sum rate, which emphasizes the

importance of phase shift design of the IRS.

2) Sum Rate versus the Number of IRS Elements: In Fig. 4,

we compare the sum rate over the number of elements of the

IRS under different transmission power from 20 dBm to 90

dBm. It shows that when the sum rate is improved with the
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increment of the number of elements. When the number of

elements is with a large value, the growth rate of the sum rate

over the number of elements slows down. Additionally, the gap

grows wider when the transmission power is increased.

C. Comparison between NOMA and OMA

Finally, we compare the performance of the IRS-NOMA

scheme to that of the IRS-OMA scheme. In the IRS-OMA

scheme, the communication system follows the time division

multiple access (TDMA) with the aid of the IRS. Under cases

of three different transmit power 20 dBm, 40 dBm and 60

dBm, Fig. 5 characterizes the performance of both schemes.

It can be observed that when all users are served by the

BS simultaneously, when the transmit power is improved by

20dBm, the IRS-NOMA scheme outperforms the IRS-OMA

scheme with more than 44.99% and 39.16%.

V. CONCLUSION

In this paper, we exploited the IRS-aided MISO-NOMA

network. The sum rate maximization problem was formulated

by jointly optimizing passive beamforming vector and power

allocation efficient vector under QoS constraint. To tackle the

problem formulated, three machine learning algorithms were

proposed to predict user mobility, partition users into clusters

and design the phase shift matrix, respectively. Numerical

results were provided for demonstrating that the proposed IRS-

NOMA scheme achieved significant performance gain com-

pared to the IRS-OMA scheme. Additionally, properly choosing



parameters in the proposed algorithms is capable of improve the

training performance of neural networks.

APPENDIX A: PROOF OF PROPOSITION 1

Suppose that there are two users um,p and um,q with optimal

decoding order Rm,p→m,q ≥ Rm,q→m,q, it is simplified as

|ΦΦΦm,pωωωmαm,p |2 (
∑

λ6=p

| ΦΦΦm,qωωωmαm,λ |2 + | ΦΦΦm,qΓΓΓγ |2)

≥| ΦΦΦm,qωωωmαm,p |2 (
∑

λ6=p

| ΦΦΦm,pωωωmαm,λ |2 + | ΦΦΦm,pΓΓΓγ |2).

(A.1)

And we add that the intra-cluster interference Ω =|
ΦΦΦm,qωωωmαm,λ |2 Ω for user um,p to both sides without

inequality. Therefore, we can obtain that

Rm,p→m,q ≥ Rm,q→m,q ≥ Rm,q→m,q̃. (A.2)

Thus, we can get that the Rm,p→m,q ≥ Rm,q→m,q is the

necessary condition of Rm,p→m,q ≥ Rm,q→m,q̃.

APPENDIX B: PROOF OF PROPOSITION 2

An implicit variable ̺λ,m is set to reflect the observation

data hpm
from the m-th sub-model data. When the value of

̺λ,m = 1, it means user λ comes from mth sub-model. Thus,

the complete data is expressed as

C = (SSS, ̺λ,1, ̺λ,2, · · · , ̺λ,M ). (B.1)

With observed data SSS and unobserved data ̺λ,m, we obtain

the likelihood function of the complete data as follows

P (SSS, ̺|κκκ) =
M∏

m=1

Φλm
m

Λ∏

λ=1

[
1√
2πδm

exp(− (h̃λ − Cm)2

2δ2m
)]̺λ,m ,

(B.2)

where the λm represents the number of data generated by the

mth sub-model out of Λ observation data and satisfied the

condition: λm =
∑Λ

λ=1 ̺λ,m and M =
∑M

m=1 λm, therefore,

combined with the equation(29), the log-likelihood function of

the final complete data can be expressed as

L(κκκ) = logP (SSS, ̺̺̺|κκκ)

=

M∑

m=1

{λmlogΦm +

Λ∑

λ=1

̺λ,m[log(
1√
2πδm

)− (h̃λ − Cm)2

2δ2m
]}.

(B.3)

The function refers to the expectation of the log-likelihood

function logP (SSS, ̺̺̺|κκκ) of the complete data given the obser-

vation data SSS and the parameter κκκi of the ith iteration. The

expected probability of calculation is the conditional probability

distribution logP (SSS, ̺̺̺|κκκi) of the hidden random variable ̺̺̺. So

the Q function is given by

Q(κκκ,κκκi) =
M∑

m=1

{
Λ∑

λ=1

(E̺λ,m)logΦm+

Λ∑

λ=1

(E̺λ,m)[log(
1√
2πδm

)− (h̃λ − Cm)2

2δ2m
]},

(B.4)

where the conditional probability distribution of the implicit

random variable κ satisfied logP (̺̺̺,SSS|κκκi) = 1, thus the

expectation of E(̺̺̺λ,m|SSS,κκκi) is calculated by

˜̺̺̺λ,m = E(̺̺̺λ,m|SSS,κκκi) =
Φmp(SSSλ|κκκm)

M∑

m=1

Φmp(SSSλ|κκκm)

. (B.5)

Derived from the above formula, we make the following

equivalent transformations.

Q(κκκ,κκκi) =
M∑

m=1

{λmlogΦm+

Λ∑

λ=1

˜̺λ,m[log(
1√
2πδm

)− (h̃λ − Cm)2

2δ2m
]}.

(B.6)

The next step is to obtain the parameter κκκi of the ith round,

find the parameter κκκi+1 of the next iteration and make the

function Q(κκκ,κκκi) maximum, it is expressed as

κκκi+1 = argmax
κκκ

Q(κκκ,κκκi). (B.7)

It should be noted that we use χλ,m to denote the expectation

of ̺λ,m. Therefore, according to the EM derivation results, we

can get the equation (23) to (24).
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