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Abstract—This paper tackles the problem of zero-forcing (ZF)
precoding for the downlink of centralized radio-access networks
operating in a cell-free fashion. While the customary workhorse
of ZF precoding is the channel pseudo-inverse, because of the
separate power constraint at each participating access point,
the pseudo-inverse is not optimum. Rather, it can be improved
upon by other inverses that allow conveying stronger signals
(or, equivalently, consuming less power) while respecting the
same ZF conditions. Motivated by the enormous disparity in
computational cost between simple pseudo-inversion and general
inversion, we ascertain the performance disadvantage of the
former in a wide range of conditions. The welcome conclusion
is that pseudo-inversion is close-to-optimum for all operational
regimes of interest.

I. INTRODUCTION

In a cellular network, each user is served by a single access
point (AP) and the transmissions from other APs constitute
interference. Owing to the invariance with the cell size of
the signal-to-interference ratio (SIR), cellular networks have
sustainedly increased their area capacity through densifica-
tion [1]. This SIR invariance, however, is bound to break down
once network densities are such that line-of-sight propagation
comes to dominate and interference surges [2]. In conjunction
with the ongoing transformation to software-defined networks,
this motivates the new paradigm of centralized, possibly
cloud-based, radio access networks (C-RANs) [3]. There, the
AP transmitters consist solely of antennas, amplifiers, and
upconverters, connected by powerful fronthaul lines to an edge
datacenter hosting the baseband processing.

By default, C-RANs are cell-free structures where every
AP potentially serves every user, inheriting and taking to
the limit the principles of cell cooperation [4]. Influenced
by massive MIMO, much of the cell-free literature posits
conjugate-beamforming downlink precoders [5]–[7]. However,
the potential of C-RANs emerges in full when their centralized
nature is exploited to feature more sophisticated precoders. In
particular, a linear zero-forcing (ZF) precoder should perform
decidedly better than conjugate beamforming because:

• Interference then becomes a prime consideration, as op-
posed to being disregarded, which markedly improves the
signal-to-interference-plus-noise ratios (SINRs).

• Thanks to these SINR improvements, much higher user
loads can be tolerated, with the subsequent increases in
spectral efficiency.

• While nulling interference, ZF precoders can keep the
fading of the intended signals to a minimum; this offers
the possibility of pilot-free downlink operation even in

the absence of channel hardening—which, in cell-free
settings, is only partial [8], [9]

Pioneering works do confirm the effectiveness of ZF pre-
coding based on channel pseudo-inversion [6], [10]. However,
while pseudo-inversion would be the optimum form for ZF
in the face of a sum power constraint across all APs, better
inverse forms exist in general for the actual per-AP power
constraints. This is the thrust of the present paper, where we
set out to establish the degree to which pseudo-inversion is
suboptimum within the confines of ZF precoding.

II. NETWORK AND CHANNEL MODELS

We consider networks featuring N APs and K users, all
equipped with a single omnidirectional antenna. Some symbols
are reserved for pilot transmissions from the users, based on
which the channels are estimated by the APs. The remaining
symbols are available for data transmission.

A. Large-scale Modeling

Distance-dependent pathloss with exponent η, in conjunc-
tion with shadowing, gives rise to a large-scale gain Gk,n

between the nth AP and the kth user. The corresponding down-
link and uplink large-scale SNR equals SNRk,n = Gk,nPt/σ
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with Pt the transmit power and σ2 the noise power. Although
P/σ2 is taken as equal for uplink and downlink, any asymme-
try could be readily absorbed into the number of pilot symbols
(see Sec. III-A).

B. Small-scale Modeling

Besides Gk,n, the channel between the nth AP and the kth
user features a small-scale fading coefficient hk,n ∼ NC(0, 1),
independent across APs and users.

For any snapshot of the large-scale parameters, under the
premise that channel estimation errors and interference are
treated by the decoder as additional Gaussian noise, user k
can achieve a spectral efficiency of

Ck = log2(1 + sinrk), (1)

where sinrk denotes the SINR of user k. Adding (1) over
all K users, we obtain the sum spectral efficiency. The
spectral efficiencies in this paper are gross, meaning that pilot
overheads are yet to be subtracted out.
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C. Simulation Environment

For simulation purposes, we resort to a wrapped-around
universe with N = 100 APs elevated 2 m above the users to
avoid distance singularities. Under the premise of AP positions
agnostic to the radio propagation, shadow fading renders the
network approximately Poisson-like from the vantage of any
user [11]. This approximation sharpens as the shadowing
strengthens, being precise for relevant values thereof [12],
[13]. Relying on this result, the AP positions are drawn uni-
formly at random. Likewise, the user positions are uniformly
random.

Less otherwise stated, Pt/σ
2 such that SNRk,n = 25 dB

at a distance d, where d would be the inter-AP spacing if
the network were a hexagonal grid with the same spatial
density. Under reasonable values for Pt, the bandwidth, and
the pathloss intercept [14], this is compatible with ultradense
deployments (d ≈ 10–20 m) and it would ensure interference-
limited conditions should the network operate in cellular mode.

III. CHANNEL ESTIMATION AND DATA TRANSMISSION

A. Uplink Channel Estimation

Let Np be the number of uplink symbols reserved for pilot
transmissions on every fading coherence block, with every
user being allocated Np/K of those pilots. Disregarding pilot
contamination, the MMSE fading estimate ĥk,n gathered by
the network upon observation at the nth AP of the Np/K
pilots emitted by user k satisfies hk,n = ĥk,n + h̃k,n where
[15, sec. 4.8]

E
[
|ĥk,n|2

]
=

Np

K SNRk,n

1 +
Np

K SNRk,n

(2)

while

h̃k,n ∼ NC

(
0,

1

1 +
Np

K SNRk,n

)
(3)

is uncorrelated error. The overhead corresponding to all the
symbols consumed by pilots must be discounted from the gross
spectral efficiency.

B. Downlink Data Transmission

Let C be the channel matrix that combines large- and small-
scale components, i.e., whose (k, n)th entry is

[C]k,n =
√

Gk,nhk,n (4)

such that the column vector of observations at the K users is

y = Cx+ v, (5)

where v ∼ NC(0, σ
2I). The vector of signals transmitted by

the N APs is
x =

√
Pt Ts (6)

with s a vector containing the unit-power symbols intended
for the K users and with T the N × K precoder. For the
power constraints to be satisfied at the APs, it must hold that

E
[
TT ∗]

n,n
≤ 1 n = 1, . . . , N (7)

where the expectation is over the distribution induced by the
small-scale fading, for any given large-scale gains.

We hasten to emphasize that, because no downlink pilots
are considered, users are not privy to C or to T .

IV. ZF PRECODING

The aim of ZF precoding is to eliminate the interference,
and in essence this entails the inversion of C. Broadly speak-
ing, the applicable instrument is the generalized inversion,
which subsumes any matrix C− satisfying [16], [17]

CC− = I. (8)

Chief among the generalized inverses stands the pseudo-
inverse, C† = C∗(CC∗)−1, which exhibits the smallest
Frobenius norm among all generalized inverses. And, as it
turns out, any other inverse relates to C† via

C− = C† +
(
I −C†C

)
A, (9)

where A is an arbitrary matrix and (I−C†C) projects it onto
the null space of C.

Suppose for starters that the network has perfect knowledge
of C, which amounts to letting Np → ∞. From (8), precoding
directly with T = C− removes the interference completely
and equalizes the signal powers at the users. This latter part is
in fact an unnecessary imposition, and hence the precoder can
retain its ZF nature while adopting the less restrictive form

T = C−diag
(√

p1, . . . ,
√
pK
)
, (10)

with pk the signal power to be received by user k, normalized
by Pt. This gives, at the users,

y =
√
Pt diag(

√
p1, . . . ,

√
pK) s+ v. (11)

Without downlink pilots, as mentioned, users are unable to
estimate p1, . . . , pK . Therefore, p1, . . . , pK are not allowed to
depend on the small-scale fading coefficients within C, which
are unknown to the users and cannot be estimated either, but
only on the large-scale gains, which are known. Under that
premise, the kth user enjoys

snrZFk =
Pt

σ2
pk. (12)

Now letting Np be finite, the network is no longer privy to
C, but only to its estimate Ĉ, and the ZF precoder becomes

T = Ĉ−diag(
√
p1, . . . ,

√
pK) (13)

such that

y =
√

Pt
(
Ĉ + C̃

)
Ĉ−diag(

√
p1, . . . ,

√
pK) s+ v (14)

=
√

Pt diag(
√
p1, . . . ,

√
pK) s

+
√
Pt C̃Ĉ− diag(

√
p1, . . . ,

√
pK) s︸ ︷︷ ︸

Interference

+v. (15)

With interference now leaking because of imperfect channel
estimation, and with C̃ and Ĉ− unknown to the users,

sinrZFk =
pk

E
[
c̃kĈ−diag(p1, . . . , pK)Ĉ−∗c̃∗k

]
+ σ2/Pt

, (16)
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where c̃k is the kth row of C̃, satisfying

E
[
c̃∗kc̃k

]
= diag

(
Gk,1

1 +
Np

K SNRk,1

, . . . ,
Gk,N

1 +
Np

K SNRk,N

)
.

(17)
It follows that sinrZFk equals

Pt

σ2

pk

Tr

(
E
[
TT ∗

]
diag

(
SNRk,1

1+
Np
K SNRk,1

, . . . ,
SNRk,N

1+
Np
K SNRk,N

))
+1

(18)

and, for any objective function f
(
sinrZF1 , . . . , sinr

ZF

K), the opti-
mum ZF precoding problem amounts to

max
Ĉ−,p1,...,pK

f
(
sinrZF1 , . . . , sinr

ZF

K

)
(19)

s.t. E
[
Ĉ−diag(p1, . . . , pK) Ĉ−∗

]
n,n

≤ 1 ∀n.

This is in general a difficult, often nonconvex optimization,
which has long motivated the interest in simpler alternatives
revolving around the readily computable pseudo-inverse. The
customary alternative to the optimum ZF precoder is then

T = Ĉ†diag
(√

p1, . . . ,
√
pK
)
, (20)

which entails optimizing over p1, . . . , pK only, namely

max
p1,...,pK

f
(
sinrZF1 , . . . , sinr

ZF

K

)
(21)

s.t. E
[
Ĉ†diag

(
p1, . . . , pK

)
Ĉ†∗

]
n,n

≤ 1 ∀n

with sinrZFk still given by (18), only with T in (20). Since
the Frobenius norm of E[TT ∗] measures the sum transmit
power and the pseudo-inverse exhibits the smallest such norm,
(20) would embody the optimum ZF precoder under a sum
power constraint. However, the per-AP constraints void that
optimality and force a downscaling of p1, . . . , pK , hence of
the SINRs, and our goal is precisely to gauge the extent to
which the solution to (21) is suboptimum relative to (19).

V. PSEUDO-INVERSE VS OPTIMUM ZF

Inspired by [17], we circumvent the difficulty of solving
(19) by means of the upper bound obtained by relaxing the
per-AP power constraints (7) into the sum power constraint

E
[
Tr
(
TT ∗)] ≤ N. (22)

Thus relaxed, (19) morphs into

max
Ĉ−,p1,...,pK

f
(
sinrZF1 , . . . , sinr

ZF

K

)
(23)

s.t. E
[
Tr
(
Ĉ−diag(p1, . . . , pK) Ĉ−∗

)]
≤ N

and the gap between the solutions to (21) and (23) brackets the
shortfall of pseudo-inversion relative to the optimum ZF pre-
coder. Details on how to solve these respective optimizations
are provided in Appendix A.

To ensure the broadest possible scope for the assessment of
this gap, we consider the two extremes in terms of objective
function:

• Maximum performance fairness across users, disregard-
ing the aggregate. This corresponds to

f
(
sinrZF1 , . . . , sinr

ZF

K

)
= min

k
sinrZFk . (24)

• Maximum sum performance, disregarding fairness across
users. Recalling (1), this is well represented by the sum
spectral efficiency

f
(
sinrZF1 , . . . , sinr

ZF

K

)
=

K∑
k=1

log2
(
1 + sinrZFk

)
. (25)

The load K/N is set to 0.8, far above the values that
are typical with conjugate beamforming—this is the main
motivation for ZF—and only slightly below the maximum
possible one; this load K/N = 0.8 is indeed a desirable
operating point for a C-RAN.

With all the pieces in place, we can proceed to assess the
gap. Shown in Figs. 1 and 2 are, respectively for the min
SINR and the sum spectral efficiency objectives, the gaps
between the solutions to (21) and (23) in the form of CDFs
taken over the large-scale gains. For each objective, various
values of Np are entertained, namely the baseline Np = K
(one pilot per user and coherence block), then Np = 10K,
and finally Np → ∞ (perfect channel estimation at the
APs). For completeness, conjugate-beamforming performance
curves targeting the same objectives are also included [5], [18].
Altogether, the following can be observed:

• ZF precoding is exceedingly superior to conjugate beam-
forming already with minimum pilot overhead (Np = K),
and even more so for growing Np.

• The gap between pseudo-inversion and optimum ZF
is always small, and outright negligible in practically
relevant conditions (Np ≲ 10K).

Reinforcing the second observation, recall that the far edge
of the gap is not the optimum ZF itself, but a bound to it.
To gauge the tightness of this upper bound, Fig. 3 depicts the
CDF of the corresponding per-AP transmit power relative to
its maximum value, Pt, for the case Np → ∞. At any given
time, about half the APs operate—by as much as 5 dB—above
Pt, suggesting that the upper bound might not be tight and
bolstering the second observation.

The gap between pseudo-inversion and optimum ZF remains
relatively stable for other ratios K/N . Its dependence with
Pt/σ

2, in turn, is characterized in Figs. 6 and 7 for the min
SINR objective. Examined both at the lower tail and at the
median, the gap remains relatively very small except when
the SNR at distance d ceases to be high while Np is large;
this would correspond to situations where ZF—by definition
an inherently high-SNR strategy—is altogether inappropriate
while the pilot overhead is unappealingly high.

VI. PRECODED DOWNLINK PILOTS

Let us now assess whether the insight from the previous sec-
tion changes if the network is equipped with downlink pilots.
Hence herein it is assumed that user k is aware of precoded
channel from the N APs. Then, p1, . . . , pK are allowed to
depend on the small-scale fading. In the following subsections,
two cases of perfect and imperfect channel estimation in users
are examined.
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Fig. 1. CDF of the max-min SINR for Np = K, Np = 10K, and Np → ∞.
For each case, the respective shaded region extends from the pseudo-inverse
performance to the optimum ZF upper bound. Also shown is the conjugate
beamforming performance for Np → ∞.

Conjugate
Beamforming ZF

Np → ∞
Np = 10K

Np = K

Np → ∞

Fig. 2. CDF of the maximum gross sum spectral efficiency for Np = K,
Np = 10K, and Np → ∞. For each case, the respective shaded region
extends from the pseudo-inverse performance to the optimum ZF upper bound.
Also shown is the conjugate beamforming performance for Np → ∞.

A. Users with Perfect Channel Estimation

Consider the case of perfect channel estimation. Then, (12)
applies, only with pk now allowed to depend on the small-
scale fading. The per-AP power constraints become

K∑
k=1

E
[
pk
∣∣c†n,k∣∣2] ≤ 1 n = 1, . . . , N. (26)

So in the simplest case where we have an exact estimate
of the channel, we want to solve the following optimization
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Fig. 3. CDF of the per-AP transmit power (relative to Pt) that attains the
upper bound to optimum ZF precoding for Np → ∞.

problem.

max
p1,...,pK

min
k

Pt

σ2
E[pk] (27)

s.t.

K∑
k=1

E
[
pk
∣∣c†n,k∣∣2] ≤ 1 n = 1, . . . , N.

And as an upper-bound, per-AP power constraint can be
replaced with sum-power constraint as

max
p1,...,pK

min
k

Pt

σ2
E[pk] (28)

s.t.

N∑
n=1

K∑
k=1

E
[
pk
∣∣c†n,k∣∣2] ≤ N.

Details on how to solve the optimization problem (27) are
provided in Appendix B.

B. Users with Imperfect Channel Estimation

Now let us assume that we have downlink pilots and users
do not have access to perfect channel estimates.

Replacing (13) in (5), the received vector can be represented
as

y =
√
PtCĈ†diag

(√
p1, . . . ,

√
pK
)
s+ v, (29)

and consequently the signal received by the kth user is

yk =
√
PtckĈ

†diag
(√

p1, . . . ,
√
pK
)
s+ vk

=
√

Pt
√
pkckĉ

†
ksk +

∑
ℓ ̸=k

√
Pt
√
pℓckĉ

†
ℓsℓ + vk

=
√

Ptakksk +
∑
ℓ̸=k

√
Ptakℓsℓ + vk, (30)

where akk =
√
pkckĉ

†
k and akℓ =

√
pℓckĉ

†
ℓ . Now the

goal is to estimate the desired signal coefficient akk using
downlink pilots. To do this, consider a sequence of pilots√
Ndϕ1,

√
Ndϕ2, . . . ,

√
NdϕK , each with length Nd such
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that ∥ϕk∥ = 1. Moreover, we assume that ϕk’s are orthonor-
mal which makes it necessary that Nd ≥ K. By sending pilots,
the transmitted signal is

x =
√
NdPtT

ϕ
T
1
...

ϕT
K

 , (31)

which results in the following received signal

y =
√
NdPtCT

ϕ
T
1
...

ϕT
K

+ v, (32)

and subsequently the following 1×Nd received vector at user
k.

yk =
√

NdPtckT

ϕ
T
1
...

ϕT
K

+ vk (33)

The kth user by projecting its received signal on the pilot ϕk

will have

ykϕk =
√
NdPtckT

ϕ
T
1
...

ϕT
K

ϕk + vkϕk

=
√
NdPtckTek + vkϕk

=
√
NdPtcktk + vkϕk

=
√
NdPtckĉ

†
k

√
pk + vkϕk

=
√
NdPtakk + vkϕk, (34)

where ek denotes the vector with a 1 in the kth entry and 0
elsewhere. Therefore, the desired signal coefficient could be
properly approximated as

âkk =
1√
NdPt

ykϕk, (35)

which has the following variance of estimation error.

E
[
|akk − âkk|2

]
= E

[
| 1√

NdPt
vkϕk|2

]
=

σ2

NdPt
. (36)

With this estimation, the received signal yk in (30) could be
rewritten as

yk =
√
Ptâkksk +

√
Pt (akk − âkk) sk

+
∑
ℓ ̸=k

√
Ptakℓsℓ + vk, (37)

which results in the following SINR at user k.

sinrk =
â2kk

E [|akk − âkk|2] +
∑

ℓ̸=k |akℓ|2 +
σ2

Pt

=
â2kk∑

ℓ ̸=k |akℓ|2 +
σ2

Pt

Nd+1
Nd

. (38)

Depending on the fairness or sum-throughput criterion, the
APs find the power coefficients pk’s by optimization problems
(39) or (40), respectively, and then sends the signal x.

max
p1,...,pK

min
k

Pt

σ2
E

[
pk

1 +
∑K

ℓ=1 γk,ℓ pℓ

]
(39)

s.t.

K∑
k=1

E
[
pk
∣∣ĉ†n,k∣∣2] ≤ 1 n = 1, . . . , N.

max
p1,...,pK

E

[
log

(
1 +

Pt

σ2

pk

1 +
∑K

ℓ=1 γk,ℓ pℓ

)]
(40)

s.t.

K∑
k=1

E
[
pk
∣∣ĉ†n,k∣∣2] ≤ 1 n = 1, . . . , N.

The simulation results related to resulting SINR and sum
rate from optimization problems (39) and (40) are shown in
Figs. 10 and 11 respectively.

VII. SCALABILITY

A network-wide precoder encompassing the entire C-RAN
is not scalable and, in large deployments with thousands of
APs and users, it is outright unfeasible. Moreover, a network-
wide precoder is an unnecessary overkill because, due to
pathloss and shadowing, only a small share of APs convey
substantial power to user k and only a small share of other
users suffer substantial interference from the transmission to
user k. This suggests that, in a large network, the vast majority
of channel entries should be disregarded in terms of precoding,
and the estimation of those channel entries should be foregone
altogether.

Let us consider the scalability of the precoder in terms
of those aspects that are inherent to a C-RAN, namely (i)
precoder computational cost, and (ii) channel estimation. The
encoding and remaining pre-processing tasks are as in a
cellular network, one chain per user, hence inherently scalable.

We measure the cost, denoted by M , by the number of
complex multiply-and-accumulate (MA) operations accrued
computing and applying the precoder coefficients. In turn,
we denote by L the number of channel coefficients to be
estimated. For growing N and K, we want M/N = O(1)
and L/N = O(1) as in a cellular network.

Measured in MA operations, the cost of N × N matrix
inversions or multiplications is O(N3) while the multiplication
of N × K and K × N matrices costs O(KN2). Our goal
here is not to present a detailed complexity analysis, which
would require positing specific implementations, but rather to
establish scalability. With this in mind, these measures suffice
and simpler operations such as additions can be neglected,
leading to the following considerations:

VIII. SPARSE ZF PRECODING

Even though, because of pathloss and shadowing, the chan-
nel matrix C has most of its mass concentrated on a small
share of its entries, a network-wide ZF precoder requires
estimates of every entry of C and then processes every such
entry. The path to scalability lies precisely in recognizing and
exploiting the nature of C.
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Fig. 4. Direct channel matrix sparsification.

An intuitive idea could be to zero out all but the dominant
entries of C, as in Fig. 4, thereby obtaining a sparse matrix
C whose estimate would then be plugged into the various
expressions in lieu of C itself. Unfortunately, such a direct
sparsification might yield a channel matrix that is sparse,
but unbalanced, with some users heavily favored by many
connections while others are outright disconnected from the
network. Likewise, some APs might be essentially taken out
of service. The goal is therefore to generate a sparse channel
matrix that is balanced across rows and columns, and to then
capitalize on this sparsity to obtain a ZF precoder that is
scalable. This objective is tackled in [19] for uplink MMSE
reception, with the key to the derived solution being the
delineation of a suitable subset of users to be processed by
each AP and a suitable subset of APs to serve each user. We
next tackle the challenge in the context of ZF precoding.

A. Formulation

Recalling (20), the pseudoinverse ZF precoder is

T = Ĉ∗(ĈĈ∗)−1
diag(

√
p1, . . . ,

√
pK) (41)

and, denoting by ĉ∗n the nth row of Ĉ∗, the precoding vector
at the nth AP is

[T ]n,: = ĉ∗n
(
ĈĈ∗)−1

diag(
√
p1, . . . ,

√
pK). (42)

Let us now restrict to a subset Nk the APs that observe
uplink pilots from user k. Then, rather than Ĉ, the channel
matrix estimate obtained by the network is Ĉ, defined as

[Ĉ]k,n =

{√
Gk,n ĥk,n n ∈ Nk

0 otherwise.
(43)

Next, let us curtail to a subset Kn the users involved in
producing the precoder at the nth AP, and let us identify
the submatrix Ĉn obtained by selecting those rows of Ĉ that
correspond to users in Kn. From Ĉn, we can generate for the
nth AP the modified precoding vector [T]n,: with entries

[T]n,k =

{
ĉ∗n
(
ĈnĈ∗

n

)−1
diag(

√
p1, . . . ,

√
pK) k ∈ Kn

0 otherwise,
(44)

where ĉ∗n is the nth row of Ĉ∗
n. With all APs considered, T is

the modified ZF precoder for the entire network and the users
receive, in place of y,

y =
√

PtCTs+ v. (45)

The precoder T, as well as the matrices Ĉ1, . . . , ĈN from
which it derives, are all sparse as per the subsets N1, . . . ,NK

and K1, . . . ,KN . And, provided these subsets are delineated
properly, the performance on the basis of y is close to the
original one made possible by y. Precisely, user k now enjoys

yk =
√
Pt
(
ĉk + c̃k

)
Ts+ v

=
√

Ptĉktksk +
√
Pt

∑
ℓ ̸=k

ĉktℓsℓ︸ ︷︷ ︸
I1

+
√
Pt

K∑
ℓ=1

c̃ℓtℓsℓ︸ ︷︷ ︸
I2

+v. (46)

where tk = [T]:,k is the kth column of T. With interference
now leaking because of the deviation of subset ZF precoder
from pseudo-inverse ZF precoder (I1) and imperfect channel
estimation (I2),

sinrSZFk =

∣∣ĉktk∣∣2∑
ℓ ̸=k

∣∣ĉktℓ∣∣2 +∑ℓ

∣∣c̃ktℓ∣∣2 + σ2/Pt

. (47)

If we increase the uplink SNR or increase the Np equivalently,
the channel estimation error reduces and the I2 interference
expression disappears. Moreover, the closer the subset ZF
precoder T gets to the ZF precoder T in (41), the smaller
the I1 interference term. Due to the pseudo-inverse continuity
[20], if for all APs, ĉ∗n → ĉ∗n, the subset ZF precoder T tends
to T . For the convergence of two random vectors ĉ∗n and ĉ∗n,
convergence in 2nd mean can be considered, which can be
expanded as follows

E
[
∥ĉ∗n − ĉ∗n∥2

]
= E

 ∑
k ̸∈Kn

Gk,n|ĥk,n|2


=
∑
k ̸∈Kn

Gk,n

Np

K SNRk,n

1 +
Np

K SNRk,n

. (48)

Roughly speaking, the smallness of (48) indicates the small-
ness of the interference term I1. From (47) and (48), the
following can be observed:

• Large Np and high SNR: When Np is large, the interfer-
ence term I2 caused by channel estimation error is neg-
ligible and the noise effect σ2/Pt can be ignored as the
SNR increases. Thus (47) and (48) can be approximated
as

sinrSZFk ≃
E
[∣∣ĉktk∣∣2]∑

ℓ ̸=k E
[∣∣ĉktℓ∣∣2] . (49)

E
[
∥ĉ∗n − ĉ∗n∥2

]
≃
∑
k ̸∈Kn

Gk,n. (50)

Therefore, to have a smaller amount of interference and
thus a larger SINR, it is better for each AP to put the
users in the set Kn who have the largest Gk,n.

• Large Np and low SNR: In this case, noise is dominant
and we have:

sinrSZFk ≃ Pt

σ2
E
[∣∣ĉktk∣∣2] . (51)
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B. Cost Analysis

The cost of obtaining the subset ZF precoder matrix in (44)
satisfies

Mrx

N
= O

(∑N
n=1 |Kn|ν

N

)
, (52)

where is O(1) given that the sizes of the subsets K1, . . . ,KN

are sub-linear with respect to K and K/N is fixed. The
following is the cost of the linear combining

Mcomb

N
=

∑N
n=1 |Kn|
N

, (53)

which is again equal to O(1) for fixed K/N . Finally, the
number of channel coefficients required will be of order O(1)
as shown below.

L

N
=

∑K
k=1 |Nk|
N

. (54)

C. User Selection Policy

Our desiderata for selection of users and constituting the
sets K1, . . . ,KN are

• Based on the large-scale coefficients to avoid having
to update the sets K1, . . . ,KN with rapid small-scale
coefficients changes.

• Near-optimal performance
• Scalable,

Based on the above-mentioned criterion, the proposed policy
for choosing Kn is to select |Kn| users with the largest Gn,k.

D. AP Subset Selection

In a way similar to user selection, we assume that Nk is
the set of |Nk| APs with the largest Gn,k. Moreover, it is
assumed that the nth AP estimates the channel coefficients
corresponding to the users in Kn and therefore none of the
vector ĉ∗n elements are zero.

E. Evaluation

Consider a network with N = 100 APs and K = 80 users.
The subset size |Kn| = 8 is identical for all APs, while Nk

contains the N
K |Kn| strongest large-scale channel coefficients

between user k and APs. Having three values of Np = K,
Np = 10K, and Np → ∞, for the min SINR objective, upper
and lower-bounds for median SINR are depicted as a function
of Pt/σ

2 in Fig. 5.
By increasing the Pt/σ

2 to a value of about 20 dB, the
median SINR’s are almost equal for different cases. This is
because in high SNRs, the dominant term at the denominator
of the SINR relation in (47) is the I1 interference term.
This interference term for large SNRs will be a function of∑

k ̸∈Kn
Gk,n, which depends only on the size of the subsets.

0 5 10 15 20 25 30 35 40
SNR at d (dB)

-8

-6

-4

-2

0

2

4

6

50
%

 S
IN

R
 (

dB
)

Np = K

Np → ∞

Np = 10K

Fig. 5. 50% of the max-min SINR as a function of the SNR at distance d
for Np = K (solid), Np = 10K (dashed), and Np → ∞ (dotted). For each
case, For each case, the upper- and lower-bounds of SZF performance are
shown.

IX. SUMMARY

The performance of the optimum ZF downlink precoder can
be approached closely with channel pseudo-inversion, dodging
the much more involved generalized inversion. This holds for
performance objectives at both ends of the fairness axis, and
for varying network loads. The only possible exception is a
combination of low SNRs and very precise channel estimation,
an uninteresting regime in terms of pilot overhead and, in fact,
an uninteresting regime for ZF precoding in general.

The specific results presented in the paper correspond to
a single-slope pathloss model, and the absolute values would
surely change for a dual-slope pathloss, but there is no reason
to think that the conclusions would.

Pilot contamination has been disregarded and, while it
would be of interest to incorporate it, ultradense deployments
do exhibit (because of their short range) very high frequency
coherences and, most likely, also very high time coherences.
The combined fading coherence is sure to be in the thousands
of resource units, a very benevolent situation in terms of pilot
contamination, even under random pilot assignment [7] and
let alone with contamination mitigation procedures such as
the ones propounded in [5, sec. IV] or in [21], [22].

Looking forward, it would be of interest to verify whether,
also in the face of downlink precoded pilots, channel estima-
tion at the users, and fading-dependent channel allocation, it
holds that pseudo-inversion is near-optimum.
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APPENDIX A

Let us first consider the min-SINR objective. The per-AP
power constraints in (21) can be rewritten as

K∑
k=1

pk E
[∣∣[Ĉ†]

n,k

∣∣2]︸ ︷︷ ︸
bn,k

≤ 1 n = 1, . . . , N

and, via the matrix B = [bn,k] and p =
[
p1, . . . , pK

]T
,

compactly as Bp ≤ 1 with the inequality being entry-wise
and with 1 standing for the all-one vector. Similarly, the sum
power constraint in (22) is equivalent to bTp ≤ N where b is
a column vector whose kth entry equals

∑N
n=1 bn,k. Turning

then to sinrZFk , it is useful to rewrite (18) as

sinrZFk =
Pt

σ2

pk

1 +
∑K

ℓ=1 γk,ℓ pℓ
, (55)

which is a linear-fractional function of p1, . . . , pK given

γk,ℓ =

N∑
n=1

SNRk,n

1 +
Np

K SNRk,n

bn,ℓ. (56)

Altogether, the pseudo-inverse precoding problem under a min
SINR objective becomes

max
p1,...,pK

min
k

Pt

σ2

pk

1 +
∑K

ℓ=1 γk,ℓ pℓ

s.t. Bp ≤ 1, (57)

which is a quasilinear optimization with linear constraints that
can be solved through the bisection method. The correspond-
ing upper bound in (23), subject to a sum power constraint,
is achieved by pseudo-inversion and the ensuing optimization
of p1, . . . , pK is again quasilinear with linear constraints.
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Fig. 7. 50% of the max-min SINR as a function of the SNR at distance d
for Np = K, Np = 10K, and Np → ∞. For each case, the respective
shaded region extends from the pseudo-inverse performance to the optimum
ZF upper bound.

Turning now to the sum spectral efficiency objective, from
(55) it corresponds to

f(sinrZFk ) =
K∑

k=1

log2

(
1 +

Pt

σ2

pk

1 +
∑K

ℓ=1 γk,ℓ pℓ

)
(58)

=

K∑
k=1

log2

(
1 +

Pt

σ2
pk +

K∑
ℓ=1

γk,ℓ pℓ

)

−
K∑

k=1

log2

(
1 +

K∑
ℓ=1

γk,ℓ pℓ

)
, (59)

which is difference of two concave functions of p1, . . . , pK ,
hence in the scope of the difference-of-convex optimizations
[23], [24]. The premise of this method is the linear approxi-
mation of the negative term around an initial solution through
a first-order expansion, solving the resulting convex problem,
and then updating the solution. Let p(0) be an initial guess;
the first-order approximation of the negative term around p(0)

is

K∑
k=1

log2

(
1 +

K∑
ℓ=1

γk,ℓ pℓ

)
≃

K∑
k=1

log2

(
1 +

K∑
ℓ=1

γk,ℓ p
(0)
ℓ

)

+∇p

(
K∑

k=1

log2

(
1 +

K∑
ℓ=1

γk,ℓ pℓ

))T ∣∣∣∣∣
p=p(0)

(
p− p(0)

)
,

(60)

where the ith entry of ∇p(·) equals

∂
∑K

k=1 log2
(
1 +

∑K
ℓ=1 γk,ℓ pℓ

)
∂pi

=

K∑
k=1

γk,i log2 e

1 +
∑K

ℓ=1 γk,ℓ pℓ
.

(61)
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Plugging (60) and (61) into (59), a concave function is
obtained and denoted f0

(
sinrZF1 , . . . , sinr

ZF

K

)
. Then, p(1) can be

found as

p(1) = argmax
p1,...,pK

f0
(
sinrZF1 , . . . , sinr

ZF

K

)
s.t. Bp ≤ 1. (62)

Subsequently expanding p(1), the process is repeated until the
improvement in the objective is below 0.01 b/s/Hz. For the
corresponding upper bound, the same procedure applies only
with bTp ≤ N in (62). Various random choices for p(0) are
tested, including the waterfilling solution [15, sec. 5.3].

APPENDIX B
By the linearity of expectation, the per-AP power constraints

in (27) can be rewritten as

E
[ K∑
k=1

pk
∣∣c†n,k∣∣2︸ ︷︷ ︸
bn,k

]
≤ 1 n = 1, . . . , N

and, via the matrix B = [bn,k] and p =
[
p1, . . . , pK

]T
,

compactly as E [Bp] ≤ 1 with the inequality being entry-
wise and with 1 standing for the all-one vector. Therefore, the
optimization problem (27) can be rewritten as

max
p1,...,pK

min
k

Pt

σ2
E [pk]

s.t. E [Bp] ≤ 1. (63)

Let B(1),B(2), . . . ,B(M) be M samples drawn independently
and identically due to the Gaussian distribution of small-scale
fading coefficients. Then, let denote p(i) as the solution of the
following optimization problem

p(i) = argmax
p

min
k

Pt

σ2
pk

s.t. B(i)p ≤ 1, (64)

which results in independent and identically distributed (IID)
p(i) for i = 1, 2, . . . ,M . Indeed, p(i) is a function of B(i)

as p(i) = f(B(i)), and so iid B(i)’s result in iid p(i)’s. By
utilizing the law of large numbers, the expectations in (63)
could be estimated as

E [pk] ≃ fM (pk) =
1

M

M∑
i=1

p
(i)
k , (65)

E [Bp] ≃ gM (p) =
1

M

M∑
i=1

B(i)p(i). (66)

Both estimations are unbiased, i.e.,

E [fM (pk)] = E [pk] , (67)
E [gM (p)] = E [Bp] . (68)

Moreover, the variance of estimations are

Var [fM (pk)] =
1

M2

M∑
i=1

Var
[
p
(i)
k

]
=

1

M
Var [pk] , (69)

where by assuming that the pk’s variance is bounded, it tends
to zero as the number of samples M increases.

Var [gM (p)] =
1

M2

M∑
i=1

Var
[
B(i)p(i)

]
=

1

M
Var [Bp] ≤ 1

M
1, (70)

where Var [·] and ≤ operators are both element-wise.
Given the sample average functions defined in (65) and

(66), we approximate the optimization problem (63) with the
following

SNRM = max
p(1),...,p(M)

min
k

Pt

σ2
fM (pk)

s.t. gM (p) ≤ 1. (71)

There are two points about (71).
• First, as M increases, sample average tends to expectation

by law of large numbers, and SNR∞ will actually be the
exact solution to (63).

• Second, SNRM is an increasing function of M .
To show the increasing nature of SNRM , assume that
p(1), . . . ,p(M) are optimal solutions corresponding to the
B(1), . . . ,B(M). Then, it is straightforward to check that, for
the IID set B(1), . . . ,B(M+1), the power constraint is satisfied
by q(1), . . . , q(M+1) such that

q(i) =
M + 1

M
p(i), i = 1, . . . ,M (72)

q(M+1) = 0. (73)

Therefore, we have

SNRM+1 ≥ Pt

σ2

1

M + 1

M+1∑
i=1

q(i) (74)

=
Pt

σ2

1

M + 1

M∑
i=1

M + 1

M
p(i) (75)

= SNRM (76)

Now let’s get to the upper-bound in (28). By defining the
vector b = [bk] where

bk =

N∑
n=1

∣∣c†n,k∣∣2, (77)

and replacing the expectation with sampling average, we are
going to solve the following optimization problem

SNRU
M =

Pt

σ2
max

p(1),...,p(M)
min
k

1

M

M∑
i=1

p
(i)
k

s.t.
1

M

M∑
i=1

b(i)
T
p(i) ≤ N, (78)

where b(1), . . . , b(M) are M iid copies of the vector b. Again,
it is easy to show that SNRU

M is ascending with M .
For a scenario with N = 20 APs and K = 16 users, for

three values of M = 1, 5, 10, the CDF of SNRM and SNRU
M

are depicted in Fig. 8. As can be seen from the figure for both
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Fig. 8. Solid lines, CDF of the lower-bound SINR for Np, Nd → ∞
and three different values of M = 1, 5, 10 as the solution of stochastic
optimization problem (71). Dashed lines, same quantities for upper-bound
SNR obtained by (78).

6 7 8 9 10 11 12
Sum Spectral Efficiency (b/s/HZ per AP)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D
F

UB, M = 1, 5, 10

LB, M = 1, 5, 10

Fig. 9. CDF of the upper- and lower-bounds Sum spectral efficiency per AP
for Np, Nd → ∞ and three different values of M = 1, 5, 10.

the upper- and lower- bounds, with increasing M , the curves
become closer, indicating the convergence of the solutions of
problems (71) and (78) as M → ∞.

Similarly, for sum spectral efficiency, the following sample
average function must be maximized according to the power
constraint.

fM (p) =
1

M

M∑
i=1

K∑
k=1

log

(
1 +

Pt

σ2
p
(i)
k

)
(79)

The lower- and upper-bounds to maximize the sum-
throughput are depicted in Fig. 9.

Fig. 10 and Fig. 11 are the counterparts of Figs. 8 and 9,
respectively, for when Nd = K.
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Fig. 10. Solid lines, CDF of the lower-bound SINR for Np → ∞, Nd =
K and three different values of M = 1, 5, 10 as the solution of stochastic
optimization problem (71). Dashed lines, same quantities for upper-bound
SNR obtained by (78).
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Fig. 11. Solid lines, CDF of the lower-bound pilot-assisted per-AP throughput
per unit bandwidth for Np → ∞, Np = K and three different values of
M = 1, 5, 10. Dashed lines, same quantities for upper-bound.

To see more clearly the convergence of SINR with increas-
ing M , in Fig. 12 the median of lower- and upper-bounds
SINRs for Np → ∞ (dashed lines) and Np = 10K (solid
lines) are depicted as a function of M . As you can see, the
slopes of the curves are decreasing.

APPENDIX C

The sum spectral efficiency objective function in (59) is
non-convex which leads us to the difference-of-convex opti-
mizations method, which is locally optimal. In this appendix,
we present a lower-bound that is a convex optimization prob-
lem and is a good estimate of the original problem for the
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Fig. 12. Dashed lines, median of upper- and lower-bound SNRs for Np →
∞ and different values of M = 1, 2, 3, 4. Solid lines, same quantities for
Np = 10K

large SNRs. Consider the main optimization problem stated
below

max
p1,...,pK

K∑
k=1

log2

(
1 +

Pt

σ2

pk

1 +
∑K

ℓ=1 γk,ℓ pℓ

)
s.t. Bp ≤ 1. (80)

Firstly, using AM-GM inequality:

1 +
Pt

σ2

pk

1 +
∑K

ℓ=1 γk,ℓ pℓ
≥ 2

√
Pt

σ2

pk

1 +
∑K

ℓ=1 γk,ℓ pℓ
. (81)

This leads to the following relaxed problem up to a multi-
plicative/additive constant.

max
p1,...,pK

K∑
k=1

log2

(
pk

1 +
∑K

ℓ=1 γk,ℓ pℓ

)
s.t. Bp ≤ 1. (82)

By introducing variables θk > 0, k = 1, 2, . . . ,K, such
that:

pk

1 +
∑K

ℓ=1 γk,ℓ pℓ
≥ 1

θk
, (83)

we have:

p−1
k θ−1

k

(
1 +

K∑
ℓ=1

γk,ℓ pℓ

)
≤ 1 (84)

Therefore, by removing logarithm function as it is mono-
tonic, the lower-bound problem in (82) is equivalent to

min
p1,...,pK

θ1,...,θK

∏
k

θk

s.t. Bp ≤ 1

p−1
k θ−1

k

(
1 +

K∑
ℓ=1

γk,ℓ pℓ

)
≤ 1, ∀k. (85)
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Fig. 13. CDF of the maximum gross sum spectral efficiency for Np = 10K
and three values of SNR = 0, 10, 25 dB. For each case, the dashed curve
corresponds to the convex lower-bound introduced in (82) and the solid curve
is related to the maximum achievable sum spectral efficiency.

Since pk’s, θk’s and γk,ℓ’s are all non-negative, both cost
function and constraints are posynomials, so the optimization
problem (85) is a geometric optimization problem that can be
turned into a convex problem and can even be solved directly
with optimization packages like CVX.

In Fig. 13, the gaps between the solutions to (80) and (85) in
the form of CDFs taken over the large-scale gains. Given N =
20, K = 16, and Np = 10K, three values of SNR = 0, 10, 25
dB are entertained. It can be observed that obtained pk’s from
(85) lead to the performance very close to the optimal value
for different SNR values, although, as expected, lower-bound
accuracy is better for larger SNR.
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