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Abstract—We consider a detection problem where sensors
experience noisy measurements and intermittent communication
opportunities to a centralized fusion center (or cloud). The
objective of the problem is to arrive at the correct estimate
of event detection in the environment. The sensors may com-
municate locally with other sensors (local clusters) where they
fuse their noisy sensor data to estimate the detection of an
event locally. In addition, each sensor cluster can intermittently
communicate to the cloud, where a centralized fusion center fuses
estimates from all sensor clusters to make a final determination
regarding the occurrence of the event across the deployment
area. We refer to this hybrid communication scheme as a cloud-
cluster architecture. Minimizing the expected loss function of
networks where noisy sensors are intermittently connected to
the cloud, as in our hybrid communication scheme, has not been
investigated to our knowledge. We leverage recently improved
concentration inequalities to arrive at an optimized decision
rule for each cluster and we analyze the expected detection
performance resulting from our hybrid scheme. Our analysis
shows that clustering the sensors provides resilience to noise in
the case of low communication probability with the cloud. For
larger clusters, a steep improvement in detection performance is
possible even for a low communication probability by using our
cloud-cluster architecture.

I. INTRODUCTION

We are at an exciting turning point where the ubiquity
of communications infrastructure enables widespread cloud
connectivity, and with it, powerful centralized decision making
opportunities. However, cloud connectivity cannot be guar-
anteed at all times, particularly for sensors operating over
mmWave frequency bands or in complex and potentially re-
mote environments where communication is unreliable. Thus,
a new paradigm for centralized decision making that takes
intermittent connectivity into account is needed. Currently,
decision making in sensor networks typically adopts one of
two architectures: i) a centralized architecture that is fully
connected, or ii) a distributed architecture, such as peer-
to-cloud, where connectivity is intermittent. Adopting either
of these extremes can be problematic when the assumption
of a continuously connected system is not practical, and,
alternatively, requiring fully distributed communication leads
to an overly conservative system. A more realistic scenario for
multi-sensor systems operating in environments with limited
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connectivity is that they will have access to a combination
of these two communication alternatives, a hybrid local and
cloud network. We call this a cloud-cluster communication
architecture. Such hybrid communication architectures give
rise to important questions such as 1) how should the data
be fused at a local level in order to achieve the best global
decision making ability at the cloud? and 2) what is the optimal
size for the sensor clusters that would provide some resilience
to sensor noise and sporadic connectivity of sensors to the
cloud? Answering these questions would allow us the nec-
essary insight to best exploit a cloud-cluster communication
architecture for multi-sensor decision making.

This paper investigates the best architecture to achieve
reliable prediction in the case of multiple sensors detecting
an event of interest in the environment. We employ a hy-
brid architecture where clusters of sensors pre-process their
noisy observations, sending a compressed lower-dimensional
aggregate observation to the cloud according to the proba-
bilistic availability of the link. We develop a parameterized
understanding of the trade-offs involved between architectures;
either using larger clusters of sensors approaching a more cen-
tralized communication scheme, or, using smaller clusters of
sensors approaching a distributed communication scheme. We
show that, depending on the values of important parameters,
the cloud-cluster communication architecture may have more
resilience to noise and sporadic communication present in real-
world environments. These parameters include the individual
sensor sensing quality that is quantified by its missed detection
and false alarm probabilities, and its probability of accessing
the cloud.

There has been much work in the area of determining ana-
lytical rules for event detection in clustered sensor networks,
among these many works are [1]–[9]. These works consider
clustered sensor networks as a network organization scheme
to reduce the communication overhead to the fusion center
(FC). Sensor networks are often characterized by extreme
power and communication constraints and thus the objective
in decentralized detection for these systems is to perform
well, in their ability to detect an event, while transmitting the
smallest number of bits possible. While these works make a
significant contribution to our understanding of the clustered
sensor networks, they do not consider the sporadic nature of
the intermittent connectivity of sensors systems. This aspect
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of the problem is very important, for example, in mmWave
communication systems [10]–[12] that are vulnerable to tem-
porary blockages, also known as outages. When a channel
is blocked, no information can be passed through it, as its
capacity is zero. These blockages occur with positive and
non-negligible probability as is modeled in [13]–[15] and they
become more frequent as distance between the transmitter and
receiver grows. Connectivity is also a common problem in
mobile robotic systems (see [16]–[19]), where robot location
affects both the robot connectivity to the FC, and its event-
detection probability. Minimizing the expected loss function of
cloud-cluster sensor networks where sensors are intermittently
connected to the cloud was not previously investigated. In this
work we show that, using recently improved concentration
inequalities, we can approximate the expected loss function
caused by detection errors. We note that like prior works
[1]–[8], we do not address the problem of optimizing sensor
placement, or how to cluster existing sensors, but rather
analyze the performance of system architectures defined over
these sensors.

The rest of the paper is organized as follows: Section II
presents the system model and problem formulation. Section
III analyzes the optimal cloud-cluster decision rules. Section
IV includes approximation to the optimal decision rules when
they are intractable. Section V presents numerical results.
Finally, Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a team of multiple sensors indexed by i, i ∈
{1, . . . , N}, that are deployed to sense the environment and
determine if the event of interest has occurred. We assume that
the sensors are noisy, and that their ability to detect the event
is captured by the probabilities PMD,si of missed detection and
PFA,si of false alarm for each agent i. Suppose that there are
two hypothesis H0 and H1, the first occurs with probability
p0 = 1−p1 and the second with probability p1. We denote
the random variable that symbolizes the correct hypothesis by
Ξ, where Ξ ∈ {0, 1}. We assume for each agent i that the
measured bit yi may be swapped, due to an error event at the
sensor level, with the following probabilities

PFA,si = Pr(yi = 1|Ξ = 0),

PMD,si = Pr(yi = 0|Ξ = 1),

where PFA,si , PMD,si ∈ (0, 0.5) without loss of generality. The
sensors have intermittent connectivity to a centralized cloud
server, or FC. This intermittent connectivity is modeled by a
binary random variable ti that is equal to 1 if sensor si can
communicate with the FC and 0 otherwise. Upon obtaining a
communication link to the cloud server, a sensor will transmit
sensed information from its cluster of sensors to the cloud.

In a classical approach, at the cloud, the FC has the objective
of determining whether the event has occurred after observing
the measurements yi of all communicating sensors. The FC
gathers the information it receives from the sensors, and

aims at estimating the correct hypothesis by minimizing the
following expected loss function:

E(L) = Pr(Ξ = 0)PFAL10+Pr(Ξ = 1)PMDL01 (1)

where L10 is the loss caused by false alarm, L01 is the loss
caused by missed detection, and PFA and PMD are the false
alarm and missed detection probabilities at the FC decision,
respectively. In the classical approach, the FC may suffer from
loss of connectivity to many sensors when connectivity is low.
On other hand, high connectivity incurs high communication
overhead such as scheduling that is undesirable. To reduce the
communication overhead at the FC and also improve network
connectivity, we propose an alternative approach to overcome
these issues.

We study different communication architectures where the
sensors in the system are clustered into teams, and the sensors
in each of these teams communicate with one another to arrive
at a joint decision. This decision is then forwarded to the FC
by a member of the cluster that can communicate with the
FC. In this way, a cluster’s decision can be forwarded to the
FC if at least one sensor in the cluster can communicate with
the FC. Upon receiving the processed measurement from the
clusters, the FC estimates the correct hypothesis by minimizing
(1) over all clusters. We call this hybrid design of the sensor
communication architecture a cloud-cluster architecture.

B. Problem Formulation

We consider a hybrid cloud-cluster system depicted in
Fig. 1. The system is composed of Nc clusters, denoted by
C1, . . . , CNC

. A cluster Cj communicates with the FC if at
least one of the sensors within the cluster can communicate
with the FC. Let τj be a binary random variable that is equal
to one if cluster Cj is communicating with the FC and zero
otherwise and denote τ = (τ1, . . . , τNc

). Every sensor cluster
Cj communicating with the cloud sends a pre-processed value
zj that represents the observations of all sensors in cluster j.
If cluster Cj cannot communicate with the FC zj will take an
arbitrary deterministic value. We denote the vector of the pre-
processed values by z = (z1, . . . , zNc

). The FC at the cloud
determines its final decision of whether an event has occurred
or not by using the optimal decision rule to minimize (1). This
optimal decision rule1 is to choose hypothesis H1 if:

Pr(z|H1, τ )

Pr(z|H0, τ )
≥ L10p0

L01p1
(2)

and H0 otherwise. We investigate the following questions: 1)
how the data z should be pre-processed at the cluster layer
to reduce the expected loss at the FC, 2) how intermittent
communication with the cloud impacts performance, and 3)
how the overall estimates of missed detection and false alarm
probabilities at the FC are impacted by the communication
architecture (i.e., the number of clusters and the number of
sensors per cluster).

1We refer the reader to [20, Chapter 3] for a primer on detection theory
and hypothesis testing.



Fig. 1. Cloud-cluster architecture.

III. ANALYSIS

This section derives the decision rule and resulting prob-
abilities of missed detection (PMD) and false alarm (PFA)
at the cluster and FC levels for a particular instantiation
of our cloud-cluster architecture (i.e., sensor qualities and
probabilities of communication). Finding these quantities is
made challenging by 1) large cluster sizes (many sensors per
cluster) and/or a large number of clusters (many clusters with a
small number of sensors per cluster) and 2) the heterogeneous
case where individual sensors are allowed to differ in quality,
i.e., their individual ability to detect an event, as captured
by the probability of missed detection and false alarm at the
sensor level. Both of these cases result in intractable over PMD

and PFA calculations for which we derive an approximation
based on concentration inequalities.

A. Cloud-Cluster Communication

Denote by sj,i sensor i from cluster Cj . Additionally, denote
by pcom,sj,i the probability that sensor sj,i can communicate
with the FC. Our cloud-cluster scheme is aimed at improving
connectivity to FC when the probabilities pcom,sj,i are small,
and reducing scheduling and communication overheads when
the probabilities pcom,sj,i are approaching 1. We cluster the
sensors into Nc groups. A cluster of sensors communicates
with the FC if one of the sensors comprising the cluster sees a
communication opportunity to the FC. Each cluster estimates
the hypothesis and sends its estimation to the FC provided
there is a communication opportunity to the FC.

B. Communication probability of clusters

Let nCj be the number of sensors in cluster Cj . As we wrote
before, a cluster of sensors Cj communicates with the FC if
at least one of the sensors that comprises it can communicate
with the FC. It follows that the probability that the cluster Cj
can communicate with the FC, i.e., τj = 1, is:

pcom,Cj = 1−
nCj∏
i=1

(1−pcom,sj,i). (3)

We can see that as we increase the number of sensors in a
cluster, i.e., nCj , the probability of communicating with the
cloud, pcom,Cj , increases as well. Additionally, as we increase
the probability pcom,sj,i that a sensor can communicate with the
FC, the probability pcom,Cj that the cluster can communicate
with the FC is increased as well.

C. Estimations in clusters

While the objective in the FC is to minimize (1) directly,
the objective in the cluster level is to find the optimal trade-off
between the probabilities of false alarm and missed detection.
By the Neyman-Pearson Lemma [20, Chapter 3] the optimal
trade-off can be found by using the likelihood ratio test with
a desired threshold γj .

Let w1,sj,i = ln
(

1−PMD,sj,i

PFA,sj,i

)
and w0,sj,i = ln

(
1−PFA,sj,i

PMD,sj,i

)
.

Denote by Yj the sensor measurements in cluster Cj . Follow-
ing the likelihood ratio test, cluster Cj chooses the hypothesis
H1 if ∑

yi∈Yj

[
w1,sj,iyi−w0,sj,i(1−yi)

]
≥ γj , (4)

and hypothesis H0 otherwise. We note that in case of equality
a random decision can be made. The threshold γj is a
parameter that the system architecture aims at optimizing to
reduce the expected loss at the FC.

Let `min,j = −
∑
i∈{1,...,nCj

} w0,sj,i and `max,j =∑
i∈{1,...,nCj

} w1,sj,i . The threshold γj can be chosen by
searching over the set Lj = [`min,j , `max,j ] to minimize (1).
To reduce delay that is caused by recovering at the FC the set
of the communicating clusters and sending this information to
the clusters, γj does not depend on the set of communicating
clusters. However, our scheme can be adapted to scenarios
where the set of communicating clusters changes slowly and so
γj can be optimized for a given realization of communicating
clusters.

Now, given the choice of threshold γj we have that

PFA,Cj = Pr

 ∑
yi∈Yj

[
w1,sj,iyi−w0,sj,i(1−yi)

]
≥ γj |H0

,
PMD,Cj = Pr

 ∑
yi∈Yj

[
w1,sj,iyi−w0,sj,i(1−yi)

]
< γj |H1

.
(5)

Since the coefficients w1,sj,i and w0,sj,i in (5) are irrational
numbers, the tractable method of calculation presented in
[21] is not generally applicable to (5). Thus we rely on
concentration inequalities to approximate the probabilities in
(5) as we describe in Section IV.

D. FC Final Decision

Suppose that the cluster Cj is communicating with the FC,
and denote the data it sends to the FC by zi. The optimal
decision rule that minimizes (1) is choosing hypothesis H1

whenever (2) holds and hypothesis H0 otherwise.



Let w1,cj = ln
(

1−PMD,cj

PFA,cj

)
and w0,cj = ln

(
1−PFA,cj

PMD,cj

)
. The

rule (2) can be written as:
Nc∑
j=1

τj
[
w1,cjzj−w0,cj (1−zj)

]
≥ ln

(
L10p0

L01p1

)
= γ.

Thus the sensing quality at the FC for a particular realization
of the identity of communicating clusters can be written as

PFA(τ ) = Pr

 Nc∑
j=1

τj
[
w1,cjzj−w0,cj (1−zj)

]
≥ γ|H0, τ

,
PMD(τ ) = Pr

 Nc∑
j=1

τj
[
w1,cjzj−w0,cj (1−zj)

]
< γ|H1, τ

.
The probability of that particular realization of the identity

of communicating clusters is

P (τ ) =

Nc∏
j=1

p
τj
com,Cj (1−pcom,Cj )1−τj . (6)

This results in the following sensing probabilities

PFA =
∑

τ∈{0,1}N
P (τ )PFA(τ ), PMD =

∑
τ∈{0,1}N

P (τ )PMD(τ ). (7)

IV. OPTIMIZING THE DECISION THRESHOLDS γj

Next, we optimize the decision thresholds at the cluster level
using the analysis from the previous section. The complex-
ity of calculating the optimal thresholds γj is high for the
following reasons: first, the optimal thresholds are found by
grid search over the sets L1×· · ·×LNc

. Additionally, currently
no closed form method is known to calculate (5) and (7)
efficiently since the coefficient are irrational numbers. Thus,
the calculation of these terms is intractable.

A. From grid search to line search
We overcome the first issue by optimizing each γj sep-

arately using the Gauss-Seidel iterative method. This method
optimizes one threshold at a time iteratively until convergence.
This approach is considered in relation to sensor network
optimization in [2].

B. Approximating (5) and (7) via concentration inequalities
Now, we explore optimizing the thresholds γj via concen-

tration inequalities. We separate the concentration inequalities
analysis into two scenarios, both of which are intractable on
their own. Hereafter, the function U(·, ·, ·, ·) is defined as (9).

1) Large number of sensors in cluster j (nCj � 1): In
this case we approximate the false alarm and missed detection
probabilities of the decision of cluster j as follows.

Proposition 1: Denote

ỹj,i = w1,sj,iyj,i−w0,sj,i(1−yj,i).

Let αFA,j = γj−
∑nCj

i=1 E(ỹj,i|H0) and σ2
FA,j =

1
nCj

∑nCj

i=1 var(ỹj,i−E(ỹj,i|H0)|H0). Additionally, let
MFA,j = maxi∈{1,...,nCj

}mFA,j,i where

mFA,j,i = max
{∣∣w1,sj,i−E(ỹj,i|H0)

∣∣, ∣∣w0,sj,i +E(ỹj,i|H0)
∣∣}.

Then,

PFA,Cj ≤ U
(
nCj , αFA,j ,MFA,j , σ

2
FA,j

)
,

whenever 0 ≤ γj−
∑nCj

i=1 E(ỹj,i|H0) < nCj ·MFA,j .
Additionally, denote αMD,j =

∑nCj

i=1 E(ỹj,i|H1)−γj
and σ2

MD,j = 1
nCj

var(E(ỹj,i|H1)−ỹj,i|H1). Let MMD,j =

maxi∈{1,...,nCj
}mMD,j,i where

mMD,j,i = max
{∣∣w1,sj,i−E(ỹj,i|H1)

∣∣, ∣∣w0,sj,i +E(ỹj,i|H1)
∣∣}.

Then,

PMD,j ≤ U
(
nCj , αMD,j ,MMD,j , σ

2
MD,j

)
,

whenever 0 ≤
∑nCj

i=1 E(ỹj,i|H1)−γ < nCjMMD,j .
We prove Proposition 1 in Appendix A-B.

2) Large number of clusters (Nc � 1): In this case we
approximate the false alarm and missed detection probabilities
of the decision of the FC as follows.

Proposition 2: Denote,

z̃j = τj
[
w1,Cjzj−w0,Cj (1−zj)

]
.

Let αFA =
∑Nc

j=1E(z̃j |H1)−γ and σ2
FA =

1
Nc

∑Nc

j=1 var(z̃j−E(z̃j |H0)|H0). Additionally, let
M = MFA = maxj∈{1,...,Nc}mFA,j where

mFA,j = max
{∣∣w1,Cj−E(z̃j |H0)

∣∣, ∣∣w0,Cj +E(z̃j |H0)
∣∣}.

Then

PFA ≤ U
(
Nc, αFA,MFA, σ

2
FA

)
,

whenever 0 ≤ γ−
∑Nc

i=1E(z̃j |H0) < Nc ·MFA.
Additionally, denote αMD =

∑Nc

j=1E(z̃j |H1)−γ and
σ2

MD = 1
Nc

∑Nc

j=1 var(E(z̃j |H1)−z̃j |H1). Let MMD =
maxj∈{1,...,Nc}mMD,j where

mMD,j = max
{∣∣w1,Cj−E(z̃j |H1)

∣∣, ∣∣w0,Cj +E(z̃j |H1)
∣∣}.

Then

PMD ≤ U
(
Nc, αMD,MMD, σ

2
MD

)
,

whenever 0 ≤
∑Nc

i=j E(z̃j |H1)−γ < NcMMD. We prove
Proposition 2 in Appendix A-C.

Thus we can evaluate the expected loss function and the
quality of detection even when exact calculations are in-
tractable.

V. NUMERICAL RESULTS

This section presents numerical results in which we evaluate
the performance of the proposed cloud-cluster architecture.
We consider a system with the following characteristics:
500 sensors, to evaluate both the actual and approximate
performance, p(Ξ = 1) = 0.4, L01 = 100 and L10 = 150. Let
U [a, b] denote the uniform distribution on the interval [a, b]. To
evaluate the performance of the propose approach we compare
two systems: a homogeneous one in which pFA,si = 0.2,
pMD,si = 0.3 for all the sensors in the network, and a
heterogeneous system in which for each sensor i we have



that pFA,si ∼ U [0.16, 0.24] and pMD,si ∼ U [0.24, 0.36], that
is, both the false alarm and missed detection probabilities
of each sensor has a random deviation of 20% from their
values in the homogeneous system. In the heterogeneous
setup we average the expected loss of each realization of
the false alarm and missed detection probabilities over 100
realizations. Additionally, in each grid search that we perform
for optimizing γj we use 75 points per sensor, i.e., a total of
75×nCj points.

We use a homogeneous setup with equal cluster size as
a tractable setup for which we can calculate the expected
loss exactly. We then compare the exact calculation to its
approximation. In the heterogeneous setup we choose an initial
threshold γj for cluster Cj by following the same procedure
of the homogeneous system assuming that all clusters have
the same characteristics as cluster j. In the homogeneous
setup, for simplicity, we assume that all the thresholds γj are
equal. Additionally, in both the heterogeneous setup and the
approximate calculation in the homogeneous setup we use the
approximated missed detection and false alarm probabilities
to approximate PFA,Cj and PMD,Cj presented in Section IV-B
if nCj > 20. Additionally, we use the approximated missed
detection and false alarm probabilities to approximate PFA and
PMD, i.e., the error probabilities at the FC, presented in Section
IV-B if Nc > 10. Otherwise we use exact calculations.

Figs. 2-3 depict the expected loss as a function of the sensor
communication probability pcom,s for various values of Nc (the
number of clusters). Figs. 4-5 depict the expected loss as a
function of the number of clusters Nc that comprise the sys-
tem for various values of sensor communication probabilities
pcom,s. Each of the figures 2-5 includes five lines also denoted
in the legends. These are defined as:
’Expected loss - exact calculation’: the expected loss of the
homogeneous system using exact calculations.
’Expected loss - majority’: the expected loss of the ho-
mogeneous system in which each cluster makes a majority
rule decision where γj = bnCj/2c+1. The expected loss is
calculated exactly.
’Expected loss - γj calculated using approximation’: the
exact expected loss that the choice γj yields, where γj is
optimized using the concentration inequalities depicted in Sec.
IV-B in the homogeneous scenario.
’Approximated expected loss - homogeneous’: the approx-
imate expected loss that is calculated using the concentration
inequalities depicted in Sec. IV-B in the homogeneous setup.
’Approximated expected loss - heterogeneous’: the approx-
imate expected loss that is calculated using the concentration
inequalities depicted in Sec. IV-B in the heterogeneous setup.

Figs. 2-3 show that when the number of clusters is large
(i.e., each cluster consists of a small number of sensors) the
improvement in performance of highly connected systems,
compared with that of a sparsely connected systems, is much
larger than the contrasting scenario of a system with a small
number of clusters. Additionally, Figs. 2-3 confirm that op-
timizing the thresholds γj using concentration inequalities
yields an expected loss that is on par with that of optimizing

Fig. 2. The expected loss function of the communication probability of each
sensor for a system with 10 clusters, each including 50 sensors. For cloud-
cluster architectures we attain a dramatic improvement in performance due to
clustering if sensor communication probability to the cloud is at least 0.15

Fig. 3. The expected loss function vs. the communication probability of
each sensor for a system with 50 clusters, each including 10 sensors. For
small size clusters, approaching a distributed architecture, higher probability
of communication to the cloud is required for better performance.

γj using exact calculations. Additionally, Figs. 2-3 depict the
gap between the approximate loss function and the exact one
for the homogeneous setup and show that our use of the
improved Bennet’s inequality results in a good approximation
for the expected loss function. Finally, while the heterogeneous
setup is not tractable, we expect that our use of the improved
Bennet’s inequality results in a good approximation for the
expected loss function for the heterogeneous setup as well.

Figs. 4-5 show that when the communication probabilities of
sensors to the FC are low, we observe a monotonic decrease in
loss function as we decrease the number of clusters in the exact
loss function, this is also observed in the approximated loss
function with small deviations when the systems is composed
of 4 clusters. When the communication probabilities of sensors
to the FC are higher, clustering may actually increase the
expected loss. This follows because of the single bit compres-
sion that happens in the clusters’ single bit decisions. That
is, there is a trade-off between the error probabilities of the



Fig. 4. The expected loss function of the number of equal size clusters Nc

for pcom,si = 0.1. Since connectivity to the FC is low, reducing the number
of clusters (more sensors per cluster) increases the chances of communication
to the cloud and improves the overall performance.

Fig. 5. The expected loss function of the number of equal Nc size clusters
for pcom,si = 0.5. When connectivity of sensors to the cloud is high, smaller
clusters are favored for improving multi-sensor system performance since
sensor fusion at the cluster level can be thought of as a form of lossy
compression.

decisions in clusters and that of the FC. Increasing the number
of clusters reduces the number of measurements clusters use
to make their decisions, and also reduces the communication
probability to the FC since clusters include less sensors and
thus reduced chances of seeing an opportunity to access the
cloud. However, if the communication probability is high,
increasing the number of clusters can result in the FC having
more measurements to rely on to make its final decision.

VI. CONCLUSION

We consider multi-sensor systems that operate in environ-
ments where cloud connectivity is available intermittently. We
provide an analytical study of the tradeoffs between different
information exchange architectures to support an event detec-
tion task. Our results show that if cloud connectivity is reliable,
directing sensors to share their sensed values to the cloud
for event detection at a centralized fusion center will always

perform best. However, in the more likely scenario where
cloud connectivity is intermittent, clustering sensors into local
neighborhoods where their sensed values are processed and
then sent to the cloud during sporadic communication oppor-
tunities performs best. In particular, our results provide insight
into the optimal cluster sizes needed to achieve minimum
detection loss at the cloud even in the face of noisy sensor
data and intermittent communication. Future work can use
the results presented here to optimize the locations of sensors
such that they attain the recommended cluster sizes for best
detection performance over the environment.

APPENDIX A

A. Primer on Concentration Inequalities

We first provide a primer on key concentration inequality
results that we will use for the development of our analy-
sis. Since we consider a heterogeneous setup in which the
false alarm and missed detection probabilities may vary, we
cannot use the concentration inequality [22] for the binomial
distribution. Instead we use an improved Bennett’s inequality
which is known to outperform both Bernstein and Hoeffding’s
inequalities as well as the Bennet’s inequality [23].

Theorem 1 (Improved Bennet’s inequality [24]): Assume
that x1 . . . , xn are independent random variables and E(xi) =
0, E(x2

i ) = σ2
i and |xi| < M almost surely. Additionally, let

A =
M2

σ2
+
nM

α
−1, B =

nM

α
−1, (8)

and Λ = A−W (BeA), where W (·) is the Lambert W
function. Let σ2 = 1

n

∑n
i=1 σ

2
i , then for any 0 ≤ α < nM

Pr

(
n∑
i=1

xi ≥ α

)
≤ exp

[
−Λα

M
+n ln

(
1+

σ2

M2

(
eΛ−1−Λ

))]
.

Hereafter we use the notation

U(n, α,M, σ2) , exp

[
−Λα

M
+n ln

(
1+

σ2

M2

(
eΛ−1−Λ

))]
.

(9)

We note that it is possible to approximate the probabil-
ity Pr(

∑n
i=1 xi ≥ α) using the Gaussian approximation of∑n

i=1 xi. However, the Gaussian approximation may yield
smaller approximate probability than the true one, which we
want to upper bound. Therefore, for the clarity of presentation,
we use the improved Bennet’s inequality in our analysis which
upper bounds the desired probability in all scenarios.

B. Proof of Proposition 1

Rewrite (5) as follows

PFA,Cj =Pr

nCj∑
i=1

[ỹj,i−E(ỹi|H0)] ≥ γj−
nCj∑
i=1

E(ỹj,i|H0)|H0

,
PMD,Cj =Pr

nCj∑
i=1

[E(ỹj,i|H1)−ỹj,i]>
nCj∑
i=1

E(ỹj,i|H1)−γj |H1

.



Now, we can use Theorem 1 to upper bound the false alarm
probability of the decision of cluster j by substituting xi =
ỹi−E(ỹj,i|H0), α = αFA,j = γj−

∑nCj

i=1 E(ỹj,i|H0). In this
case, σ2

i = σ2
FA,sj,i = var(ỹj,i−E(ỹj,i|H0)|H0) and M =

MFA,j = maxi∈{1,...,nCj
}mFA,j,i where

mFA,j,i = max
{∣∣w1,sj,i−E(ỹj,i|H0)

∣∣, ∣∣w0,sj,i +E(ỹj,i|H0)
∣∣}.

We denote the resulting constants defined in Theorem 1 by
AFA,j , BFA,j and ΛFA,j . Thus, by the improved Bennett’s
inequality we have that PFA,Cj ≤ U

(
nCj , αFA,j ,MFA,j , σ

2
FA,j

)
,

whenever 0 ≤ γj−
∑nCj

i=1 E(ỹj,i|H0) < nCj ·MFA,j .
Similarly, we can use Theorem 1 to upper bound the

missed detection probability of cluster j by substituting xi =
E(ỹj,i|H1)−ỹj,i,α = αMD,j =

∑nCj

i=1 E(ỹj,i|H1)−γj . In
this case, σ2

i = σ2
MD,sj,i = var(E(ỹj,i|H1)−ỹj,i|H1) and

M = MMD,j = maxi∈{1,...,nCj
}mMD,j,i where

mMD,j,i = max
{∣∣w1,sj,i−E(ỹj,i|H1)

∣∣, ∣∣w0,sj,i +E(ỹj,i|H1)
∣∣}.

We denote the resulting constants defined in Theorem 1 by
AMD,j , BMD,j and ΛMD,j . By the improved Bennet’s inequality
we have that PMD,j ≤ U

(
nCj , αMD,j ,MMD,j , σ

2
MD,j

)
, when-

ever 0 ≤
∑nCj

i=1 E(ỹj,i|H1)−γ < nCjMMD,j .

C. Proof of Proposition 2

We use Theorem 1 to upper bound the false alarm
probability of the final decision of the FC by substitut-
ing j with i in Theorem 1 and xj = z̃j−E(z̃j |H0),
α = αFA = γ−

∑Nc

j=1E(z̃j |H0). In this case, σ2
j =

σ2
FA,Cj = var(z̃j−E(z̃j |H0)|H0) and M = MFA =

maxj∈{1,...,Nc}mFA,j where

mFA,j = max
{∣∣w1,Cj−E(z̃j |H0)

∣∣, ∣∣w0,Cj +E(z̃j |H0)
∣∣}.

We denote the resulting constants defined in Theorem 1 by
AFA, BFA and ΛFA. It follows from the improved Bennett’s
inequality that PFA ≤ U

(
Nc, αFA,MFA, σ

2
FA

)
, whenever 0 ≤

γ−
∑Nc

i=1E(z̃j |H0) < Nc ·MFA.
Similarly, we can use Theorem 1 to upper bound the

missed detection probability of the final decision of the
FC by substituting j with i in Theorem 1 and xj =

E(z̃j |H1)−z̃j , α = αMD =
∑Nc

j=1E(z̃j |H1)−γ. In this case,
σ2
j = σ2

MD,Cj = var(E(z̃j |H1)−z̃j |H1) and M = MMD =
maxj∈{1,...,Nc}mMD,j where

mMD,j = max
{∣∣w1,Cj−E(z̃j |H1)

∣∣, ∣∣w0,Cj +E(z̃j |H1)
∣∣}.

We denote the resulting constants defined in Theorem 1 by
AMD, BMD and ΛMD. By the improved Bennet’s inequality
we have that PMD ≤ U

(
Nc, αMD,MMD, σ

2
MD

)
, whenever 0 ≤∑Nc

i=j E(z̃j |H1)−γ < NcMMD.
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