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Abstract—The pandemic of the coronavirus (COVID-19) has
caused an unprecedented global public health crisis, and most
countries in the world are running out of the healthcare
resources. A fine-grained COVID-19 vulnerability map will be
essential to track the number of people with covid-like symptoms,
so that the the potential outbreak communities can be identified
and the valuable healthcare resources can proactively and
dynamically be allocated. Mobile crowdsourcing based symptom
reporting is a promising and convenient option to construct
such a map, while it may compromise the location privacy of
crowdsourcing participants. In this work, we propose a novel ap-
proach to establish the COVID-19 vulnerability map based on the
crowdsourced reporting without disclosing the participants’ loca-
tion privacy to a semi-honest crowdsourcing aggregator. Briefly,
based on the differentially private geo-indistinguishability, the
mobile participants are able to locally perturb their geographic
data. With the masked geographic information, we employ the
best linear unbiased prediction estimator with spatial smoothing
to obtain the reliable vulnerability estimates in the areas of
interest and construct the map. Given the fast spreading nature
of coronavirus, we integrate the vulnerability estimates with a
susceptible-exposed-infected-removed (SEIR) model to build up
a future trend map. Extensive simulations based on real-world
data verify the effectiveness of the proposed method.

I. INTRODUCTION

The recent pandemic of the coronavirus (COVID-19) has
raised an unprecedented globally crisis on various aspects
(e.g., public health and economy). The rapid growth of
infected population overloads hospital capacities and causes
the major healthcare resources and personnel shortages in
many countries. The top priority is to contain the spread of
the COVID-19 with effective infection control measures like
early detection and sensible segregation [1]. To greatly reduce
the spreading of the coronavirus, it is more instrumental to
early identify the high-risk areas and forecast spatially the
disease transmission dynamics. The policy-makers then can
proactively and optimally allocate the constrained medical
resources to the next potential “outburst” spots in advance.
Early warning mechanism is often depicted as a heatmap
with the locations of the infected population and vulnerability
risk prediction. It’s a quite straightforward methods to model
COVID-19 pandemic, and helps estimate and predict latent
patients’ distribution.

The success of COVID-19 vulnerability map construction
relies on comprehensive health information. The existing

infection data confirmed by the local hospitals or testing
stations and collected from local media reports or Centers for
Disease Control and Prevention (CDC) can help to generate
online COVID-19 maps. However, those maps may not be
good enough. First, the traditional testing data collections
are time-consuming and costly. It’s infeasible to test the
entire population due to the limited test kits. Besides, for the
individuals with no health insurance, they cannot afford the
treatment fee and are less likely to take the tests in certain
areas. It could lead a vast of underestimation of the real
number of patients. Second, the existing maps demonstrate the
confirmed cases in each county, they are not fine-grained and
lack of adequate coverage of patients who are asymptomatic
or have mild symptoms, and cannot get the chance to be
tested. These problems directly lead the vulnerability map to
fail to function as expected.

With the aid of mobile crowdsourcing, data acquisition of
timely vulnerability map construction becomes promising. By
distributing symptom survey to ubiquitous mobile users, it
only takes a few seconds to obtain a current snapshot of the
number of people in each area who have developed symptoms.
The feasibility of this approach lies in the popularity of smart
devices and the wide expectation that some people may be
willing to share their symptoms with the general public to help
combat the COVID-19. Prior works like “Flu near you” [2]
have shown the success of utilizing crowdsourced data to ob-
tain accurate tracking in influenza season. During the outbreak
of COVID-19, as reported by the recently published work [3],
after online individual survey being first distributed for 10
days, 74,256 responses had been received. Facebook has just
released a interactive map that tracks coronavirus symptoms
using crowdsourced data from an opt-in survey, where more
than 1 million people responded to the survey within the first
two weeks. The tremendous data size and diverse information
tagged with the fine geographic information make it possible
for fine-grained map construction.

However, the mobile crowdsourcing based COVID-19 map
construction is not perfect. Many of the existing research [3],
[4] and Facebook covid map require the participants to fulfill
a survey and their precise location information together with
their symptoms are submitted to a third-party server, which
raises the concerns of privacy leakage. Actually, mobile users
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may be reluctant to reveal such sensitive information due to
security and privacy concerns [5] [6]. Once these individual
detailed information (i.e., location information) is revealed by
a malicious party or dishonest server, those who are experienc-
ing symptoms are likely to be discriminated against and suffer
from economic loss. To address these issues, in this work,
we target at developing a find-grained COVID-19 map via
mobile corwdsourcing, while preserving participants’ location
privacy. Specifically, we devise a privacy-preserving mobile
crowdsourcing framework for COVID-19 information collec-
tion, where people are encouraged to report their obfuscated
locations and covid-like symptoms. Then, by aggregating their
symdromic information based on the corresponding locations,
we estimate the vulnerability risk in a small area-level using
a spatial best linear unbiased prediction (SBLUP) estimator.
Accounting for spatial correlation, a spatial smoothing based
SBLUP greatly reduces the introduced spatial error and obtain
a reliable estimation. Our salient contributions are summarized
as follows.

• We employ the geo-indistinguishability scheme to protect
the participants’ location privacy. More specifically, the
location data is perturbed by participants themselves
before uploading, which gives differential privacy (DP)
guarantee.

• To predict the vulnerability level in a fine-grained map,
we first determine the individual vulnerability level based
on the symptom self-reporting. Then, given the obfus-
cated locations, we utilize SBLUP with spatial smoothing
technique to reduce the estimation bias induced by the
privacy protection scheme and then integrate the vul-
nerability estimates with susceptible-exposed-infected-
removed (SEIR) model to generate the future trend map.

• Extensive simulations are conducted based on real-world
datasets to evaluate the performance of our scheme. The
results also demonstrate the tradeoff between location
differential privacy and risk estimation reliability.

The rest of this paper is organized as follows: In Section II,
the preliminary of location differential privacy and overall sys-
tem model are presented. In Section III, location preservation
scheme is described. In Section IV, the SBLUP model for
grid-level vulnerability estimation and future prediction on
SEIR model are discussed. In Section V, the experiment based
on the true database are analyzed and the paper is concluded
in Section VI.

II. PRELIMINARIES & SYSTEM MODEL

A. Location Differential Privacy Preliminaries

In this section, we present preliminaries on DP related in
our paper. DP [7] provides rigorous guarantees against what
an attacker, with other background information, can infer
individual information from the published statistics of a data
set. Standard centralized setting requires a trustworthy curator
to apply DP to the raw data. The definition of DP is shown as
follows. If two databases X , Y differ in at most one element,
we assume that X and Y are neighboring databases.

Definition 1: Suppose privacy parameter ϵ ≥ 0, a ran-
domization algorithm M satisfies ϵ-differential privacy. For
any neighboring database X,Y , for any subset of outputs
S ⊆ range(M),

Pr[M(X) ∈ S]
Pr[M(Y ) ∈ S]

≤ eϵ.

The different choices of privacy parameter ϵ represent
the different privacy preservation levels. The smaller privacy
parameter ϵ suggests the probability of the outputs of the
randomized algorithm M with two different inputs is close to
each other, which means a high privacy preservation level. On
the other hand, its utility would be compromised under the
high privacy preservation level. In other words, there always
exists a trade-off between the privacy and utility.

With the principle of differential privacy, geo-indistinguish-
ability scheme especially allows users to replace noisy points
with actual locations via a randomized mechanism without
the requirement of trustworthy third-party entity [8]. More
specifically, geo-indistinguishability provide a privacy guaran-
tee within a radius, that is, given a circle centered at the user’s
actual location with a radius r, any two points within the circle
yield observations with “similar” distributions. According to
Definition 1, geo-indistinguishability is formally defined as
follows [9]:

Definition 2: With the privacy confidence parameter ϵ ≥ 0,
a randomized algorithm M satisfies (ϵ, r)-geo-indistinguish-
ability if for any two different points x0 and x′

0 such that
d(x0, x

′
0) ≤ r, the following holds:

Pr [M(x0) ∈ S]
Pr [M(x′

0) ∈ S]
≤ eϵd(x0,x

′
0), (1)

where S is the set of output locations and d(·, ·) denotes the
Euclidean distance. The definition indicates that, to achieve
(ϵ, r)-privacy within the radius of r, given two different
locations x0 and x′

0 between which the distance is smaller
than r, the probability of the output points of randomized
algorithm M should be bounded by a multiplicative factor
eϵd(x0,x

′
0). In geo-indistinguishable scheme, the privacy level k

should consider both the impact of the privacy parameter ϵ and
indistinguishable radius r. Therefore, the privacy parameter
becomes k = ϵr, where ϵ can be regarded as the privacy level
at one unit of distance and r is the radius of concern within
which privacy is guaranteed.

B. System Model

This work constructs a fine-grained and periodically-
updated vulnerability prediction map (VPM) by collecting
COVID-19 symptoms data through mobile crowdsourcing
platform, as shown in Fig. 1. Specifically, the aggregator
in the mobile crowdsourcing platform launches a covid-like
symptom reporting task to a number of candidate partici-
pants who are distributed over a 2D spatial region A. Every
participant is willing to engage in crowdsourcing tasks and
honestly report their true answers. We assume a semi-honest

© IEEE 2021. This article is free to access and download, along with rights for full text and data mining, re-use and analysis.



Fig. 1. Vulnerability map construction via mobile crowdsourcing.

crowdsourcing aggregator is curious but not malicious which
implies he tries to learn from the exposed information but
still complies with the protocol. The aggregator announces an
online questionnaire regarding the covid-like symptoms. The
participants upload their answers to the survey along with
their location information to the aggregator.

The targeted area A is divided into G non-overlapping
cells, denoted by the set A = {a1, · · · , ag, · · · , aG}. In a
fine-grained VPM, the spatial unit is set to the street or
township level. Each cell is tagged with a certain vulner-
ability prediction level lg . The entire VPM is modeled as
l , [l1, · · · , lG], and estimated one as l̃. At each period, a
total of N participants upload their records. We denote the
report from the i-th participant by ri = (ti,xi), where ti is
the recording timestamp and xi = (xi1, · · · , xip) represents
his syndromic information with p covid-related symptom
attributes. Each report ri is tagged with a location coordinate
si = (sxi , s

y
i ). We further denote Rg = {ri,∀si ∈ ag} as the

ground set of the crowdsourced data in cell ag .
Since the location information of a single record is closely

related to either home or work address in VPM, to avoid
the disclosure risk of personal information, we use the geo-
indistinguisihability method to protect mobile users’ locations.
Instead of updating a true location, a participant can share a
fake one as s̃i = (s̃xi , s̃

y
i ). In the following sections, we show

that semi-honest aggregator can still predict the vulnerability
level lg in each cell based on the set of the crowdsourced
records R̃g = {ri,∀s̃i ∈ ag}.

III. LOCATION PRIVACY PROTECTION

In our proposed scheme, a masked location is generated
according to geo-indistinguishability. Assuming that each
participant perturbs his location independently and homoge-
neously, we then simplify the denotations of the real location
and the perturbed location as s and s̃ by omitting the
subscripts in terms of participants. In order to meet the privacy
requirement in Definition 2, the probability of generating an
obfuscated location s̃ should decrease exponentially with the
distance from the actual location s. The two-dimensional
Laplace distribution is usually applied to randomly produce
the location noise, since it satisfies such a property, that is,
given the parameter ϵ ∈ R+ and the actual location s ∈ R2,
the probability density function (PDF) of the corresponding

noise mechanism on any other point s′ ∈ R2 gives as follows:

pϵ(s
′) =

ϵ2

2π
e−ϵd(s,s′), (2)

where ϵ2/2π is a normalization factor. The problem thereby
turns into finding “the other point s′ ∈ R2” following the
above distribution for each participant, namely obfuscated
location. Further, we describe participants’ locations by using
Polar coordinates (q, θ) instead Cartesian coordinates where
q is the distance between s and s′, and θ is the angle that the
line (s, s′) forms with respect to the horizontal axis. The PDF
of the Polar Laplacian centered in the original coordinates s
is:

pϵ(q, θ) =
ϵ2

2π
qe−ϵq. (3)

Let Q and Θ denote the two random variables of radius
and angle, respectively. Since Q and Θ are independent, (3)
can be expressed as the product of the two marginals, i.e.
pϵ(q, θ) = pϵ,Q(q)pϵ,Θ(θ), where

pϵ,Q(q) =

∫ 2π

0

pϵ(q, θ) dθ = ϵ2qe−ϵq, (4)

pϵ,Θ(θ) =

∫ ∞

0

pϵ(q, θ) dq =
1

2π
. (5)

Here, pϵ,Θ(θ) is a constant which is in accordance with
uniform distribution, and pϵ,Q(q) coincides with the PDF of
the gamma distribution with shape 2 and scale 1/ϵ whose
cumulative function is

Cϵ(q) =

∫ q

0

ϵ2ρe−ϵρ dρ = 1− (1 + ϵq)e−ϵq. (6)

Note that the above derivation is developed in the con-
tinuous plane. In practice, a location is usually described as
discrete coordinates, with longitude and latitude. Then we
obtain a obfuscated discrete location s̃ from any original
location s (in Cartesian coordinates) according to the follow-
ing procedures [9]: 1) Uniformly generate θ in [0, 2π). 2)
Uniformly generate z in [0, 1) and set q = C−1

ϵ (z). 3) Add
noises to get an obfuscated location s+ < qcosθ, qsinθ >,
and remap it to the closest point s̃ in discrete grid.

IV. VULNERABILITY MAP CONSTRUCTION

Given the users’ symptoms reports and their obfuscated
locations, the crowdsourcing aggregator can predict the vul-
nerability level for each cell and generate the vulnerability
map in the targeted area. We divide the VPM construction
into two steps, including individual risk assessment and small
area estimation adjustment. Because the two steps are used
to fit the observed data from each single time point, for
the convenience of describing the models, the subscript t is
omitted in the next two subsections.



A. Individual Risk Assessment

The first phase is individual risk assessment, in which the
collected syndromic information is mapped into a vulnera-
bility degree. Specifically, given the crowdsourced syndromic
reports from total N participants, X = {xi, 1 ≤ i ≤ N},
the aggregator would determine the potential vulnerability
of each mobile participant via a predetermined function
f : X → (0, 1). Crowdsourced symptom reporting task
contain a set of questions about age, sex and existence of the
symptoms commonly recorded in patients with the COVID-19
(cough, fever with body temperature, chest pain and shortness
of breath, etc.). The vulnerability score of each participant is
evaluated as the number of reported symptoms divided by the
total number of symptoms in the predefined list.

B. Area Estimation Adjustment

By associating users with grid cells based on locations s̃,
the aggregator estimates the grid-level vulnerability degree
from the observed scores. The vulnerability level lg refers to
the average vulnerability score in grid ag:

lg =

∑Ng

i=1 f(xi)

Ng
. (7)

where Ng denotes the total population of grid cell ag . Based
the total ng crowdsourced data samples in cell ag , the naı̈ve
estimates of lg can be easily calculated as l̂DE

g =
∑ng

i=1 f(xi)

ng
.

Since the true location of a user may be perturbed to a
location that belongs to a different grid cell, the sample size of
each grid cell may change. For the grids with smaller sample
size, the direct estimation becomes biased and unreliable. To
adjust the naı̈ve estimates, we employ the SBLUP model [10]
to borrow strength from other domains, as well as to consider
the spatial correlation in the target area. Besides, as long as
the overall area has large enough sample size, the SBLUP
has distinct advantage of improving the reliability of sub-
areal estimation. In the SBLUP model, the variable of interest
is decomposed into a linear mixed model with spatially
correlated random area effect:

lg = hT
g β + bTg v, ∀ag ∈ A. (8)

Here, hg is area-specific auxiliary data, βg is a vec-
tor of unknown regression parameters, bg is a vector
(0, · · · , 0, 1, 0, · · · , 0) with 1 in the position g, and v is
area-specific random effects. A direct way to characterize
the spatial dependency v is to impose simultaneous auto-
regressive [11] process with coefficient ρ and spatial weight
matrix W :

v = (I − ρW )−1u, (9)

where u is a vector of independent error terms with zero mean
and unknown variance σ2

uI and I is identity matrix. Note here
that (I − ρW ) is required to be non-singular.

The W matrix describes the neighborhood structure of
the small grids and indicate the potential interaction between
locations. Unlike the commonly neighbours are defined as
cells that share the same boundary, in this paper, we consider

the obfuscated area as the neighbouring set of a specific grid.
Since the information of the points within the obfuscated
circle is quite similar, the cells that are covered by the
obfuscated region have a great influence on each other. Thus,
we measure the distance between centroids of each two grids
as dmn. For each grid, its neighborhood cells are those that
the distance dmn is smaller than the obfuscated radius. The
corresponding spatial weight is given as:

wmn =

{
d−1
mn, dmn ≤ r
0, otherwise (10)

Combining (8), (9) and (10), the full model with spatially
correlated random area effects becomes:

l̂g = hT
g βg + bTg (I − ρW )−1u+ eg, (11)

where eg ∼ N(0, σ2
e) represents the sampling errors that

is independent of random area effects, and σ2
e refers to the

sampling variance of the direct estimates. Let’s denote e =
(e1, ·, eG). Further, the covariance matrix can be expressed as
cov(l̂) = e+ σ2

u[(I − ρW )(I − ρW T )]−1.
With the collected crowdsourced data X , the estimation l̂g

can be calculated as:

l̃g(σ
2
u, ρ) =hT

g β̂ + bTg (cov(l̂)− e)cov(l̂)−1(l̂DE
g − hT

g β̂),
(12)

where estimated β̂ = (hT
g cov(l̂g)−1hg)

−1hT
g cov(l̂g)−1 via

weighted least square estimator. The estimator l̃g(σ
2
u, ρ) de-

pends on the unknown components σ2
u and ρ. Assuming

normality of the random effects, σ2
u and ρ is estimated with

restricted maximum likelihood methods, which considers the
loss in estimating β. Therefore, the model estimator based on
the estimated parameters σ̂2

u and ρ̂ is given as:

l̃g(σ̂
2
u, ρ̂) =hT

g β̂ + bTg {σ̂2
u[(I − ρ̂W )(I − ρ̂W T )]−1}

× cov(l̂g)−1(l̂DE
g − hT

g β̂). (13)

Then the aggregator will leverage a SEIR model to investigate
the temporal evolution of the COVID-19’s spread and predict
vulnerability populations in the next few days.
C. SEIR Model based Future Trend Prediction

So far, we can assess the vulnerability level of each grid
with respect to the estimated mean and covariance. Based on
the statistical information l̃g(σ̂

2
u, ρ̂), we can further estimate

the current proportion of population J̃ t
g who are more likely to

experience covid-like illness from the proposed model under
the normality assumption. We consider people with vulnera-
bility score more than threshold η as vulnerable population.
Therefore, the percentage of vulnerable population equals to
the probability of the vulnerability score greater than η from
the estimated model.

Then, we leverage this information in a SEIR model to
predict the possible risk trend of the specific cell in the next
few days. In the SEIR model, total population are divided into
four groups: Susceptible, Exposed, Infection and Removed.
Susceptible people refer to whom not yet infected but at
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Fig. 5. Mobile crowdsourcing vulnerability map.

risk of being infected; Exposed people whom with mild or
asymptomatic but infectious populations; Infection are people
confirmed to be infectious; And the removed are those who
have been cured or died from disease. Therefore, the estimated
vulnerable population P s

g [t] = J̃ t
gNg is assumed as the

susceptible population in small cell g at time t. Here we adopt
a simple SEIR model as follow,

PS
g [t+ 1] = PS

g [t]−
κ1r[t]P

I
g [t]P

S
g [t]

Ng[t]
, (14)

PE
g [t+ 1] = (1− ν)PE

g [t] +
κ1r[t]P

I
g [t]P

S
g [t]

Ng[t]
, (15)

P I
g [t+ 1] = νPE

g [t] + P I
g [t]− γP I

g [t], (16)

PR
g [t+ 1] = γP I

g [t] + PR
g [t]. (17)

where κ1 and κ2 denote the rate of transmission for the sus-
ceptible to infected and the exposed to infected, respectively;
r[t] and Ng[t] are the number of contacts per person per
day and total population over A, respectively; γ represents
the probability of recovery or death while ν indicates the
incubation rate of COVID-19, which is the rate of the high-
risk individuals becoming symptomatic. The above parameters
can be empirically estimated based on the observed confirmed
cases, which varies in different areas [12].

V. PERFORMANCE EVALUATION

We now examine the performance of the proposed scheme
for privacy-preserving vulnerability map construction. The
software used for performance evaluation is Python, and R

language is used to construct the spatial estimation model. We
regard the Houston city as the targeted area for estimating the
risk level at each super neighborhood. Specifically, the whole
city is divided into 88 super neighborhood according to the
neighborhood planning areas in the City of Houston [13].
Each neighborhood has the attributes of grid ID and the
boundary GPS coordinates. The demographic profiles (i.e.,
age structure, population density and poverty are selected)
of super neighborhood are utilized as the auxiliary variables.
The simulation results are based on a real world crowdsourced
survey from CMU Delphi Research Center [14]. This global
survey contains the surveillance streams data of geographic
information and the estimated percentage of people with
covid-like symptoms. Our scheme is evaluated by comparing
with two baselines: 1) Direct Estimation utilizes the collected
data to directly estimate the vulnerability level and 2) BLUP
utilizes the collected data and auxiliary factors without con-
sidering the spatial correlation, which is the special case of
SBLUP when ρ = 0.

Firstly, under a fixed privacy budget, we examine the
performance of the estimators in terms of the area-specific
mean square errors (MSEs), as shown in Fig. 2 and Fig. 3.
For a single grid, in general, the estimates based on large
samples size are more precise since the model obtains more
information of the true vulnerability level, especially in the
direct estimation case. It also demonstrates the effectiveness of
the proposed scheme compared with two baselines. The value
of the estimated spatial coefficient parameter ρ is 0.698 on
average, which indicates that the spatial information provides



a good fit in our proposed model. As shown in Fig. 3, the
error reduction from our model to DE is more than the BLUP
model, especially in the case of small sample size. With the
related auxiliary information and strong spatial correlation,
the proposed model maintains lowest MSE regardless of the
sample size.

To evaluate the impact of DP on the model utility in terms
of reliability of model-based estimation, we examine 5 differ-
ent privacy levels with 100 interations per level. The reliability
criteria is the average coefficients of variation (CVs) of the

MSE estimates as cv(l̃) = 100

√
MSE(l̃)/l̃. An estimate

with CV over 20% is regarded as unreliable and cannot be
published. The results are shown in Fig. 4. The baseline is the
spatial model without adding the DP noise. From Definition
1, we know a lower value of ϵ implies a stronger privacy
protection that can be guarantee while the data utility may be
degraded, since more noise is more likely to be injected to the
real location. Thus, as illustrated in Fig. 4, when ϵ is less than
0.3, the location protection guarantee is highly strong while
the estimation under differential privacy schemes becomes
unreliable. Moreover, privacy preserving models under BLUP
and SBLUP get close to the baseline as the increase of ϵ. With
the strong impact of the neighbouring structure, compared
to the non-spatial scheme, the gap between the proposed
model and the baseline is smaller. Since the aggregator treats
every obfuscated location report as real one, the aggregated
record may deviate from the true value when the uploaded
geographic information of a participant is far away from its
exact location. With a small privacy budget ϵ, the estimation
is more likely to be biased and less reliable due to the spatial
error, thus the value of CV increases as ϵ decreases.

We also display three color maps of the estimated average
vulnerability of COVID-19 in 88 small areas of Houston in
Fig. 5(a), 5(b) and 5(c). Fig. 5(c) depicts the future trend in
seven days predicted from the SEIR model. The future trend
reflects the estimated percentage of vulnerable population to-
wards the COVID-19. The privacy parameter in Fig. 5(b) is set
to be 0.6 and the threshold η is 0.75. Orange dots in the Fig.
5(a) indicates the difference between Fig. 5(a) and 5(b), which
are the maps with or without privacy model, respectively. It
shows that the privacy model maintains useful information
to learn about the spatial trend and vulnerability level. It
also illustrates the trade-off between estimator reliability and
privacy preservation level. That is to say, by appropriately
controlling the value of privacy parameter chosen at each
participant, our proposed crowdsourcing system can achieve
a reliable estimation result while preserving the participants’
location privacy well.

VI. CONCLUSION

We have developed a mobile crowdsourcing based vulnera-
bility map construction scheme to detect the potential outbreak
of coronavirus with consideration of participants’ location pri-
vacy. Geo-indistinguishability approach have been exploited
to protect users’ sensitive geographic profiles locally. The
spatial estimators have been leveraged to adjust an unreliable

risk estimation due to location uncertainty. Further, jointly
with the SEIR model, we have been able to predict the future
risk trend. The simulation results based on the real-world
dataset have shown the effectiveness of the proposed scheme
by the low prediction errors, and demonstrates the trade-off
between the privacy preservation and estimation reliability.
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