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Abstract—The analysis of the end-to-end behavior of novel
mobile communication methods in concrete evaluation scenarios
frequently results in a methodological dilemma: Real world
measurement campaigns are highly time-consuming and lack of
a controllable environment, the derivation of analytical models
is often not possible due to the immense system complexity,
system-level network simulations imply simplifications that result
in significant derivations to the real world observations. In this
paper, we present a hybrid simulation approach which brings to-
gether model-based mobility simulation, multi-dimensional Radio
Environmental Maps (REMs) for efficient maintenance of radio
propagation data, and Data-driven Network Simulation (DDNS)
for fast and accurate analysis of the end-to-end behavior of
mobile networks. For the validation, we analyze an opportunistic
vehicular data transfer use-case and compare the proposed
method to real world measurements and a corresponding sim-
ulation setup in Network Simulator 3 (ns-3). In comparison to
the latter, the proposed method is not only able to better mimic
the real world behavior, it also achieves a ∼300 times higher
computational efficiency.

I. INTRODUCTION

Anticipatory communication [1] has emerged as a novel net-
working paradigm focusing on context-aware optimization of
decision processes in highly dynamic wireless communication
systems such as vehicular networks. In a recent report [2], the
5G Automotive Association (5GAA) has pointed out that pre-
dictive Quality of Service (QoS) – e.g., the ability to forecast
the achievable data rate along a predicted trajectory – will be
one of the key enablers for connected and automated driving.
Another recent research trend in this domain is non-cellular-
centric networking. Hereby, the mobile devices become part of
the network fabric and contribute explicitly or implicitly to the
overall network optimization [3]. As an example, opportunistic
data transfer for delay-tolerant applications (e.g., vehicle-as-
a sensor) allows to dynamically schedule data transmissions
with respect to the anticipated resource efficiency [4].

However, the development and optimization of these novel
mobile networking methods confronts researchers and engi-
neers with a methodological dilemma. Real world experiments
involve massive efforts and are impacted by an uncontrollable
environment. Analytical modeling is often not possible due to
the immense complexity of the evaluation scenario. System-
level network simulation requires assumptions and simplifica-
tions which result in an accuracy degradation for complex real
world scenarios (see Sec. II).

In recent work [5], we have presented DDNS as a novel
machine learning-enabled method for simulating vehicular

communication networks. DDNS learns an end-to-end model
of a target Key Performance Indicator (KPI) in a concrete
scenario based on empirical measurements. The learned model
can then be utilized for the performance evaluation of novel
methods under study. However, since DDNS relies on replay-
ing real world network conditions as context traces, it is bound
to the trajectories of the measurements and does not allow to
modify the mobility behavior of the vehicles.

In this paper, we bring together the key features of DDNS
with model-based mobility simulation in order to benefit from
the best of both worlds. For this purpose, we decouple the
DDNS method from the trace-based approach through usage
of multi-dimensional REMs.

The remainder of the paper is structured as follows. After
discussing related work in Sec. II, we present the proposed
solution approach in Sec. III. Afterwards, the applied method-
ology is introduced in Sec. IV and finally, the results of the
performance evaluation are presented and discussed in Sec. V.
The developed simulation framework and the raw results are
provided in an Open Source manner1.

II. RELATED WORK

Network simulation is the de-facto standard method for
analyzing the performance of mobile communication systems
[6]. System-level simulations provide a controllable environ-
ment and allow to compare different methods under study in
abstract scenarios. However, the achieved results often differ
significantly from real measurements in concrete complex real
world scenarios [5]. The major reasons for this observation are:
Simplifications such as the usage of probabilistic shadowing
models instead of explicit modeling of obstacles and mate-
rials. Assumptions as concrete parameterizations and applied
algorithms are either unknown (e.g., the traffic patterns of the
cell users) or are treated confidentially by the Mobile Network
Operators (MNOs) (e.g., the applied resource schedulers and
concrete parameters of the evolved Node Bs (eNBs)). Missing
features within the implementation of the network simulator
(e.g., as discussed in Sec. IV, Channel Quality Indicator
(CQI) and Timing Advance (TA) are not modeled in LTE-
EPC Network Simulator (LENA) for ns-3). It can be been
these issues are systematically implied for the system-level
network simulation method due to the need to explicitly model
and parameterize communicating entities. In contrast to that,

1Source code available at https://github.com/BenSliwa/Hybrid DDNS
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the DDNS method [5] – which is applied in a modified
version in this paper – uses machine learning to implicitly learn
the context-dependent behavior of an observed performance
indicator only based on empirical measurements. As an alter-
native to model-based methods, REMs [7] represent a data-
driven approach for considering radio propagation effects in
wireless network simulations. Hereby, models are replaced by
geospatially aggregated radio measurements which are often
obtained in a crowdsensing manner.

Machine learning has achieved great attention within the
wireless research community [8] as its inherent capability
of exposing hidden interdependencies between measurable
variables allows to derive models for processes which are
too complex to describe analytically. In their technical recom-
mendation Y.3172 [9], the International Telecommunication
Union (ITU) presents an architectual framework for machine
learning-based decision making in future networks. Hereby,
a simulation-based digital twin of the network allows to
safely explore the impact of different decision alternatives
before actual actions are performed in the real world underlay
network. It can be expected that the emerging research field
of machine learning-based end-to-end system modeling [10],
[5] will further stimulate the progression in this field.

As an example for machine learning-based radio propa-
gation analysis, Thrane et al. [11] propose a model-aided
deep learning method which implicitly extracts radio prop-
agation characteristics from top-view geographical images. In
comparison to ray tracing techniques which are applied in a
model of the same evaluation scenario, the machine learning-
enabled method is able to reduce the average Reference Signal
Received Power (RSRP) prediction error by more than 50 %.
However, although deep learning has achieved impressive
results in the image processing domain, it is not a universal
remedy for all optimization problems in engineering. In the
wireless communications domain, the amount of training data
is often limited since data has to be acquired in complex
measurement campaigns. Due to the curse of dimensionality
[12], deep learning techniques often get outperformed by
simpler models such as Random Forests (RFs) [13] which are
able to better cope with smaller data sets (e.g., for mobile data
rate prediction as discussed by [5]).

III. HYBRID DATA-DRIVEN AND MODEL-BASED
VEHICULAR NETWORK SIMULATION

In this section, the proposed hybrid simulation method and
its core modules are introduced. The overall goal is to analyze
the performance of a novel method under study in a concrete
real world scenario. As shown in Fig. 1, the proposed approach
consists of four core components – the method under study,
a model-based mobility simulator, a multi-dimensional REM,
and a DDNS setup.

Method under Study: In the following, we illustrate the
application of the proposed method based on an example use
case focusing on opportunistic vehicular sensor data transmis-
sion. For this purpose, we analyze the resulting end-to-end
data rate S of different transmission schemes as target KPI.
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Fig. 1. System architecture model for the proposed hybrid vehicular
network simulation method. In the offline training phase, the machine learning
models utilize the whole REM data set as a priori information. In the
online application phase, predictions are performed based on the looked up
values for the corresponding vehicle locations. (Map data: c©OpenStreetMap
contributors, CC BY-SA).

Model-based Mobility Simulation: The mobility behav-
ior of the vehicles is represented by a mobility simulation
framework which utilizes validated analytical models for the
different components such as automatic cruise control and
routing. Hereby, the model-based approach allows to analyze
the impact of arbitrary traffic conditions and routing paths
on the behavior of the method under study. For this pur-
pose, we apply Lightweight ICT-centric Mobility Simulation
(LIMoSim) [14] which provides integrated support for real
world map data from OpenStreetMap (OSM).

Multi-Dimensional Radio Environmental Map: Within
the proposed data-driven simulation approach, radio propaga-
tion and protocol effects are implicitly learned by a combina-
tion of end-to-end machine learning algorithms. For enabling
this data-driven approach, it is assumed that measurement data
for the target KPI is available as a priori information. This
data can either be obtained by performing initial real world
measurements, through open data sets such as [15], [11], or
via crowdsensing-based services.

For predicting the end-to-end data rate S̃ as the considered
target KPI, the User Equipment (UE)-based prediction method
from [15] is applied. Multiple features from different logical
context domains are considered:

• Network context: RSRP, Reference Signal Received
Quality (RSRQ), Signal-to-interference-plus-noise Ratio
(SINR), CQI, TA

• Mobility context: Velocity, Cell id
• Application context: Payload size of the packet

While, the features of the mobility and application domains
have to be acquired online during the simulations, the network
context features are maintained in a multi-dimensional REM
whereas each layer corresponds to one of the features for the
machine learning process. For a given vehicle position P(t),
the corresponding feature set F̃(t) is looked up from the REM



M as

F̃(t) = M

(
bP(t)

c
c
)

(1)

with c being the cell width which defines the map granularity.
Data-driven Network Simulation: Finally, the end-to-

end behavior of the observed KPI is simulated based on a
modified DDNS setup. While conventional DDNS simulations
according to [5] are based on replaying context traces, the pro-
posed approach utilizes the simulated trajectories and context
lookups from the REM. DDNS simulations rely on two main
building blocks which are realized as corresponding machine
learning models:

• A deterministic prediction model is used to learn the
end-to-end behavior of the considered indicator using
supervised learning on the a priori data set. For the online
prediction, the feature set F̃(t) is looked up from the
REM and the data rate S̃(t) is predicted as S̃(t) =
fML(F̃ (t)) using the trained machine learning model
fML. Due to the findings in [15], this model is represented
by a RF predictor. However, due to the deterministic
nature of the learned model, identical feature sets will
always result in identical predictions. In contrast to that,
in the real world, the prediction models are imperfect
which results in a difference between predictions and
ground truth measurements.

• In order to represent this aspect within the simulation
setup, a probabilistic derivation model is applied for
learning the uncertainties of the prediction model of
the previous step based on Gaussian Process Regression
(GPR) [16]. Hereby, the Bayesian nature of this model
class is exploited, since the resulting confidence function
allows to sample data values from the whole value range
of a given prediction. The sampled value is then utilized
as a virtual ground truth (e.g., the achieved data rate S(t)
of a transmission) within the simulation setup. A visual
representation of a derivation model is shown in Fig. 1.

For a more detailed description about the DDNS-specific
mechanisms, we forward the interested reader to [5].

IV. METHODOLOGY

In this section, the evaluation scenario as well as the tools
and methods for the performance evaluation are presented.

A. Evaluation Scenario and Evaluated Methods

For the validation of the proposed approach, we model
a vehicle-as-a-sensor use case and compare the end-to-end
data rates of different conventional and opportunistic data
transmission schemes.

• Periodic data transfer with a fixed interval ∆t = 10 s
• Channel-aware Transmission (CAT) [17] is a proba-

bilistic data transfer scheme which derives a transmission
probability based on measurements of the current SINR.

• Machine Learning CAT (ML-CAT) [4] is a machine-
learning-based extension to CAT. Instead of using raw

RSRP [dBm]

-70-140 -130 -120 -110 -100 -90 -80

eNB Location

Fig. 2. Overview about the road network topology for the evaluation scenario.
The overlay shows the RSRP layer of the REM along the evalation track (Map
data: c©OpenStreetMap contributors, CC BY-SA).

network quality measurements, ML-CAT applies an RF-
based data rate prediction which is then used to compute
the transmission probability.

Data is transmitted from a moving vehicle in the uplink
and downlink direction through the public cellular network
using Transmission Control Protocol (TCP). A virtual sensor
application generates 50 kByte of data per second which is
buffered locally until the transmission decision is made for
the whole data buffer. Fig. 2 shows the map of the evaluation
scenario as well as the RSRP layer of the REM.

B. Data Analysis

All prediction models are trained with the Open Source
Lightweight Machine Learning for IoT Systems (LIMITS)
[18] framework which provides high-level automation for vali-
dated Waikato Environment for Knowledge Analysis (WEKA)
[19] models and supports the generation of C++ code for
trained machine learning models. For the generation of the
GPR-based derivation models required for the DDNS, we uti-
lize the Statistics and Machine Learning Toolbox of MATLAB.

As performance metrics for the resulting prediction errors,
we consider Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) which are computed as

MAE =

∑N
i=1 |ỹi − yi|

N
, RMSE =

√∑N
i=1 (ỹi − yi)

2

N
.

with ỹi being the current prediction, yi being the current true
value, and N being the number of samples.

For all data analysis results, we apply 10-fold cross vali-
dation. Based on the findings of related work, the following
analyses focuses on using the RF model for performing the
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Fig. 3. Impact of the cell width c of the radio environmental map on the resulting lookup accuracy for different network context features.
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Fig. 4. Impact of the cell width of the radio environmental map on the
resulting data rate prediction error. The errorbars show the standard deviation
of the 10-fold cross validation.

data rate predictions. A deeper analysis about the performance
of different machine learning models can be found in the in-
depth study in [5].

C. Reference Discrete Event Simulation Setup in ns-3

For comparison, a classic Discrete Event Simulation (DES)-
based setup is created using the Long Term Evolution (LTE)
framework LENA [20] for ns-3 [21]. All eNBs are positioned
according to their corresponding real world locations. A sum-
mary of the simulation parameters is given in Tab. I. However,
since LENA is not capable of representing the whole real
world feature set – CQI and TA are missing – the prediction
models need to be simplified. As a result, the prediction
performance is reduced: The average RMSE is increased from
3.9 MBit/s to 4.2 MBit/s.

TABLE I
PARAMETERS OF THE NS-3 SCENARIO

Parameter Value

Carrier frequency eNB-specific
Bandwidth 20 MHz
Transmission power PTX (UE) 23 dBm
Transmission power PTX (eNB) 43 dBm
Channel model HybridBuildingsPropagationLossModel
Number of simulation runs 30

V. RESULTS

In this section, the impact of using REM for modeling radio
channel conditions is evaluated. Afterwards, the proposed
approach is validated against real world measurements and
existing simulation methods.

A. Radio Environmental Maps

Due to the data aggregation performed within the REMs, the
obtained values most likely differ from the individual measure-
ments. Therefore, the impact of the aggregation granularity –
represented by the cell width c – on the prediction of individual
indicators as well as on the overall data rate prediction is
investigated.

Fig. 3 shows the resulting lookup errors as RMSE and MAE
functions for different network context indicators. The highest
accuracy is achieved for the smallest c values where most
cells only consist of a single measurement. However, in order
to allow the usage of REMs within the simulation process,
the cell size needs to be large enough to achieve sufficient
coverage of the whole evaluation trajectory and minimize the
lookup miss ratio which is shown in Fig. 3 (d). Remaining
lookup misses can then be compensated by choosing the
nearest neighboring cell.

As a direct consequence of these errors, also the machine
learning based data rate prediction which uses the network
context indicators as features is impacted by the chosen
granularity. The resulting data rate prediction error in uplink
and downlink direction is shown in Fig. 4. Two different
behaviors can be observed. For c ≤ 50 m, a slight aggregation
gain is achieved. In this region, the channel coherence does
not change significantly between different measurements in
the same cell. Therefore, the REM acts like a filter which
compensates short term fluctuations of the different measure-
ments. However, for c > 50 m, the prediction accuracy
is reduced for increasing c values as the cell width is too
large to represent the local radio propagation characteristics
accurately. This effect is more dominant in the uplink than
in the downlink direction. As pointed out by the authors of
[1], the achievable downlink data rate is mainly determined
by the resource competition between different cell users and
less sensitive to radio propagation effects.

B. Validation

In the following, the proposed hybrid simulation method is
compared to trace-based DDNS according to [5], ns-3-based
DES, and real world measurements in the same scenario. For
all simulation methods, the overall goal is to maximize the
congruency with the real world measurements.

The achieved data rate values for the different transmission
schemes and performance evaluation methods are shown in
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Fig. 5. Comparison of the resulting end-to-end behavior of different
opportunistic transmission schemes with different evaluation methods.

Fig. 5. It can be seen that the highest overlap between real
world measurements and corresponding simulated behaviors
is achieved with the DDNS method and the proposed hybrid
simulation method. The simulation-based representation of the
real world behavior is more accurate in the uplink than in the
downlink direction. As discussed in the previous analysis (see
Fig. 4), the machine learning models work more precise in the
uplink direction. Here, the end-to-end behavior is more deter-
mined by channel related effects which are well covered by the
utilized feature set. As analyzed in [22], the downlink data rate
prediction accuracy could be significantly improved through
consideration of load-depending features such as the number
of active users and the amount of occupied Physical Resource
Blocks (PRBs). However, as the UEs are not aware of these
indicators, it would be required to implement a cooperative
prediction approach where the eNBs actively distribute this
information via control channel announcements. In contrast
to the data-driven approaches, the modeling accuracy of the
DES setup is significantly lower. Even more problematic,
the massive improvements of the ML-CAT method over the
CAT method are not represented at all: If the simulation-
based performance analysis was used to make a decision for
one or the other opportunistic data transmission method, the
ns-3-based approach would likely lead to a wrong decision.
As all CAT-based methods rely on detecting and exploiting
connectivity hotspots, they are highly sensitive to the channel
conditions. However, the stochastic channel models fail to
represent the real world network behavior in the concrete
evaluation scenario. In addition, the need to simplify the
prediction model for ML-CAT (see Sec. IV-C) due to missing
features results in a reduction of the accuracy. The aggregated
modeling accuracy for all methods is shown in Fig. 6.
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Fig. 6. Relative aggregated modeling error for all considered simulation
approaches.
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C. Computational Efficiency

In addition to the achievable modeling accuracy, the re-
quired time to perform extensive simulation studies is another
crucial factor that influences the choice of methods for the
performance analysis. A comparison of the computational
efficiency of the considered methods is shown in Fig. 7.
The highest computational efficiency is achieved with the
pure DDNS method which relies on context trace analysis.
In comparison to the latter, the proposed hybrid method is
impacted by the model-based mobility simulation (e.g., online
routing) which reduces the simulation speed by a factor of
100. Still, it is able to benefit from the massive computational
efficiency of the machine learning-based network simulation.
The classical DES approach represented by ns-3 has the
lowest computational efficiency as it requires to explicitly
model communicating entities as well as their protocol stacks.
For all methods, there are only marginal differences in the
computation times of the different transmission schemes.

VI. CONCLUSION

In this paper, we presented a hybrid approach for simulating
the end-to-end performance of vehicular communication sys-
tems which brings together model-based mobility simulation,
multi-dimensional REMs, and data-driven network simulation.
In constrast to existing methods that focus on modeling com-
municating entities and their corresponding protocol stacks, we
utilize a combination of machine learning methods to model
the end-to-end behavior of a target KPI. In a comprehensive
validation campaign, the proposed method was able to mimic
the real world behaviors of different opportunistic data transfer



methods more accurately than a reference simulation setup
in ns-3. Moreover, the machine learning-enabled approach
achieved a massively higher computational efficiency than
classical system-level network simulation. As the achievable
accuracy of DDNS-enabled simulation approaches is bound
by the accuracy of the applied machine learning models,
future work will focus on optimizing the latter, e.g., through
application of cooperative prediction methods.
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