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Energy-efficiency of Massive Random Access with

Individual Codebook

Junyuan Gao, Yongpeng Wu, and Wenjun Zhang

Abstract—The massive machine-type communication has been
one of the most representative services for future wireless net-
works. It aims to support massive connectivity of user equipments
(UEs) which sporadically transmit packets with small size. In
this work, we assume the number of UEs grows linearly and
unboundedly with blocklength and each UE has an individual
codebook. Among all UEs, an unknown subset of UEs are active
and transmit a fixed number of data bits to a base station over a
shared-spectrum radio link. Under these settings, we derive the
achievability and converse bounds on the minimum energy-per-
bit for reliable random access over quasi-static fading channels
with and without channel state information (CSI) at the receiver.
These bounds provide energy-efficiency guidance for new schemes
suited for massive random access. Simulation results indicate
that the orthogonalization scheme TDMA is energy-inefficient for
large values of UE density µ. Besides, the multi-user interference
can be perfectly cancelled when µ is below a critical threshold.
In the case of no-CSI, the energy-per-bit for random access is
only a bit more than that with the knowledge UE activity.

Index Terms—CSIR, finite payload, individual codebook, mas-
sive random access, no-CSI, quasi-static fading channels

I. INTRODUCTION

Driven by many use cases, such as Internet of Things, mas-

sive machine-type communication (mMTC) has been regarded

as a necessary service in future wireless networks [1]. It aims

to achieve the communication between massive user equip-

ments (UEs) and the base station (BS), where only a fraction

of UEs are active at any given time interval and transmit data

payloads with small size. In order to reduce latency, the grant-

free random access scheme is usually adopted, where the UE

activity is unknown in advance for the receiver.

Some subsets of these topics have been discussed in the

past. When the number of UEs K is finite and blocklength

n is infinite, the fundamental limits can be obtained based

on classical multiuser information theory [2]. Motivated by

emerging systems with massive UEs, a new paradigm was

proposed in [3], where K was allowed to grow unboundedly

with n and the payload was infinite. The linear scaling was
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adopted in [3]–[7]. Since the data payload of UEs was usually

of small size, [4] and [5] derived bounds on the minimum

energy-per-bit for reliable transmission with finite payload and

infinite blocklength in AWGN and fading channels, respec-

tively. [6] and [7] studied random access limits in AWGN

and fading channels, respectively, where common codebook

was adopted with finite payload, blocklength, and active UEs.

When common codebook is utilized, there is no obvious

difference for theoretical derivation between random access

and massive access with the knowledge of UE activity.

In this work, we adopt individual codebook1 for each

UE. The number of UEs K grows linearly and unboundedly

with blocklength. Any Ka of them have a fixed number

of data bits to send over quasi-static fading channels. We

assume synchronous transmission. This system model has not

been studied before but is significant in mMTC. The infinite

payload assumption in classical multiuser information theory

will result in infinite energy-per-bit when K and n go to

infinity with a fixed rate, which is not suitable for practice

mMTC systems [1]. Thus, we consider finite payload and finite

energy codewords in this paper for energy-efficiency [1]. We

obtain the bounds on the minimum energy-per-bit for reliable

random access with no channel state information (CSI) and

CSI at the receiver (CSIR). These bounds provide energy-

efficiency guidance for new massive random access coding and

communication schemes. Since we do not know UE activity

in advance, the derivation is more difficult compared with [5].

Notation: We adopt uppercase and lowercase boldface let-

ters to denote matrices and column vectors, respectively. In
denotes the n × n identity matrix. Let (·)H, ⊕, ‖·‖p, ·\·,
|A|, and span(·) denote conjugate transpose, direct sum, ℓp-

norm, set subtraction, the cardinal of set A, and the span of a

set of vectors, respectively. Let CN (·, ·), β(·, ·), χ2(·), and

χ′
2(·, ·) denote circularly symmetric complex Gaussian dis-

tribution, beta distribution, chi-squared distribution, and non-

central chi-squared distribution, respectively. For 0 ≤ p ≤ 1,

let h(p)=−p ln(p) − (1−p) ln(1−p) and h2(p)=h(p)/ ln 2
with 0 ln 0 defined to be 0. N+ denotes the set of nonnegative

natural numbers. For n ∈N+, let [n] = {1, 2, · · ·, n}. Denote

the projection matrix on to the subspace spanned by S and

its orthogonal complement as PS and P⊥
S , respectively. Let

f(x) =O(g(x)), x→∞ mean lim supx→∞|f(x)/g(x)|<∞
and f(x)=o(g(x)), x→∞ mean limx→∞|f(x)/g(x)|=0.

1It should be noted that individual codebook and common codebook
assumptions correspond to different massive access models in practice, which
jointly constitute a complete mMTC research [1].
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II. SYSTEM MODEL

We assume the number of UEs K grows linearly and

unboundedly with the blocklength n, i.e., K=µn, µ<1, and

n→∞ [4]. We denote the number of active UEs as Ka=paK ,

where pa is the active probability of each UE. The UE set and

active UE set are denoted as K and Ka, respectively.

We assume each UE has an individual codebook with M =
2k vectors. The codebook of the j-th UE is denoted as Cj =
{

c
j
1, c

j
2, . . . , c

j
M

}

, where cjm ∈ Cn for m ∈ [M ]. We consider

quasi-static fading channels. The receiver observes y given by

y =
∑

j∈Ka

hjc
j + z = AHβ + z ∈ C

n, (1)

where hj
i.i.d.∼ CN (0, 1) denotes the fading coefficient between

BS and UE j, H is a KM×KM block diagonal matrix where

block i is an M ×M diagonal matrix with diagonal entries be

hi, and z includes i.i.d. CN (0, 1) entries. We require the power

constraint
∥

∥cjm
∥

∥

2

2
≤ nP for m ∈ [M ]. We denote the signal

of UE j as cj=c
j
Wj

, where Wj∈ [M ] is chosen uniformly at

random. The ((j−1)M+1)-th column to the (jM)-th column

of A are codewords of UE j. The block-sparse vector β ∈
{

β∈{0, 1}KM:‖β‖0=Ka,
∑jM

i=(j−1)M+1βi={0, 1},∀j∈K
}

.

The decoder aims to find the estimate Ŵj . We use the per-user

probability of error (PUPE) ǫ as performance metric [6]

Pe=E





1

Ka

∑

j∈Ka

1
[

Wj 6=Ŵj

]



 ≤ ǫ. (2)

The system achieves the spectral efficiency S = paµk and

energy-per-bit ε= nP
k

=
Ptot,a

S
, where Ptot,a =KaP denotes

the total power of active UEs. For finite ε, we consider finite

Ptot,a, i.e., P decaying as O(1/n). In this case, we have:

Definition 1. An (n,M, ǫ, ε,K,Ka) random access code for

the channel Py|c1,...,cKa :
∏

j∈Ka
Cj→Y is a pair of (possibly

randomized) maps including encoders {fj : [M ]→Cj}Kj=1 and

the decoder g :Y→
(

[M ]
Ka

)

such that power constraint is satisfied

and Pe ≤ ǫ. Then, we have the following fundamental limit

ε∗(M,µ, pa, ǫ)= lim
n→∞

inf{ε :∃(n,M, ǫ, ε,K,Ka)−code}, (3)

where the infimum is taken over all possible encoders and

decoders, and the limit is understood as lim inf or lim sup
depending on whether an upper or a lower bound is given.

III. ACHIEVABILITY BOUND

A. CSIR

Assuming decoder knows the realization of channel fading

coefficients, we can use euclidean metric to decode and obtain:

Proposition 1. Fix spectral efficiency S and target PUPE ǫ.
Given ν∈(1−ǫ,1] and ǫ′=ǫ−1+ν with CSIR, if ε>ε∗CSIR=

supθ∈(ǫ′,ν]supψ∈[0,ν−θ]
P

′

tot,a(θ,ψ)

S
, there exists a sequence of

(n,M, ǫn, ε,K,Ka) codes such that lim supn→∞ ǫn≤ǫ, where

P
′

tot,a(θ,ψ)=
4 (exp{γθ}−1)

ξ(ψ,ψ+θ)−4(exp{γθ}−1)ξ(ψ+θ,ψ+θ+1−ν),
(4)

ξ(ς, ζ) = ς ln(ς)− ζ ln(ζ) + ζ − ς, (5)

γθ=paµh(1−ν+θ)+µ(1−νpa+θpa)h
(

θpa
1+θpa−νpa

)

+θpaµlnM.

(6)

Hence ε∗(M,µ, pa, ǫ) ≤ ε∗CSIR.

Proof. We use a random coding scheme by generating a

Gaussian codebook for each UE with cjm
i.i.d.∼ CN (0,P ′In)

and P ′<P . The j-th UE sends cj =c
j
Wj

1

{

∥

∥

∥c
j
Wj

∥

∥

∥

2

2
≤nP

}

if

it is active. The decoder estimates the messages of Ka1 =νKa

active UEs. Let ? denote an error symbol. The decoder outputs

[

K̂a1 ,
(

ĉj
)

j∈K̂a1

]

=arg min
K̂a1⊂K

|K̂a1|=Ka1

min
(ĉj∈Cj)j∈K̂a1

∥

∥

∥

∥

∥

∥

y −
∑

j∈K̂a1

hj ĉ
j

∥

∥

∥

∥

∥

∥

2

2

,

(7)

Ŵj =

{

f−1
j

(

ĉj
)

j ∈ K̂a1
? j /∈ K̂a1

. (8)

We change the measure over which E in (2) is taken to the

one with cj=c
j
Wj

at the cost of adding p0=KaP

[

χ2(2n)
2n > P

P ′

]

[6]. We have p0→0 as n→∞. The averaged PUPE becomes

Pe ≤ p0+E





1

Ka

∑

j∈Ka

1
[

Wj 6=Ŵj

]





new measure

= p0+p1. (9)

Next, we adopt the new measure and omit the subscript. Let

Ft =
{

∑

j∈Ka
1
[

Wj 6=Ŵj

]

=Ka,t

}

, Ka,t=Ka−Ka1+t, and

T =(ǫ′Ka, νKa] ∩ N+. We can bound p1 as

p1 ≤ ǫ+P

[

⋃

t∈T

Ft

]

≤ ǫ+min

{

1,
∑

t∈T

P[Ft]

}

= ǫ+p2. (10)

For simplicity, we rewrite “
⋃

S1⊂Ka,|S1|=Ka,t
” to “

⋃

S1
” and

“
⋃

S2⊂K\Ka∪S1,|S2|=t
” to “

⋃

S2
”; similarly for

∑

. We have

P
[

Ft|H,c[Ka], z
]

≤P











⋃

S1

⋃

S2

⋃

c
i′∈Ci:

i∈S2,ci
′6=ci







∥

∥

∥

∥

∥

z+
∑

i∈S1

hic
i−
∑

i∈S2

hic
i′

∥

∥

∥

∥

∥

2

2

≤ min
S3⊂S1
|S3|=t

∥

∥

∥

∥

∥

∥

z+
∑

i∈S1\S3

hic
i

∥

∥

∥

∥

∥

∥

2

2











∣

∣

∣

∣

∣

∣

∣

H,c[Ka], z







≤
∑

S1

∑

S2

M t
P
[

F (S1, S2, S
∗
3 )|H,c[Ka], z

]

,

(11)

where F (S1,S2,S
∗
3 )=

{

∥

∥

∥z1+
∑

i∈S∗
3
hic

i−∑i∈S2
hic

i′
∥

∥

∥

2

2
≤‖z1‖22

}

with z1=z+
∑

i∈S1\S∗
3
hic

i, c[Ka]=
{

ci: i∈Ka
}

, and S∗
3 ⊂S1

is a possibly random subset of size t.
To further bound (11), for a ∼ CN (0, In), b ∈ C, u ∈ Cn,

γ > − 1
|b|2

, and φ = 1 + γ |b|2, we utilize the identity [4]

E
[

exp
{

−γ‖ba+ u‖22
}]

= φ−nexp

{

−γ
φ
‖u‖22

}

. (12)



The Chernoff bound is also utilized for any random variable U ,

i.e., P (U ≥ d)≤minλ≥0 exp {−λd}E [exp {λU}] [2]. Hence,

let λ2 = 1 + λ1P
′
∑

i∈S2
|hi|2, and we have

P
[

F (S1, S2, S
∗
3)|H, c[Ka], z

]

≤min
λ1≥0

(λ2)
−n

exp

{

λ1‖z1‖22−
λ1
λ2

∥

∥

∥

∥

z1+
∑

i∈S∗
3

hic
i

∥

∥

∥

∥

2

2

}

. (13)

Taking expectation over c[S∗
3 ]

and z1, respectively, we have

P[F (S1, S2, S
∗
3 )|H]=



1+
P ′
(

∑

i∈S2
|hi|2+

∑

i∈S∗
3
|hi|2

)

4
(

1+P ′
∑

i∈S1\S∗
3
|hi|2

)





−n

.

(14)

We sort {hi : i∈Ka} in decreasing order of fading power as
∣

∣

∣h
↓
1

∣

∣

∣≥
∣

∣

∣h
↓
2

∣

∣

∣≥ . . .≥
∣

∣

∣h
↓
Ka

∣

∣

∣. Let Ψn= [0, ν−θ]∩
{

i
Ka

: i∈ [Ka]
}

.

Choosing S∗
3 ⊂S1 to contain indices with top t fading power,

we can obtain

P[Ft|H]≤
(

Ka

Ka,t

)(

K−Ka1+t

t

)

M t

·









min
ψ∈Ψn















1+
P ′
∑ψKa+t

i=ψKa+1

∣

∣

∣h
↓
i

∣

∣

∣

2

4

(

1+P ′
∑ψKa+t+Ka−Ka1

i=ψKa+t+1

∣

∣

∣h
↓
i

∣

∣

∣

2
)























−n

. (15)

Let Θn=(ǫ′, ν]∩
{

i
Ka

: i∈ [Ka]
}

and t= θKa. When θ= ν,
(

Ka

Ka,t

)

=1. For θ∈Θn\{ν}, we have [8]

(

Ka

Ka,t

)

≤
√

1

2πKa(1−ν+θ)(ν−θ)
exp{Kah(1−ν+θ)}. (16)

Let Kt = K −Ka1 + t. Similarly, for θ ∈ Θn, we have

(

Kt

t

)

≤
√

1 + θpa − νpa
2πθKa(1−νpa)

exp

{

Kth

(

θpa
1+θpa−νpa

)}

. (17)

For τ >0 and 0<ς,ζ <1, with probability 1− exp{−O(nτ )},

we have 1
Ka

∑⌈ζKa⌉
j=⌈ςKa⌉

∣

∣

∣
h↓j

∣

∣

∣

2

= ξ(ς, ζ) + o(1) [5]. We define

the event Ln with P [Lcn] exponentially small in n

Ln=
⋂

ψ∈Ψn













1

Ka

(ψ+θ+1−ν)Ka
∑

j=(ψ+θ)Ka+1

∣

∣

∣h
↓
j

∣

∣

∣

2

=ξ(ψ+θ, ψ+θ+1−ν)+o(1)







⋂







1

Ka

(ψ+θ)Ka
∑

j=ψKa+1

∣

∣

∣
h↓j

∣

∣

∣

2

=ξ(ψ, ψ+θ)+o(1)













. (18)

Let κ = 1− νpa + θpa. We can bound p2 as

p2≤ E

[

min

{

1,
∑

t∈T

P[Ft|H]

}

1 [Ln]

]

+ P [Lcn]

≤ min

{

1,
∑

θ∈Θn

exp

{

o(n)−n
(

−µκh
(

θpa
κ

)

−θpaµ lnM

+ min
ψ∈Ψn

ln

(

1+
P ′Kaξ(ψ, ψ+θ)

4 (1+P ′Kaξ (ψ+θ,ψ+1−ν+θ))

)

−paµh(1− ν + θ))}}+ o(1). (19)

Define Θ = (ǫ′, ν] and Ψ = [0, ν − θ]. Choosing KaP
′ >

supθ∈Θsupψ∈ΨP
′

tot,a(θ,ψ) will ensure lim supn→∞p2 =
0.

B. No-CSI

In this section, we assume neither the transmitters nor the

decoder knows the realization of fading coefficients, but they

both know the fading distribution. In this case, we can obtain:

Proposition 2. Fix spectral efficiency S and target PUPE

ǫ. With no-CSI, if ε > ε∗no−CSI = supθ∈(ǫ,1]
P

′

tot,a(θ)

S
,

there exists a sequence of (n,M, ǫn, ε,K,Ka) codes such that

lim supn→∞ǫn≤ǫ, where

P
′

tot,a (θ) =
Wθ

(1− δ∗3) ξ (1− θ, 1)
, (20)

Wθ =
1−Vθ
Vθ

(1 + δ2,θ), (21)

Vθ=exp

{

−
(

δ∗1,θ+
1− paµ+ θpaµ

1− paµ
h

(

θpaµ

1− paµ+ θpaµ

)

+
θpaµ lnM

1− paµ
+
µ(1−pa+θpa)

1− paµ
h

(

θpa
1−pa+θpa

))}

, (22)

δ∗1,θ =
paµ

1− paµ
h(θ), (23)

cθ =
2Vθ

1− Vθ
, (24)

qθ =
paµ

1− paµ+ θpaµ
h(θ), (25)

δ∗2,θ = qθ (1 + cθ) +
√

q2θcθ (2 + cθ) + 2qθ (1 + cθ), (26)

δ∗3=inf{x : 0 < x < 1,− ln(1− x)− x > 0} , (27)

where ξ(·, ·) is given in (5). Hence, ε∗(M,µ, pa, ǫ)≤ε∗no−CSI .

Proof. We assume each UE has a Gaussian codebook with

power P ′ < P . The j-th UE transmits cj if it is active. We

utilize the projection decoder based on the fact that y in (1)

belongs to the subspace spanned by the transmitted signals if

the additive noise is neglected [9]. The output is given by

[

K̂a,
(

ĉj
)

j∈K̂a

]

=arg max
K̂a⊂K,|K̂a|=Ka

max
(ĉj∈Cj)j∈K̂a

∥

∥

∥P{̂cj:j∈K̂a}y
∥

∥

∥

2

2
,

(28)

Ŵj =

{

f−1
j

(

ĉj
)

j ∈ K̂a
? j /∈ K̂a

. (29)

As in Section III-A, we change the measure and obtain (9).

Next, we bound p1 as in (10) with p2=min
{

1,
∑

t∈T P [Ft]
}

,

Ft =
{

∑

j∈Ka
1
[

Wj 6=Ŵj

]

= t
}

, and T = (ǫKa,Ka] ∩ N+.

Let F (S1, S2) =

{

∥

∥

∥P
c
′

[S2]
,c[Ka\S1]

y

∥

∥

∥

2

2
≥
∥

∥Pc[Ka]
y
∥

∥

2

2

}

. We



rewrite “
⋃

S1⊂Ka,|S1|=t
” to “

⋃

S1
” and “

⋃

S2⊂K\Ka∪S1,|S2|=t
”

to “
⋃

S2
”; similarly for

∑

. We have

P
[

Ft|H,c[Ka], z
]

=P











⋃

S1

⋃

S2

⋃

c
i′∈Ci:

i∈S2,ci
′6=ci

F (S1, S2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

H, c[Ka], z











. (30)

Let A1 = c[Ka\S1], B1 = c
′

[S2]
, and V = span{A1, B1} =

A⊕B where A and B are subspaces of dimension Ka−t and t
respectively, with A=span(A1) and B is orthogonal comple-

ment of A1 in V . Hence, ‖PV y‖22=‖PA1y‖22 +
∥

∥PBP⊥
A1

y
∥

∥

2

2
.

Denote nt= n−Ka+ t. Conditioned on H, c[Ka], and z, the

law of
∥

∥PBP⊥
A1

y
∥

∥

2

2
is the law of squared length orthogonal

projection of a fixed vector in Cnt of length
∥

∥P⊥
A1

y
∥

∥

2

2
onto a

(uniformly) random t dimensional subspace. It is the same as

the law of squared length orthogonal projection of a random

vector of length
∥

∥P⊥
A1

y
∥

∥

2

2
in Cnt onto a fixed t dimensional

subspace, i.e.,
∥

∥P⊥
A1

y
∥

∥

2

2
β(t, n−Ka) [9]. We have

P
[

F (S1, S2)|H, c[Ka], z
]

= Fβ(GS1 ;n−Ka, t), (31)

where GS1=
∥

∥

∥P⊥
c[Ka]

z

∥

∥

∥

2

2

/∥

∥

∥P⊥
c[Ka\S1]

y

∥

∥

∥

2

2
. Fβ(GS1 ;n−Ka, t)

denotes the CDF of beta distribution with parameters n−Ka

and t satisfying Fβ(GS1 ;n−Ka, t)≤
(

nt−1
t−1

)

Gn−Ka

S1
for t≥1.

Denote Kt = K −Ka + t. Then, (30) can be bounded as

P
[

Ft|H, c[Ka], z
]

≤min

{

1,
∑

S1

(

Kt

t

)

M t

(

nt − 1

t− 1

)

Gn−Ka

S1

}

.

(32)

Let t= θKa and Θn=(ǫ, 1]∩
{

i
Ka

: i∈ [Ka]
}

. We can bound
(

Ka

t

)

and
(

Kt

t

)

based on [8]. Meanwhile, we have

(

nt − 1

t− 1

)

≤
√

nt − 1

2π(t− 1) (n−Ka)
exp

{

nth

(

t

nt

)}

. (33)

We denote rθ =
θpaµ lnM
1−paµ

+ 1−paµ+θpaµ
1−paµ

h
(

θpaµ
1−paµ+θpaµ

)

+

µ−paµ+θpaµ
1−paµ

h
(

θpa
1−pa+θpa

)

+
ln( 1+θpa−pa

2πθKa(1−pa) )
2(n−Ka)

+
ln( nt−1

2π(t−1)(n−Ka))
2(n−Ka)

,

Ṽn,θ = rθ + δ1,θ with δ1,θ > 0, and Vn,θ = exp
{

−Ṽn,θ
}

. We

have limn→∞Vn,θ = Vθ as in (22). Define the event L1 =
⋂

t∈T

⋂

S1
{GS1 ≤Vn,θ}. Then, p2 can be bounded as

p2≤E

[

min

{

1,
∑

t∈T

∑

S1

exp{(n−Ka)rθ}Gn−Ka

S1

}

1[L1]

]

+P[Lc1]

≤
∑

θ∈Θn\{1}

exp

{

Kah(θ)−(n−Ka)δ1,θ−
1

2
ln(2πθKa(1−θ))

}

+ exp{−n(1−paµ)δ1,θ=1}+ P [Lc1] . (34)

Let p3 = P [Lc1], which can be bounded as

p3≤P





⋃

t∈T

⋃

S1

∥

∥

∥P⊥
c[Ka\S1]

z

∥

∥

∥

2

2
>Vn,t

∥

∥

∥

∥

∥

P⊥
c[Ka\S1]

(

∑

i∈S1

hici+z

)∥

∥

∥

∥

∥

2

2





=P





⋃

t∈T

⋃

S1

‖QS1‖22>
Vn,t

(1−Vn,t)2

∥

∥

∥

∥

∥

P⊥
c[Ka\S1]

∑

i∈S1

hici

∥

∥

∥

∥

∥

2

2



. (35)

where QS1=P⊥
c[Ka\S1]

(

z− Vn,t

1−Vn,t

∑

i∈S1
hici

)

. Conditioned on

H and c[Ka], we have ‖QS1‖22∼ 1
2χ

′
2(2λ, 2nt) with conditional

expectation µ=λ+nt and λ=
∥

∥

∥

Vn,t

1−Vn,t
P⊥
c[Ka\S1]

∑

i∈S1
hici

∥

∥

∥

2

2
.

Denote U =
Vn,t

1−Vn,t

∥

∥

∥P⊥
c[Ka\S1]

∑

i∈S1
hici

∥

∥

∥

2

2
− nt = ntU

1

and T = 1
2χ

′
2(2λ, 2nt) − µ. Define the event L2 =

⋂

t∈T

⋂

S1

{

U1≥δ2,θ
}

with δ2,θ>0. Then, we can obtain

p3≤
∑

t∈T

∑

S1

E
[

P
[

T >U |H,c[Ka]

]

1
[

U1≥δ2,θ
]]

+P[Lc2]. (36)

To further bound p3, we use the following concentration

results [10], [11]. Let χ ∼ χ2(d). Then ∀x > 1, we have

P

[

χ ≤ d

x

]

≤ exp

{

−d
2

(

lnx+
1

x
− 1

)}

. (37)

Let χ ∼ χ′
2(a, d). Then ∀x > 0, we have

P[χ≥x+a+d ]≤exp

{

−1

2

(

x+d+2a−
√
d+2a

√
2x+d+2a

)

}

.

(38)

Hence, we have P
[

T >U |H,c[Ka]

]

≤exp
{

−ntfn,θ(U1)
}

. Let

V ′
n,θ=

2Vn,θ

1−Vn,θ
. For 0<Vn,θ<1 and x>0, fn,θ(x) is given by

fn,θ(x)=(1 + V ′
n,θ)(1 + x)

−
√

1+V ′
n,θ(1+x)

√

1+2x+V ′
n,θ(1+x) > 0. (39)

It is a monotonically increasing function of x. Then, we have

p3≤
∑

θ∈Θn\{1}

exp

{

Kah(θ)−ntfn,θ(δ2,θ)−
1

2
ln(2πθKa(1−θ))

}

+ exp {−ntfn,θ=1(δ2,θ=1)}+P [Lc2] . (40)

We have

∥

∥

∥P⊥
c[Ka\S1]

∑

i∈S1
hici

∥

∥

∥

2

2
∼ P ′

2

∑

i∈S1
|hi|2 χ2(2nt)

conditioned on H. Let L3=
{

χ2(2nt)
2nt

≥1−δ3
}

with 0<δ3<1

and we have p4 = P [Lc3] ≤ exp {−nt (− ln (1− δ3)− δ3)}.

Given Wθ in (21), we can bound p5 = P [Lc2] as

p5≤ P

[

⋃

t∈T

⋃

S1

{

P ′
∑

i∈S1

|hi|2
χ2(2nt)

2nt
<Wθ

}

∩{L3}
]

+P [Lc3]

≤
∑

t∈T

P

[

P ′
Ka
∑

i=Ka−t+1

∣

∣

∣h
↓
i

∣

∣

∣

2

<
Wθ

1− δ3

]

+ p4

= p6 + p4. (41)



Define the event L4=

{

1
Ka

∑Ka

j=Ka−t+1

∣

∣

∣h
↓
j

∣

∣

∣

2

=ξ(1−θ,1)+o(1)
}

with P [Lc4] exponentially small in n. p6 can be bounded as

p6 ≤
∑

t∈T

P

[{

P ′
Ka
∑

i=Ka−t+1

∣

∣

∣
h↓i

∣

∣

∣

2

2
<

Wθ

1− δ3

}

∩ {L4}
]

+
∑

t∈T

P[Lc4]

≤
∑

t∈T

1

[

P ′Ka(ξ (1− θ, 1)+o(1))<
Wθ

1−δ3

]

+o(1). (42)

Hence, p2 can be bounded as

p2 ≤
∑

θ∈Θn

{exp {o(n)− n ((1− paµ)δ1,θ − paµh(θ))}

+ exp {o(n)−n((1−paµ+θpaµ)fn,θ(δ2,θ)−paµh(θ))}

+1

[

P ′Ka(ξ(1−θ, 1)+o(1))<
Wθ

1−δ3

]}

+ exp {−nt (−ln(1−δ3)−δ3)}+ o(1). (43)

For ∀θ∈Θ=(ǫ, 1], choosing δ1,θ >δ
∗
1,θ , δ2,θ >δ

∗
2,θ , δ3>δ

∗
3 ,

and KaP
′>P

′

tot,a (θ) will ensure lim supn→∞ p2=0.

IV. CONVERSE BOUND

A. CSIR

Proposition 3. We assume spectral efficiency S and target

PUPE ǫ are fixed. With CSIR, we can obtain ε∗(M,µ, pa, ǫ) ≥
inf

Ptot,a

S
, where infimum is taken over all Ptot,a>0 satisfying

Ptot,a≥
2paµθk−paµǫlog2(M−1)−paµh2(ǫ)−1

ξ(1− θ, 1)
, ∀θ∈(0, 1], (44)

ǫ ≥ 1− E

[

Q

(

Q−1

(

1

M

)

−
√

2Ptot,a
paµ

|h|2
)]

. (45)

Proof. Let WKa
={Wi : i∈Ka} be the sent messages of active

UEs, XKa
=
{

ci : i∈Ka
}

be corresponding codewords, yKa
be

the received vector, and ŴKa
=
{

Ŵi : i∈Ka
}

be the decoded

messages. We have the Markov chain: WKa
→XKa

→yKa
→

ŴKa
. We assume a genie reveals the set Ka of active UEs and

a set S1 ⊂Ka for messages WS1 = {Wi : i∈S1} and fading

coefficients hS1 ={hi : i∈S1} to the decoder. Let S2=Ka\S1

with |S2| = θKa and θ ∈ Θn = (0, 1] ∩
{

i
Ka

: i∈ [Ka]
}

. The

equivalent received message is given by

yG =
∑

i∈S2

hic
i + z ∈ C

n. (46)

Denote the decoded message for the i-th UE with genie as

ŴG
i . Let Li=1

[

Wi 6=ŴG
i

]

and PGe,i=E [Li]. We have PGe,i=

0 for i∈S1. The averaged PUPE is PGe = 1
Ka

∑

i∈S2
PGe,i ≤ ǫ.

For i ∈ S2, based on Fano inequality, we have

log2M−PGe,i log2(M − 1)−h2
(

PGe,i
)

≤I
(

Wi; Ŵ
G
i

)

. (47)

Considering
∑

i∈S2
I
(

Wi;Ŵ
G
i

)

≤nE
[

log2

(

1+P
∑

i∈S2
|hi|2

)]

and the concavity of h2, we can obtain

θk−PGe log2(M−1)−h2
(

PGe
)

≤ n

Ka

E

[

log2

(

1+P
∑

i∈S2

|hi|2
)]

.

(48)

Since PGe ≤ ǫ ≤ 1− 1
M

, we have PGe log2(M−1)+h2
(

PGe
)

≤
ǫ log2(M − 1) + h2 (ǫ). We can obtain

θk−ǫ log2(M−1)−h2(ǫ)≤
n

Ka

E



log2



1+P

Ka
∑

i=(1−θ)Ka

∣

∣

∣h
↓
i

∣

∣

∣

2







. (49)

For a, b∈ (0, 1], let SKa
(a, b)= 1

Ka

∑bKa

i=aKa

∣

∣

∣h
↓
i

∣

∣

∣

2

satisfying

SKa
(a, b)→ξ(a, b) as Ka → ∞ and E[SKa

(a, b)] ≤ 1. The

family of random variables {SKa
(a, b) :Ka∈N+} is uniformly

integrable based on the dominated convergence theorem [12].

Since 0 < log2 (1+Ptot,aSKa
(a, b)) < Ptot,aSKa

(a, b), the

family {log2(1+Ptot,aSKa
(a, b)) :Ka∈N+} is also uniformly

integrable. As Ka → ∞, since log2(1+Ptot,aSKa
(a, b)) →

log2(1+Ptot,aξ(a, b)), we have E[log2(1+Ptot,aSKa
(a, b))]→

log2(1+Ptot,aξ(a, b)) [12]. As n→ ∞, we can obtain (44).

In addition, (45) is derived for a single UE sending k bits

with PUPE ǫ in quasi-static fading channels [13].

B. no-CSI

Proposition 4. We generate codebooks independently for UEs

with each entry i.i.d. from CN (0, P ). Given spectral efficiency

S and target PUPE ǫ, we have ε∗(M,µ, pa, ǫ) ≥ inf
Ptot,a

S
,

where infimum is taken over all Ptot,a>0 satisfying

lnM−ǫ ln(M−1)−h(ǫ)≤MV
(

1

paµM
,Ptot,a

)

−V
(

1

paµ
,Ptot,a

)

,

(50)

V(r,γ)=rln(1+γ−F(r,γ))+ln(1+rγ−F(r,γ))−F(r,γ)

γ
, (51)

F(r, γ)=
1

4

(
√

γ
(√
r + 1

)2
+1−

√

γ
(√
r − 1

)2
+1

)2

. (52)

Proof. We assume a genie reveals the set of active UEs. Based

on the analysis in Section IV-A, we have

KalnM−Kaǫ ln(M−1)−Kah(ǫ)≤I
(

XKa
;X̂Ka

)

≤I
(

β̄;y
∣

∣Ā
)

,

(53)

where β̄ ∈ CKaM indicates which codewords are sent for

active UEs and Ā is the n × Ka M submatrix of A

including codewords of active UEs. Let H̄∈CKaM×KaM be

the submatrix of H including fading coefficients of active UEs.

Based on the chain rule of mutual information, we have

I
(

β̄, H̄β̄;y
∣

∣Ā
)

=I
(

β̄;y
∣

∣ Ā
)

+I
(

H̄β̄;y
∣

∣ β̄, Ā
)

=I
(

H̄β̄;y
∣

∣ Ā
)

+I
(

β̄;y
∣

∣ H̄β̄, Ā
)

. (54)

Since β̄→H̄β̄→(y, Ā) forms a Markov chain, the mutual

information I
(

β̄;y
∣

∣H̄β̄,Ā
)

=0. Hence, we have I
(

β̄;y
∣

∣Ā
)

=
I
(

H̄β̄;y
∣

∣Ā
)

−I
(

H̄β̄;y
∣

∣β̄, Ā
)

. We can obtain

I
(

H̄β̄;y
∣

∣ Ā = Ā1

)

= I
(

H̄β̄; Ā1H̄β̄ + z
)

≤ sup
u

I
(

u; Ā1u+ z
)

= ln det

(

In +
1

M
Ā1Ā

H
1

)

, (55)

where Ā1 is a realization of Ā and the supremum is over ran-

dom vector u with E[u]=0 and E
[

uuH
]

=E

[

(

H̄β̄
)(

H̄β̄
)H
]

=



1
M
IKaM . The supremum is achieved if u∼CN

(

0, 1
M
IKaM

)

[14]. Based on the random-matrix theory, we have [15]

I
(

H̄β̄;y
∣

∣Ā
)

≤E

[

lndet

(

In+
1

M
ĀĀH

)]

=KaMV
(

1

paµM
,Ptot,a

)

.

(56)

For any realization Ā1 of Ā and β̄1 of β̄, we have

I
(

H̄β̄;y
∣

∣ β̄= β̄1, Ā=Ā1

)

= I
(

H̄β̄1; Ā1H̄β̄1 + z
)

= I
(

h̃; Ã1h̃+ z
)

= ln det
(

In+Ã1Ã
H
1

)

, (57)

where h̃ ∈ CKa includes fading coefficients of active UEs

and Ã1 is the n ×Ka submatrix of Ā1 formed by columns

corresponding to the support of β̄1. Hence, we have [15]

I
(

H̄β̄;y
∣

∣β̄,Ā
)

=E

[

lndet
(

In+ÃÃH
)]

=KaV
(

1

paµ
,Ptot,a

)

.

(58)

V. RESULTS AND DISCUSSION

In this section, we evaluate the bounds derived in this work.

Given the payload k = 100, active probability pa = 0.6,

and target PUPE ǫ = 0.001, we show the trade-off of UE

density µ with the minimum energy-per-bit ε∗ in Fig. 1. For

TDMA, we split the blocklength n equally among K UEs. To

achieve S=paµk, we obtain the smallest P ∗ and ε∗=P ∗/(µk)
ensuring the access of an active UE with rate µk, blocklength

1/µ and PUPE ǫ based on the bound in [16]. From Fig. 1, we

can observe perfect multi-user interference (MUI) cancellation

effect in quasi-static fading random access channels. It means

that for small values of µ, the optimal coding system can be

performed as if each active UE is operated in isolation without

interference. The orthogonalization scheme TDMA does not

have this behavior. Although TDMA has better performance

when µ→0, it is more energy-inefficient at higher UE density.

In Fig. 2, given k=100 and ǫ=0.001, we show the trade-off

of active UE density paµ and ε∗ with no-CSI. The converse

bound and the achievability bound with the knowledge of UE

activity are invariant for pa if paµ is fixed. Given paµ, as

pa increases, the uncertainty of active UEs decreases, and

the achievability bound of random access can be reduced.

Besides, this bound is close to the achievability bound with

the knowledge of active UE set, i.e., only a bit more energy

is required for random access compared with the case where

UE activity is known.

VI. CONCLUSION

In this work, we assume the number of UEs grows linearly

and unboundedly with the blocklength and each active UE has

finite data bits to send over quasi-static fading channels. The

achievability and converse bounds on the minimum energy-

per-bit for reliable massive random access with CSIR and

no-CSI are derived. Simulation results show perfect MUI

cancellation for small values of UE density µ and the energy-

inefficiency of TDMA as µ increases. Besides, with no-CSI,
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Fig. 1: µ versus ε∗ with k = 100, pa = 0.6, and ǫ = 0.001.
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Fig. 2: paµ versus ε∗ with k = 100 and ǫ = 0.001.

the energy-per-bit for random access is only a bit more than

that with the knowledge of UE activity. The bounds derived in

this work provide energy-efficiency targets for future massive

random access coding and communication schemes.
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