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Optimal Beam Association for High Mobility

mmWave Vehicular Networks: Lightweight Parallel

Reinforcement Learning Approach
Nguyen Van Huynh, Diep N. Nguyen, Dinh Thai Hoang, and Eryk Dutkiewicz

Abstract—In intelligent transportation systems (ITS), vehicles
are expected to feature with advanced applications and services
which demand ultra-high data rates and low-latency communi-
cations. For that, the millimeter wave (mmWave) communication
has been emerging as a very promising solution. However,
incorporating the mmWave into ITS is particularly challenging
due to the high mobility of vehicles and the inherent sensitivity
of mmWave beams to dynamic blockages. This article addresses
these problems by developing an optimal beam association
framework for mmWave vehicular networks under high mobility.
Specifically, we use the semi-Markov decision process to capture
the dynamics and uncertainty of the environment. The Q-learning
algorithm is then often used to find the optimal policy. However,
Q-learning is notorious for its slow-convergence. Instead of
adopting deep reinforcement learning structures (like most works
in the literature), we leverage the fact that there are usually
multiple vehicles on the road to speed up the learning process.
To that end, we develop a lightweight yet very effective parallel
Q-learning algorithm to quickly obtain the optimal policy by
simultaneously learning from various vehicles. Extensive simu-
lations demonstrate that our proposed solution can increase the
data rate by 47% and reduce the disconnection probability by
29% compared to other solutions.

Index Terms—millimeter wave, vehicular networks, high mo-
bility, handover, beam selection, parallel Q-learning.

I. INTRODUCTION

Over the past few years, the explosive growth of interest

in intelligent transportation and vehicular communications

offers a great potential to enhance traffic efficiency, improve

road safety, and enable open disruptive entertainment services

and autonomous driving [2], [3]. These applications often

require low-latency, high reliability, and especially multi-Gbps

network access. For instance, Google’s self-driving car in

a second can generate up to 750 MB of data [4]. It is

expected that a vehicle may produce 1 Terabyte of data in a

single trip [2]. To address this critical problem, the emerging

millimeter wave (mmWave) communication has been recently

considered as a very promising solution [5]. Comparing with

existing wireless networks, the mmWave technology operates

at much higher carrier frequencies, i.e., from 30 GHz to

300 GHz. Thus, it possesses much more abundant spectrum

resources, resulting in potentially extremely high data rates
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and low-latency communications. Nevertheless, in mmWave

communications, the temporal degradation of channel quality

occurs much more frequently than conventional (lower fre-

quency) communications due to high propagation attenuation,

selective directivity, and severe susceptibility to blockages,

especially in vehicular communications under high mobility.

This work aims to address these problems to enable mmWave

communications under high mobility.

A. Related Work and Motivation

Various solutions in the literature have been proposed to

address the above inherent limitations of mmWave commu-

nications, e.g., [6]-[11]. In [6], the authors aimed to jointly

optimize the transmit power, interference coordination, and

beamforming to maximize the signal to interference plus noise

ratio and the sum-rate. In [7], the authors aimed to enhance

the users’ quality-of-experience by scheduling communication

tasks on both microwave and mmWave bands. Similarly, a new

protocol that enables simultaneous connections to conventional

4G cells and 5G mmWave cells is introduced in [8]. Differ-

ently, a new adaptive beamforming strategy is proposed in [10]

to improve the system communication rate by taking the noise

into account and selecting the beamforming vectors based on

the posterior of the angle-of-arrival.

The aforementioned solutions and most others in the lit-

erature did not account for the high mobility of vehicles

and dynamics of the environment. In [12], the authors pro-

posed an adaptive channel estimation mechanism for beam-

forming with the aid of location information. The position

information is then demonstrated as an important factor to

greatly improve the initial association of vehicles to the

infrastructure. Similarly, in [13], the authors introduced a beam

switching mechanism in mmWave vehicle-to-infrastructure

communications. In [14], a deep learning approach is pro-

posed to predict mmWave beams and blockages with sub-

6 GHz channels. Specifically, the authors studied that there

are deterministic mapping from uplink sub-6 GHz channels to

downlink mmWave channels. Hence, with the uplink channel

knowledge, it is possible to predict/infer mmWave beams and

blockages with low training overhead because sub-6 GHz

channels can be estimated by using a small number of pilots.

Nevertheless, it is very challenging to derive and analyze

these mapping functions. To tackle this, the authors developed

a deep learning model with a sufficiently large deep neural

network to efficiently predict the optimal beams and blockages

status.
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To deal with the inherent dynamic and uncertainty of

mmWave links’ quality, the authors in [15] proposed an online

learning algorithm to obtain the optimal beam selection policy

based on the prior environment information. This problem

is first modeled as a contextual multi-armed bandit prob-

lem. Then, the learning algorithm is developed to guide the

mmWave base station to select an optimal subset of beams for

vehicles. In [16], the authors aimed to maximize the number

of bits delivered from a base station to a mobile user by

considering the trade-off between directive data transmission

(DT) and directional beam training (BT) in mmWave vehicular

networks. Specifically, the system is formulated as a partially

observable Markov decision process with the system state

defined as the position of the mobile user within the road

link. Note that in both [15] and [16], only one mmWave base

station is considered. In practice where multiple base stations

are often in place, they can cooperate in the beam association

and handoff process to achieve a globally optimal beam

selection solution. An online learning approach is proposed

in [17] to jointly optimize beam training, data transmission,

and handover processes. Nevertheless, the effect of high

mobility on the system performance has not been studied.

Moreover, similar to [16], only one mobile user is considered

in this paper. In [18], the authors considered the vehicle-

cell association problem for mmWave vehicular networks to

maximize the average rate of vehicles. Specifically, the authors

first formulated the association problem as a discrete non-

convex optimization problem. Then, a learning algorithm is

developed to estimate the solution for the non-convex opti-

mization problem. It is worth noting that the above works and

others in the literature have not accounted for the effects of

the high mobility and blockage on beam association/handover.

In addition, these learning approaches do not leverage the fact

that there are multiple vehicles running on the road at the same

time to improve the learning efficiency.

Given the above, this work aims to develop an optimal beam

association framework for mmWave vehicular communica-

tions under the high mobility of vehicles and the uncertainty of

blockages. In particular, to capture the dynamics of blockages,

channel quality, and mobility, we first model the problem

as a semi-Markov decision process (SMDP). The Q-learning

(QL) algorithm is then often adopted to solve the optimization

problem the underlying SMDP. Nevertheless, the QL algorithm

is well known for its slow convergence rate, especially in

dynamic and complicated environments. Instead of adopting

deep reinforcement learning structures e.g., double deep QL,

deep dueling, in this article, we leverage the fact that there

are usually multiple vehicles on the road to speed up the

convergence to the optimal solution. To that end, we develop a

lightweight yet very effective parallel QL algorithm to quickly

obtain the optimal policy by simultaneously learning from

various vehicles. Specifically, vehicles on the road can act

as active learners to help the system simultaneously collect

data. Based on the collected data, the proposed parallel QL

algorithm can quickly learn the environment information, e.g.,

RSSI profile, beam’s location, and blockage, to derive the

optimal beam association strategy. The proposed parallel QL

algorithm does not only require lower complexity but also

converge faster than the latest deep learning-based approaches

(e.g., double QL, deep dueling). Moreover, unlike deep rein-

forcement learning methods (e.g., [18]), our proposed parallel

QL framework is proven to always converge to the optimal

policy. We show that the high mobility and parallelism of

vehicles now become helpful in speeding up the learning

process of our underlying algorithm.

Moreover, unlike existing works, e.g., [15], [18], in which

learning algorithms are deployed at the vehicles with limited

resources, in our design, the eNodeB executes the parallel

QL algorithm and sends optimal beam association/handover

actions to vehicles. As such, the computing complexity is

moved to the eNodeB. The simulation results then show that

our proposed solution can increase the data rate for each

vehicle by up to 47% and reduce the disconnection probability

by 29% compared to existing approaches.

B. Main Contributions

The major contributions of this paper are as follows.

• Develop an optimal beam association solution for high-

mobility mmWave vehicular communication networks

using the semi-Markov decision process framework that

can effectively deal with the inherent dynamics of the

mmWave connection quality and the uncertainty of the

environment, e.g., beam’s location, RSSI profile, the

velocity of the vehicle, and blockages, in a real-time

manner.

• Develop a lightweight yet very effective parallel QL

algorithm to quickly obtain the optimal policy by simul-

taneously learning from various vehicles to update the

global Q-table at the eNodeB. The proposed parallel QL

algorithm does not only require lower complexity but

also converge faster than advanced deep reinforcement

learning approaches (e.g., deep double and deep duel-

ing). Specifically, the algorithm deploys multiple learning

processes at the eNodeB, and each learning process is

assigned to learn from a vehicle on the considered road

to update the global policy.

• Prove that the proposed parallel QL framework converges

with probability one to the optimal policy. Note that deep

QL based approaches (e.g., deep double and deep duel-

ing) with advanced deep neural networks are not always

guaranteed to converge. We also provide a comprehensive

analysis of the convergence time/rate, complexity, and

overhead of the proposed framework.

• Perform extensive simulations to demonstrate the ef-

fectiveness of the proposed parallel QL algorithm. By

learning from multiple vehicles and exploiting the high

mobility of vehicles, our proposed algorithm can achieve

the performance close to that of the hypothetical scheme

which requires complete environment information in ad-

vance.

The rest of paper is organized as follows. The system model

is described in Section II. Section III presents the problem

formulation based on the SMDP. Then, Section IV describes

the conventional QL algorithm and our proposed parallel QL

algorithm. After that, we provide the evaluation results in

Section V. Finally, the conclusion is highlighted in Section VI.



II. SYSTEM MODEL
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Fig. 1: System model.

Consider a millimeter wave (mmWave) vehicular network,

where an LTE eNodeB and a set of N mmWave base stations

(mmBSs) BS = {BS1, . . . , BSn, . . . , BSN} are deployed as

shown in Fig. 1. This is an expected network model for 5G

and beyond systems [19], [20]. All the mmBSs can connect to

the eNodeB via backhaul links. Each vehicle is equipped with

two communication interfaces: (i) an LTE interface to com-

municate with the eNodeB and (ii) an mmWave interface to

communicate with an mmBS [15]. The Friss free-space equa-

tion reveals that with given transmit power and antenna gains,

the pathloss increases when the frequency increases [2], [34].

For example, increasing the carrier frequency from 2 GHz

to 60 GHz 1 results in an increase of 29 dB for the pathloss.

The mmWave signals also suffer from obstacles and scattering

objects (both static and dynamic). Thus, the path loss model

can be formulated as follows [2], [34]:

PL(d)[dB] = PL(d0) + 10n log10
d

d0
+ ψ

= 20 log10
4πd0
λ

+ 10n log10
d

d0
+ ψ,

(1)

where d0 is the reference distance, PL(d0) is the free-space

loss at the reference distance, n is the path loss exponent,

d is the distance between the vehicle and the mmBS, λ is

the carrier wavelength, and ψ is the log-normal shadowing

loss caused by the absorption of obstacles and scattering

objects. Moreover, the log-normal shadowing loss increases

with distance between the vehicle and the mmBS as the farther

the transmitter and the receiver are the more likely that there

are obstructing objects in between them. When the path loss

increases, the received power at the mmBS decreases. Thus,

when the vehicle leaves a beam or moves to a blockage zone,

the received signal strength indicator (RSSI) will drop. As

160 GHz is the common frequency band in automotive communications.

such, the vehicle is not be able to communicate with its

connected mmBS (through the beam). To avoid disrupting the

service, the vehicle needs to connect to another beam which

provides better channel quality. This beam can belong to the

current connected mmBS, i.e., beam association, or belong to

another mmBS, i.e., handover.

Conventional methods in the literature [27]-[29] usually

make a beam association/handover decision based on the

current channel information or network state, e.g., SINR or

RSSI, where the decision is triggered when the SINR/RSSI are

dropped due to blockage objects or mobility. However, these

solutions may lead to too frequent handover and hence the

associated handover cost/interruption, especially in mmWave

networks where the temporal degradation of channel qual-

ity frequently occurs due to the intermittent connectivity of

mmWave links. In addition, as the mmWave communication

quality often deteriorates intermittently and rapidly, these

solutions may lead to the ping-pong effect resulting in high

outage probability and low system performance [9], [30].

In this paper, our learning algorithm can efficiently address

these critical problems by learning the environment conditions.

In particular, we consider a centralized controller, i.e., the eN-

odeB, that “learns” from vehicles on the considered road and

makes beam association/handover decisions for all vehicles.

With the proposed learning algorithm, the eNodeB can learn

the RSSI profiles of the beams in the systems. To reduce

the number of beam association/handovers, the eNodeB can

guide the vehicle to connect to a beam with a “better” RSSI

profile (in terms of the long-run average data rate). In addition,

the beam association/handover decision can be triggered even

when the RSSI level is still good to anticipate the intermittent

problem of mmWave links. It is worth noting that the RSSI

level can be inferred by the mmBS through the received

signals from the vehicle. Moreover, with current standards in

ITS systems [35], the mmBS always has the location of its

connected vehicles. As such, the eNodeB runs the algorithm

to obtain the best beam for the vehicle to connect without

adding noticeable overhead to current ITS systems.

We assume that each mmBS BSn has a finite set Bn =
{bn,1, . . . , bn,k, . . . , bn,K} of K orthogonal beams [15]. Based

on the information learned from the vehicle, i.e., location,

velocity, and RSSI level, the eNodeB selects beam bn,k of

mmBS BSn to support the communications of the vehicle. In

this paper, the velocity of each vehicle is not fixed. When the

vehicle is connected to beam bn,k, it can successfully transmit

data with rate rn,k. Note that rn,k is a random variable,

depending on the RSSI level (i.e., channel quality) of the

channel. Consider M RSSI levels R = {0, 1, . . . ,M − 1}
which depend on the environmental conditions, e.g., channel

conditions (as modeled above) and blockage probability. The

higher the RSSI level is, the higher the achievable data rate of

the vehicle. We assume that when the vehicle enters blockage

zone, the RSSI level drops to 0, and thus the vehicle cannot

connect to the mmBS. We then define ωbn,k
is the blockage

probability of beam bn,k with 0 ≤ ωbn,k
≤ 1. ωbn,k

= 1
if there are static blockage objects (e.g., buildings) in the

coverage of the beam. Note that the blockage model is not

the input of our proposed algorithm, i.e., it is not required to



be available in advance. Instead, our proposed algorithm can

learn the blockage model by interacting with the environment

and observing the immediate reward. Thus, our proposed

framework can work with any probabilistic blockage model

(i.i.d or non i.i.d). Similar to [15], we assume that rn,k is varied

from 0 to Rmax, where Rmax is the maximum achievable rate,

corresponding to the highest RSSI level. Formally, rn,k can be

formulated as in (2).

rn,k =

{

0, with probability ωbn,k
,

∆(l), l ∈ {R \ {0}}, with probability 1− ωbn,k
,

(2)

where ∆(l) is the rate corresponding to the current RSSI level

l [15]. Note that to capture the fading effect of the channel,

∆(l) follows a given random distribution.

Note that although the above environment information (e.g.,

the RSSI profiles and the blockage probability) are required for

the modeling/formulation purpose, the proposed parallel QL

algorithm below does not require these parameters explicitly as

input. Instead, after executing an action, the eNodeB observes

the reward, i.e., the actual data rate between the vehicle and

the connected mmBS. The reward function (defined below)

hence captures the communication channel between vehicles

and mmBSs (e.g., the bit error rate and fading). The details

of the proposed algorithm are described in the next section.

III. PROBLEM FORMULATION

This work aims to deal with the dynamics of blockages,

channel quality, and mobility. However, the conventional MDP

is not effective in capturing the dynamics and uncertainty

of the system. Thus, we propose to use the SMDP [21].

Different from the MDP, in an SMDP, an action is only taken

when an event occurs. An SMDP can be defined as a tuple

< tj ,S,A, r >, where S and A are the state space and the

action space of the system, respectively. tj defines decision

epoch j-th when an event occurs, and r is the reward function.

A. State Space

The state space of each vehicle is represented as the

discretized space of RSSI levels, the connected beam, the

speed, and the direction of the vehicle. Formally, the state

space S is defined as follows:

S ,

{

(l, bn,k, v, d) : l ∈ {0, . . . ,m, . . . ,M − 1},

bn,k ∈ Bn ∪ {b0,0}, ∀n ∈ {1, . . . , N}, ∀k ∈ {1, . . . ,K},

v ∈ {0, . . . , vmax}, d ∈ {0, 1}
}

,

(3)

where l is the RSSI level of the current vehicle and bn,k is

the current connected beam of the current vehicle. v is the

vehicle’s speed, vmax is the maximum speed of the vehicle,

and d is the direction of the vehicle (0 and 1 represent two

directions of the vehicle). b0,0 is a virtual beam used to capture

the case that there is no available beam at a given location of

the current vehicle. In this case, the RSSI level of the current

vehicle is always 0. Note that due to the inherent dynamics

of mmWave link’s quality, the mmWave instantaneous RSSI

estimate can be less accurate, providing less useful information

to decide the next action. This is one of the key motivations

of our machine learning-based framework that can learn the

RSSI profiles of beams by interacting with the environment

and observing the actual reward (transmission rate) other than

just relying on the instantaneous RSSI estimate.

The road is modeled as a one-dimension area W ∈ R that

is discretized to
⌊

W
z

⌋

zones, where W is the length of the

considered road, z is the length of each zone, and ⌊.⌋ : R→ N

is the floor function. When the vehicle at location w ∈ W , the

vehicle is at zone
⌊

w
z

⌋

-th. At the current state s ∈ S, an event

es is triggered if a vehicle reaches a new zone. Note that

as the vehicle’s speed is not fixed, the time interval between

two consecutive epochs varies. To capture that, the SMDP is

used in this work, instead of the conventional Markov decision

process with identical time slots. Specifically, the eNodeB only

takes an action when event es occurs. Note that unlike existing

works that have the location information as part of the state

space, our framework captures the location information via

events es under the SMDP formulation. This allows us to

efficiently deal with dynamics and uncertainties during the

learning process, which is very beneficial in our considered

system with the dynamics of blockages, channel quality, and

mobility.

B. Action Space

When the vehicle reaches a new zone on the road, i.e., event

es is triggered (given its current state s ∈ S), the eNodeB

decides if the vehicle needs to associate to a new beam or

stay on the current beam. The action space As is defined as:

As , {a} = {bn,k, b0,0}, ∀n, ∀k, (4)

where a is the action made at state s. a = bn,k if the eNodeB

guides the vehicle to connect to beam bn,k. This includes the

case staying with the current beam. a = b0,0 if there is no

available beam at the current location.

C. Immediate Reward

In this paper, we aim to maximize the long-term average

data rate of the system. As mentioned, at decision epoch t,

if an action is taken so that the vehicle connects to beam

bn,k, it can communicate with a rate of 0 ≤ rn,k ≤ Rmax

corresponding to the current RSSI level. The resulting data that

the vehicle receives from the mmBS is calculated as jtn,krn,k,

where jtn,k is the connection time between two consecutive

decision epochs (during which the vehicle can communicate

with the mmBS through beam bn,k). As the algorithm observes

the reward at the end of each decision epoch, jtn,k is the

duration from the time that the vehicle enters the current zone

until it leaves to enter the next zone. jtn,k hence depends on

the speed of the vehicle vt at the epoch t. Practically, the speed

vt can change from one to another epoch or even during the

time jtn,k. However, without loss of generality, we assume that

the time jtn,k between two consecutive epochs is small enough

(e.g., by setting the length per zone z as small as necessary)

so that the vehicle’s RSSI level and speed remain unchanged.

Thus, connection time jtn,k can be calculated as z
vt

.



In addition, the service may be interrupted during the

handover/beam-switching, denoted as h, i.e., the time it takes

for the vehicle to switch to the new mmBS. We assume that

the handover time is the same for all the mmBSs. Taking the

handover time into account, at state s ∈ S, the immediate data

rate after performing action a is obtained in (5).

r(st, at) =























(jtn,k − h)rn,k, if at = bn,k and the vehicle

handovers to a new mmBS,

jtn,krn,k, if at = bn,k and the vehicle

stays in the current mmBS,

0, otherwise,
(5)

where st and at are the system state and the action taken at

decision epoch t, respectively and rn,k is the communication

rate when the vehicle connects to beam bn,k as defined in (2).

Note that jtn,k, rn,k, and h depend on the channel and envi-

ronment conditions such as blockages, beam’s location, and

RSSI profiles. Under our design, they are implicitly learned

through interacting with the environment and observing the

immediate reward in an online manner.

D. Optimization Formulation

The decision policy π of the proposed SMDP can be defined

as a mapping from the state space to the action space: S →
As [21], [36]. Thus, with initial state s, the long-term average

data rate is formulated as follows:

Rπ(s) = lim
T→∞

E{
∑T

t=0 r(st, π(st))|s0 = s}

E{
∑T

t=0 ξt|s0 = s}
, ∀s ∈ S, (6)

where ξt is the time interval between the t-th and (t + 1)-th
decision epochs, π(s) is the action at state s based on policy

π, and r is the immediate reward after performing an action.

In Theorem 1, we will prove that the limit in (6) exits [22].

THEOREM 1. With the number of events in a given time and

the number of states in the state space S are finite, we have:

Rπ(s) = lim
T→∞

E{
∑T

t=0 r(st, π(st))|s0 = s}

E{
∑T

t=0 ξt|s0 = s}

=
Lπr(s, π(s))

Lπy(s, π(s))
, ∀s ∈ S,

(7)

where y(s, π(s)) denotes the expected time interval between

two consecutive decision epochs when an action is taken at

state s following policy π. Lπ is the limiting matrix of the

transition probability matrix Lπ [21], defined as:

Lπ = lim
T→∞

1

T

T−1
∑

t=0

Ltπ , (8)

Proof: First, we prove the following lemma.

Lemma 1. The limiting matrix Lπ of the the transition

probability matrix Lπ always exists.

Proof: The proof of Lemma 1 is provided in Appendix A.

As the limiting matrix Lπ exits (see Lemma 1) and the total

probabilities of transiting from a given state to other states

equals to 1, i.e.,
∑

s′∈S
Lπ(s

′|s) = 1 , we have:

Lπr(s, π(s)) = lim
T→∞

1

T + 1
E

{

J
∑

t=0

r(st, π(st))
}

, ∀s ∈ S,

Lπy(s, π(s)) = lim
T→∞

1

T + 1
E

{

T
∑

t=0

ξt

}

, ∀s ∈ S.

(9)

Clearly, the long-term average reward in (7) is obtained by

taking the ratio of Lπr(s, π(s)) and Lπy(s, π(s)). In addition,

the ratio of limits equals to the limit of the ratio. Thus, the

long-term average reward in (7) is well defined and exists.

Next, in Theorem 2, we prove that the underlying Markov

chain is irreducible, and thus the long-term average date rate

R(π) does not depend on the initial state s0.

THEOREM 2. For every π, the long-term average date rate

R(π) is well defined and does not depend on the initial state,

i.e., Rπ(s) = Rπ , ∀s ∈ S.

Proof: The proof of Theorem 2 is provided in Ap-

pendix B.

Then, the long-term average data rate optimization problem

can be formulated as follows:

max
π

Rπ =
Lπr(s, π(s))

Lπy(s, π(s))
(10)

s.t.
∑

s′∈S

Lπ(s
′|s) = 1, ∀s ∈ S.

Our aim in this work is finding the optimal beam association

policy to maximize the long-term average data rate, i.e.,

π∗ = argmax
π

Rπ. (11)

IV. PARALLEL REINFORCEMENT LEARNING FOR BEAM

ASSOCIATION IN HIGH MOBILITY MMWAVE VEHICULAR

NETWORKS

In this section, we develop the parallel QL algorithm that

obtains the optimal beam association policy much faster than

those of the existing reinforcement learning based algorithms

(e.g., [18]). For that, we first briefly present the details of

the conventional QL algorithm. Related mmWave works in

the literature usually adopt the QL and deep QL algorithms to

solve their problems. However, with dynamic and complicated

system, the QL algorithm usually takes a very long time to

obtain the optimal strategy. In addition, the deep QL algorithm

(e.g., [18]) requires high performance computing resources and

does not always ensure to converge to the optimal policy due

to the overestimation of the optimizer. Note that our proposed

parallel QL algorithm obtains the optimal beam association

policy in an on-line manner, bringing various advantages, com-

pared with the off-line learning approach. First, in mmWave

vehicular communication systems, the conditions of the en-

vironment may be changed quickly. This is due to the fast

and intermittent change in the quality of the mmWave links

and the dynamics of blockages. Thus, a good beam/mmBS at



the current time may quickly become worse later. For that,

if we use the off-line training, the framework may not be

able to obtain the “current” optimal policy in time, and thus

leading to poor learning performance, especially in dynamic

environments like mmWave networks. Under the proposed

on-line training, channel conditions can be quickly learned

to obtain the optimal beam association policy for vehicles.

Second, off-line training requires frequent maintenance and

adjustment to adapt to the new conditions of the environment

(e.g., new buildings, new bus/transportation schedules). Differ-

ently, our on-line training can reduce human intervention and

management costs as the algorithm can automatically learn the

environment conditions and adjust its optimal policy.

A. Q-Learning Approach

This section presents the QL algorithm [26], which enable

the eNodeB to obtain the optimal beam association strategy

for vehicles without prior environment parameters, e.g., RSSI

profiles and blockages. The key idea of the QL algorithm

is updating the Q-value function for all state-action pairs

stored in a Q-table. At a given system state, the QL algorithm

performs an action and observes the immediate reward as well

as the next state of the system. Based on these observations,

the algorithm can update the Q-value for the current state-

action pair based on the Q-value function [26]. As such, the

learning process is able to learn from the previous experiences,

i.e., current state, action, next state, and immediate reward, to

derive the optimal solution [26]. In the following, we present

the fundamentals of the Q-value function.

We first define the beam association policy as π : S → A. In

particular, π is a mapping from a given state to its correspond-

ing action. Our aim in this paper is finding the optimal beam

association policy π∗ to optimize the system performance in

terms of the average data rate, disconnection probability, and

number of handovers. Then, we define Vπ(s) : S → R as the

expected value function of state s ∈ S given policy π. Vπ(s)
can be formulated as follows:

Vπ(s) = Eπ

[

∞
∑

t=0

γtrt(st, at)|s0 = s
]

= Eπ

[

rt(st, at) + γVπ(st+1)|s0 = s
]

,

(12)

where 0 ≤ γ < 1 denotes the discount factor. In particular,

γ represents the effect of the future rewards. The higher the

discount factor is, the more important future rewards are. At

each state s, we aim to find the optimal action to derive the

optimal beam association policy π∗, which is a map from a

given state to the optimal action. To do that, the optimal value

function for each state has to be obtained as in (13).

V∗(s) = max
a

{

Eπ [rt(st, at)+γV
π(st+1)]

}

, ∀s ∈ S. (13)

We then denote the optimal Q-function state-action pair

(s, a), ∀s ∈ S, ∀a ∈ A as follows:

Q∗(s, a) , rt(st, at) + γEπ[V
π(st+1)]. (14)

Hence, the optimal value function is written as follows:

V∗(s) = max
a
{Q∗(s, a)}. (15)

To solve (15), we can update the Q-function to determine the

optimal Q-values of all state-action pairs by using (16) [26]:

Qt+1(st, at) = Qt(st, at) + τt

[

rt(st, at)

+ γmax
at+1

Qt(st+1, at+1)−Qt(st, at)
]

,

(16)

where τt denotes the learning rate, determining the impact of

new experiences to the current Q-value [26]. By updating the

Q-value functions of all state-action pairs by using (16), the

algorithm can derive the optimal beam association policy.

B. Parallel Q-Learning Approach

Note that the conventional QL algorithm can converge to

the optimal beam association policy quickly when the system

is simple. However, with the dynamics and uncertainties of

the system considered in this work, the QL algorithm may

take a very long time to obtain the optimal strategy. This is

due to the fact that the QL algorithm require a huge number

of training episodes to collect enough data for learning. To

speed up the QL algorithm, the deep reinforcement learning

algorithm is usually adopted in the literature. Nevertheless, this

algorithm requires high performance computing resources and

does not ensure to converge to the optimal policy due to the

overestimation of the optimizer [22], [23]. The convergence

rate of the deep reinforcement learning algorithm can be

improved by implementing several techniques. For example,

by using the deep dueling neural network architecture [24], one

can significantly improve the convergence rate and stability

of the QL algorithm. However, in our work, we leverage the

fact that there are simultaneously multiple vehicles running

on the road to design the parallel QL algorithm. The proposed

algorithm does not only require lower complexity but also

converge faster than the latest deep learning-based approaches.

In particular, vehicles running on the road act as active learners

which can help the system simultaneously collect data and

significantly speed up the learning process as shown in Fig. 2.

To that end, the parallel QL algorithm employs multiple

learning processes. Each learning process is assigned for a

vehicle running on the road (in the coverage of the eNodeB).

Specifically, each learning process i updates the Q-value

function at the global Q-table as follows:

Qt+1(s
i
t, a

i
t) = Qt(s

i
t, a

i
t) + τt

[

rit(s
i
t, a

i
t)

+ γmax
ai
t+1

Qt(s
i
t+1, a

i
t+1)−Qt(s

i
t, a

i
t)
]

,

(17)

where 0 ≤ γ < 1 is the discount factor that presents the

effect of future rewards [26]. In particular, when γ is low, e.g.,

close to 0, the learning process prefers the current reward.

Differently, when γ is high, e.g., close to 1, the long-term

reward will be considered. In this work, we set γ the same for

all vehicles, i.e., learners. rit(s
i
t, a

i
t) is the immediate reward

when vehicle i performs action ait at state sit (computed using

equation 5 above). τt is the learning rate at decision epoch

t [26]. Note that the learning rate can be fixed at a constant

value or it can be adjusted when running the algorithm. In

this paper, the learning rate is fixed during the training process
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Fig. 2: Parallel QL based model enables simultaneous learning from multiple vehicles.

and is the same for all learning processes. At each decision

epoch and given a current state, i.e., RSSI level and current

connected beam, the current vehicle chooses to connect to

a beam (following the current beam association policy sent

from the eNodeB) and observes the data rate of the connected

beam as well as the next state. Then, these observations

are sent to the eNodeB for learning by the corresponding

learning process to update the global Q-table (equation 17).

Algorithm 1 describes the proposed parallel QL algorithm.

Algorithm 1 Parallel QL Algorithm for Vehicle i

1: for t=1 to T do

2: Vehicle i observes the current state sit ∈ S and execute

action ait ∈ A based on the ǫ-greedy policy.

3: Vehicle i observes the immediate reward rit and new

state sit+1 ∈ S.

4: Vehicle i sends transition (sit, a
i
t, r

i
t, s

i
t+1) to the eN-

odeB for learning by updating the table entry of Q(sit, a
i
t)

as as follows:

Qt+1(s
i
t, a

i
t) = Qt(s

i
t, a

i
t) + τt

[

rit(s
i
t, a

i
t)

+ γmax
ai
t+1

Qt(s
i
t+1, a

i
t+1)−Qt(s

i
t, a

i
t)
]

(18)

5: Replace sit ← sit+1.

6: end for

In particular, vehicle i first observes the current state sit ∈ S
and performs action ait based on the ǫ-greedy policy [32].

Then, the eNodeB selects an action that maximizes the Q-

value function with probability 1−ǫ and a random action with

probability ǫ. Then the eNodeB sends this action to vehicle i

to perform. In this work, we gradually reduce the value of

ǫ. In other words, the algorithm first chooses random actions

and gradually change to the deterministic strategy, i.e., choose

an action with the highest Q-value at a given state. To that

end, ǫ is set at a high value (e.g., 1) when the algorithm

starts running. Then, at later iterations, the value of ǫ is slowly

reduced to a small value (e.g., 0.01). After performing action

ait, vehicle i observes immediate data rate rit(s
i
t, a

i
t) and next

state sit+1. These observations are then sent to the eNodeB

for learning. Note that the learning process of each vehicle is

independent from others, and all the learning processes share

the same global Q-table. By doing that, the Q-table is updated

with more experiences from multiple vehicles running on the

road. As such, the convergence rate and convergence time

of the parallel QL algorithm will be better than that of the

conventional QL algorithm as demonstrated in Section V.

The convergence of our proposed parallel QL algorithm can

be always guaranteed. In particular, as the learning processes

update the global Q-table simultaneously, the selection of an

action of a learning process may be based on a new Q-

value that is updated by other learning processes. Specifically,

at state s, a learning process chooses to perform action a

that maximizes the Q-value function. However, before that

instance, another learning process may reach state s, then take

action a′, and update the Q-value of action a′ to be the highest

value. In this case, action a may still be selected by the ǫ-

greedy policy mentioned above. In other words, an iteration

for exploitation becomes an iteration for exploration. More-

over, multiple learning processes (corresponding to multiple

vehicles running on the road), which simultaneously update

different non-related states, can be considered as independent

processes [33]. As a result, the convergence of the proposed

parallel Q-learning algorithm is guaranteed and sped up. Given

the above, the convergence of the proposed parallel QL algo-

rithm to the optimal policy is formally stated in Theorem 3.

THEOREM 3. Given the learning processes are serializable

and under the conditions of τt in (19), the parallel QL

algorithm is ensured to converge to the optimal policy.

τt ∈ [0, 1),

∞
∑

t=1

τt =∞, and

∞
∑

t=1

(τt)
2 <∞. (19)

Proof: Theorem 3 is proved in Appendix C.



C. Impact of High Mobility on Convergence Time

As mentioned, the proposed parallel QL is particularly

useful in vehicular networks where the system can simultane-

ously learn from experiences of multiple vehicles. Moreover,

the high mobility of vehicles is also exploited in collecting

new experiences in our proposed framework. In particular,

the duration to the next decision epoch can be calculated as

follows:

ξt =
z

vt
, (20)

where vt is the speed of the vehicle between the t-th and

(t+1)-th decision epochs. After a period of ξt, the vehicle can

collect a new sample of experience at decision epoch (t+1)-
th, i.e., (sit+1, a

i
t+1, r

i
t+1, s

i
t+2). From (20), it is clear that with

high speeds, the time to move to the next decision epoch of

the vehicle will be short. As such, with a given time period,

with higher speeds, the vehicle can collect more experiences.

Thus, the parallel QL algorithm can converge to the optimal

policy faster. In the simulations below, we can observe that

the convergence time reduces from 6, 000s to 1, 000s when

the speed increases from 2 m/s to 9 m/s.

D. Complexity and Overhead of Parallel Q-Learning

The proposed parallel QL algorithm is efficient with low

computational complexity and memory complexity. As men-

tioned, the state space of our system includes only the current

RSSI level, the current connected beam, and the vehicle’s

velocity. For that, in common mmWave vehicular networks

setting with a few mmBSs, the number of states is small, and

thus the size of the global Q-table is also small. Hence, the

algorithm can obtain the optimal beam association strategy

quickly as the lookup and update table processes are very fast.

Regarding the computational complexity, our proposed al-

gorithm only performs basic calculations without any complex

functions as in the other reinforcement learning algorithms,

e.g., deep double QL, deep QL, and deep dueling [22], [23].

These algorithms implement deep neural networks to approx-

imate the Q-value function to obtain the optimal policy with

complicated mathematical operations, e.g., multiply matrices

and gradient descent. As a result, they require longer time

to process and higher computing resources compared to our

proposed parallel QL algorithm. In addition, in this work, we

deploy only one Q-table at the eNodeB to store the Q-values

for all state-action pairs instead of implementing a separated

Q-tables on each vehicle with limited resources. As a result,

the computing complexity is moved to the eNodeB which has

sufficient resources to obtain the optimal policy in a short time.

Finally, our proposed parallel QL algorithm incurs minimal

communication overhead. In particular, the RSSI level can

be inferred by the mmBS through the signals received from

the vehicle. Moreover, the mmBS can always know which

beam the vehicle connected to. These information are sent to

the eNodeB through the backhaul link with high bandwidth.

Furthermore, in intelligent transport systems [35], the location

information of vehicles is frequently reported to the RSU,

i.e., mmBS. Thus, to update event es of the SMDP, the

eNodeB can collect the information of each vehicle through

the mmBSs. Therefore, our proposed solution does not add

additional overheads to the current ITS standards.

V. PERFORMANCE EVALUATION

A. Parameter Setting

We consider a road with a length of 1000 meters in the

coverage of an eNodeB. On the considered road, 10 mmBSs

are deployed. Each mmBS is equipped with 10 orthogonal

beams. Each beam is assumed to cover an area (on the

considered road) ranging randomly from 20 meters to 50
meters. The blocking probability (including both temporary

and permanent blockages) of each beam is generated randomly

from 0 to 1. We define 10 RSSI levels for each beam

corresponding to 10 data rates ranging from 0 to Rmax = 9
Gbps, i.e., rn,k ∈ {0, 1, . . . , 9}. Unless otherwise stated, at

each decision epoch, a vehicle enters the road with probability

λ = 0.5. The handover time is set at 0.5 seconds [9], [31].

z is set at 5 meters. The average vehicle speed is set at

7 m/s (about 25 km/h), which is a typical vehicle urban

speed [18]. During a decision epoch, the vehicle’s speed

remains unchanged. The average speed is then varied from

1 m/s to 9 m/s (about 4 km/h to 32 km/h) in several scenarios

to demonstrate the effectiveness of the proposed solution under

high mobility. It is important to note that the proposed parallel

QL algorithm can learn without requiring these parameters in

advance. Instead, the algorithm will learn them by interacting

with the environment. For the proposed parallel QL and QL

algorithms, the learning rate and discount factor are set at 0.1
and 0.9, respectively. Moreover, for the ǫ-greedy method, the

initial value of ǫ is set at 1 and gradually reduced to 0.01.

We compare our proposed algorithm with three other meth-

ods: (i) MaxRate, (ii) Blockage Aware, and (iii) Upper Bound.

• MaxRate: This scheme first explores all available beams

at the current location. Then, the beam with the highest

RSSI level will be selected to connect. Once the MaxRate

scheme selects the best beam, it will keep connecting to

this beam until the end of the current decision epoch.

This scheme is used to show the performance of non-

adaptive and greedy solutions. As in mmWave systems

the temporal degradation of the channel quality frequently

occurs, the best beam at the current time may become

worse later. Thus, this scheme results in poor system per-

formance in terms of data rate, the number of handovers,

and disconnection probability.

• Blockage Aware: This scheme is assumed to know the

prior knowledge about the blocking probability of all

available beams in the current location. Then, the beam

with the lowest blocking probability will be chosen for

the vehicle to connect. This scheme is used to show

the effects of the high mobility. Specifically, when the

vehicle speed is low, this scheme will achieve a good

system performance in terms of data rate, the number of

handovers, and disconnection probability. However, its

performance becomes worse when the vehicle speed is

high as the high mobility is not considered.

• Upper Bound: Similar to the Blockage Aware scheme,

this scheme is assumed to know the prior knowledge



about the blocking probability of all available beams in

the current location. However, the handover decision is

only made if the data rate achieved is higher than that

of staying in the current beam. Note that in practice, this

data rate is not available in advance and depended on

the channel quality. This scheme is adopted to show the

optimistic upper bound of the system performance.

The evaluation metrics are the average data rate, the discon-

nection probability, and the number of handovers. The average

data rate is defined as the data received (in bits) by a vehicle

running on the road in a second. The number of handovers is

defined as the total number of handovers that a vehicle needs

to do when running on the road. The disconnection probability

is defined as the average probability that the vehicle cannot

communicate with mmBSs.

B. Simulation Results

a) Performance Evaluation: We first vary the average

speed of vehicles running on the road and evaluate the system

performance obtained by the parallel QL algorithm in terms

of the average data rate, the disconnection probability, and

the number of handovers as shown in Fig. 3. Obviously, the

average data rate of the vehicle decreases when the vehicle

speed increases as shown in Fig. 3(a). The reason is due

to the effects of mobility on the handover. In particular, in

the case that the vehicle chooses to handover to a new beam

and its speed is high, the vehicle may move to another beam

before the handover is finished. Moreover, at high speeds, the

estimated RSSI level can be less accurate. This results in lower

data rates. It is worth noting that by learning the environment

parameters, our proposed solution achieves higher data rates

than that of the MaxRate scheme and the achieved rate is

close to the Upper Bound scheme. Moreover, when the vehicle

speed is high (i.e., ≥ 7 m/s), our proposed solution achieves a

higher data rate than that of the Blockage Aware scheme. The

reason is that the Blockage Aware scheme selects the beam

with the lowest blocking probability at a given location without

considering the vehicle speed. However, at high speeds, the

beam with the lowest blocking probability may not be the

best choice as the vehicle may move out of the beam before

completing the handover process, and thus resulting in low

data rates. As can be seen in Fig. 3(b), when the speed

increases from 1 m/s to 6 m/s, our proposed solution chooses

to reduce the number of handovers to avoid the negative effect

of mobility. In contrast, other solutions with fixed policies

cannot learn this information, and thus they do not reduce the

number of handovers, except the Upper Bound scheme which

is assumed to know the actual data rate before connecting

to a beam. It is worth noting that, when the speed is higher

than 7 m/s (about 25 km/h), the number of handovers slightly

increases for all schemes. This is because at high speeds, the

vehicle moves out the coverage of a beam before finishing

the handover to connect to this beam, thereby it needs to do

the handover again. It is important to note that, at several

locations, the only option is to handover to a new beam. Thus,

the number of handovers slightly increases for our proposed

solution in this case. Finally, as shown in Fig. 3(c), the average

disconnection probabilities of all schemes increase when the

vehicle’s speed increases. The reason is due to the effects of

the high mobility on the handover process. Note that by using

the learning algorithm, our proposed solution achieves lower

disconnection probability than that of the MaxRate scheme

and the probability is very close to that of the Upper Bound

scheme, especially at high speeds.

Next, we fix the average speed of vehicles at 7 m/s (about 25

km/h), which is a typical vehicle urban speed [18] and vary the

time for the handover to show the average data rate, number

of handovers, and disconnection probability obtained by the

proposed parallel QL algorithm as shown in Fig. 4. Clearly,

when the time for the handover increases, the disconnection

probability increases, and thus the average data rates of all

solution decrease as shown in Fig. 4(a) and Fig. 4(c). Again,

the proposed solution possesses better performance in terms

of data rate and disconnection probability than those of the

MaxRate scheme and close to that of the Upper Bound

solution. The reason is that our proposed solution can learn

and minimize the number of handovers when the time for

the handover increases. In particular, as shown in Fig. 4(b),

when the time for handover increases from 0.1 seconds to

0.4 seconds, the number of handovers of the proposed solu-

tion decreases as our learning algorithm adapts its policy to

minimize the number of the handovers and thus maximize the

data rate for the vehicle (when the environment parameters

are not available in advance). However, when the time for the

handovers is too long (i.e., ≥ 0.5), the number of handovers

increases. Similar to the previous scenario, when the handover

is too long, the vehicle may move out of the target beam, and

thus it needs to do the handover again. It is worth noting that

at high speeds, our proposed solution performs betters than the

Blockage Aware scheme with prior knowledge about the beam

profiles. The reason is that the Blockage Aware scheme selects

a beam based on its blocking probability without considering

the handover process.

Finally, in Fig. 5, we vary the probability that a vehicle

enters the road at each decision epoch to evaluate the perfor-

mance of the proposed solution. Similar to other scenarios, by

learning the environment parameters, i.e., blocking probability,

vehicle’s speed, and handover time, our proposed solution

achieves better performance than that of the MaxRate and

Blockage Aware schemes in terms of data rate, number of

handovers, and disconnection probability.

b) Convergence: In Fig. 6, we evaluate the convergence

rates of the proposed parallel QL and the QL algorithms.

Obviously, the parallel QL algorithm can obtain the optimal

beam association policy within 6, 000 iterations while the QL

algorithm cannot converge to the optimal beam association

policy after 10, 000 iterations. This result confirms the anal-

ysis in Section IV-B. Specifically, by learning from multiple

vehicles on the road at the same time, the proposed parallel

algorithm has more experiences to learn and quickly converge

to the optimal policy.

Next, in Fig. 7, we compare the convergence rates of the

parallel QL with different numbers of learners. Clearly, the

higher number of learners results in better performance. In

particular, when the parallel QL runs with only 2 learners,
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Fig. 3: (a) Average data rate (Gbit/s), (b) average number of handovers, and (c) average disconnection probability vs. average

speed of vehicles.
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Fig. 4: (a) Average data rate (Gbit/s), (b) average number of handovers, and (c) average disconnection probability vs. h.
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Fig. 5: (a) Average data rate (Gbit/s), (b) average number of handovers, and (c) average disconnection probability vs. λ.

the performance is the worst. When the number of learners

increases to 10, the performance of the algorithm is improved.

Finally, in the case that we do not limit the number of learners

(i.e., learning from all the vehicles running on the road), the

algorithm achieves the best performance and quickly conver-

gences to the optimal beam association policy. This implies

that by leveraging the fact that there are often numerous

vehicles on the road, our proposed parallel QL algorithm can

significantly improve the system performance compared to

conventional methods.

Next, we investigate the convergence time of the proposed

parallel QL and the QL algorithms when the average speed of

vehicles is low (2 m/s) and high (9 m/s) as shown in Fig. 8(a)

and Fig. 8(b), respectively. As discussed in Section IV-C,

increasing the speed of vehicles leads to better convergence

time of the algorithm as vehicles can collect more experiences

for the learning process. As shown in Fig. 8(a), when the

speed of vehicles is 2 m/s, the parallel QL algorithm requires

at least 14, 000 seconds to obtain the optimal beam associa-

tion/handover policy. In contrast, when the speed of vehicles is

9 m/s, the algorithm can obtain the optimal association policy

within 3, 000 seconds as shown in Fig. 8(b). Meanwhile, the

QL algorithm still cannot converge to the optimal policy after

20, 000 seconds and 10, 000 seconds when the vehicle speed
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Fig. 6: Convergence rates of QL and parallel QL algorithms.
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Fig. 7: Convergence rates of the parallel QL algorithm with

different numbers of learners.

is 2 m/s and 9 m/s, respectively. Note that the average data

rate (after obtaining the optimal beam association strategy)

achieved by the proposed solution in the case the speed of

vehicles is 9 m/s lower than that of the case when the speed

of vehicles is 2 m/s. As mentioned, this is stemmed from the

effects of mobility on the handover process as discussed in the

above section.

Finally, in Fig. 9, we compare the convergence rates of the

proposed algorithm and the latest advance in deep reinforce-

ment learning, i.e., deep dueling algorithm. In particular, the

deep dueling reinforcement learning algorithm implements two

flows of hidden layers to separately estimate the advantage

and value functions [22], [23]. Recent works demonstrated

that the deep dueling algorithm is superior to other deep

reinforcement learning algorithms, e.g., deep QL and deep

double QL [22], [23]. As shown in Fig. 9, our proposed solu-

tion can obtain the optimal beam association strategy within

6, 000 iterations while the deep dueling cannot converge to

the optimal solution after 10, 000 iterations. The reason is that

our proposed parallel QL algorithm can learn from multiple

vehicles running on the road simultaneously. In contrast, the

deep dueling algorithm only learns from a single vehicle at a

time resulting in poor performance.

VI. CONCLUSION

In this paper, we have developed an optimal beam as-

sociation framework for high mobility mmWave vehicular
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Fig. 8: Convergence rates of the QL and parallel QL algorithms

when the average speed of vehicles is (a) 2 m/s and (b) 9 m/s.
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networks, aiming to maximize the system performance in

terms of average data rates, number of handovers, and dis-

connection probability of vehicles. The proposed parallel QL

algorithm leverages the inherent feature of vehicular networks

that there are usually multiple vehicles on the road. By collect-

ing experiences/samples simultaneously from all vehicles, the

algorithm converges to the optimal policy much faster than

the conventional QL and even its latest deep reinforcement

learning framework. Extensive simulations have proved that

our proposed parallel QL algorithm can increase the average

data rate by 47% and reduce the disconnection probability

by 29% compared to the conventional solution. In addition,



by learning the RSSI profiles of beams and blockages on the

road, our proposed solution can achieve the performance close

to that of the hypothetical scheme which requires complete

environment information in advance. We also observed that the

high mobility of the vehicles was actually helpful in speeding

up the convergence of the algorithm to the optimal policy.

APPENDIX A

THE PROOF OF LEMMA 1

First, we define a sequence of matrices as {An : n ≥ 0}. If

lim
n→∞

An(s
′|s) = (s′|s), ∀(s, s′) ∈ S×S, we have lim

n→∞
An =

A. Now, we define the Cesaro limit (denoted by C-lim) [21]

of the sequence as follows:

C- lim
N→∞

= lim
N→∞

A0 +A1 + . . .+An + . . .+AN−1

N
. (21)

Thus, A is the Cesaro limit (of order one) of {An : n ≥ 0} if

lim
N→∞

1

N

N−1
∑

n=0

An = A. (22)

In a short form, we have C- lim
N→∞

AN = A. The limiting matrix

L is then formulated as follows:

L = C- lim
N→∞

LN . (23)

Let’s denote l(s′|s) as the (s′|s)-th element of L. Thus, for

each s and s′, we have the following:

l(s′|s) = lim
N→∞

1

N

N
∑

n=1

ln−1(s′|s), (24)

where l0(s′|s) denotes a element of an S ×S identity matrix,

and ln−1 is a component of Ln−1. Given L is aperiodic,

limN→∞ L
N equals to L. Thus, the limiting matrix exists.

APPENDIX B

THE PROOF OF THEOREM 2

In this proof, we first show that the underlying Markov

chain is irreducible. In particular, we will prove that the

learning process can move from a given state to any states

after a finite number of steps. As mentioned, the system

state space S is the combination of the RSSI level, the

connected beam, and the velocity of the current vehicle. At

state s = (l, bn,k, v, d), if the vehicle to connect to beam

bn′,k′ and the RSSI level when connect to this beam is l′,

the system moves to state s′ = (l′, bn′,k′ , v, d). The new RSSI

level l′ can be any of levels in R as the RSSI level depends

on the environmental conditions, e.g., channel conditions, and

the blockage probability. In addition, the vehicle can be able

to connect to all beams when it is moving on the road. When

the vehicle moves out of the considered road, the system will

wait for a new vehicle enters the road and move to a new

state. Moreover, the velocity (i.e., speed and direction) of the

vehicle is not fixed. Thus, from a given state s, the system can

move to any other state s′ ∈ S after a finite number of steps.

In other words, the state space S (which is the combination

of the RSSI level, the connected beam, and the velocity of the

current vehicle) contains only one communicating class, and

the underlying Markov chain is irreducible. As such, the long-

term average date rate R(π) does not depend on the initial

state and is well defined ∀π [25]. Thus, the algorithm can

converge to the optimal association policy regardless of the

initial system state.

APPENDIX C

THE PROOF OF THEOREM 3

In this proof, we show that the proposed parallel QL

algorithm is ensured to converge to the optimal policy, i.e.,

Qt(s, a) → Q∗(s, a) as t → ∞. As mentioned in Sec-

tion IV-B, the learning processes in our proposed algorithm

are serializable. Thus, the convergence proof of the parallel

QL is similar to that of the QL algorithm.

The key idea of this proof is using the action-replay

process (ARP) (i.e., an artificial controlled Markov decision

process) [26]. This action-relay process is defined based on

the episode sequence and the learning rate. First, we denote

{〈s, t〉} as the state space of the ARP [26]. Here, s is a state in

the actual process, t ≥ 1 denotes the ARP’s level. In addition,

the action space of the ARP is denoted as {a} in which a is

a action in the actual process. Next, at state 〈s, t〉, if action a

is chosen, the state transition consequence and the stochastic

reward of the ARP can be formulated as follows:

i∗ =







argmaxi{t
i ≤ t}, if (s, a) has been taken before

decision epoch t,

0, otherwise,
(25)

where ti represents the ith time when performing action a

given state s. As such, ti∗ is the last time at which action a is

taken at state s in the real process before decision epoch t. The

reward equals to Q0(s, a) if i∗ = 0. Moreover, in this case, the

action-replay process is absorbed. Otherwise, we denote the

index of the decision epoch which is taken from the existing

samples from the real process as follows:

ie =



























i∗, with probability τti∗ ,

i∗ − 1, with probability (1− τti∗ )τti∗−1 ,

i∗ − 2, with probability (1− τti∗ )(1− τti∗−1)τti∗−2 ,
...

0, with probability
∏i∗

i=1(1− τti),
(26)

Similar as above, when ie = 0, the reward is Q0(s, a) and the

process is absorbed. Otherwise, taking ie#0 results reward

rtie and a state transition to 〈s′tie , t
ie − 1〉.

Putting the above and Lemma B in [26] together, we have

Qt(s, a) → Q∗
ARP (〈s, t〉, a), ∀a, s, and t ≥ 0, in which

Qt(s, a) is the optimal action values of the ARP with state

〈s, t〉 and action a [26, Lemma A]. Let’s denote r∗ as the

bound of the reward, and thus r∗ ≥ |rt|, ∀t. With loss of

generality, assuming that Qt(s, a) <
r∗

(1−γ) with r∗ ≥ 1 [26].

Thus, with χ > 0, we can find ξ so that γξ r∗
1−γ

< χ
6 .

By using Lemma B.4 in [26], the comparison of between

the value of performing a1, . . . , aξ in the real process, i.e.,



Q̄(s, a1, . . . , aξ), with that of taking these actions in the ARP,

i.e., Q̄ARP (〈s, t〉, a1, . . . , aξ), is formulated as follows:

|Q̄ARP (< s, t >, a1, . . . , aξ)− Q̄(s, a1, . . . , aξ)| <

χ(1 − γ)

6ξr∗

2ξr∗

1− γ
+

2χ

3ξ(ξ + 1)

ξ(ξ + 1)

2
=

2χ

3
.

(27)

Based on Lemma B.4 in [26], we can say that taking only ξ

actions results in a small different of less than χ
6 for both the

real process and the action-replay process. In addition, we can

apply (27) to an set of actions in both the action-replay and

the real processes. As such, Q∗
ARP (〈s, t〉, a)−Q

∗(s, a)| < χ.

Thus, Qt(s, a)→ Q
∗(s, a) when t→∞ with probability 1.
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