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Abstract—Small cell networks with dynamic time-division
duplex (D-TDD) have emerged as a potential solution to address
the asymmetric traffic demands in 5G wireless networks. By
allowing the dynamic adjustment of cell-specific UL/DL config-
uration, D-TDD flexibly allocates percentage of subframes to
UL and DL transmissions to accommodate the traffic within
each cell. However, the unaligned transmissions bring in extra
interference which degrades the potential gain achieved by D-
TDD. In this work, we propose an analytical framework to
study the performance of multi-antenna small cell networks
with clustered D-TDD, where cell clustering is employed to
mitigate the interference from opposite transmission direction in
neighboring cells. With tools from stochastic geometry, we derive
explicit expressions and tractable tight upper bounds for success
probability and network throughput. The proposed analytical
framework allows to quantify the effect of key system parameters,
such as UL/DL configuration, cluster size, antenna number, and
SINR threshold. Our results show the superiority of the clustered
D-TDD over the traditional D-TDD, and reveal the fact that
there exists an optimal cluster size for DL performance, while
UL performance always benefits from a larger cluster.

I. INTRODUCTION

To satisfy the unprecedented high demands of data traffic,
network densification has been considered as one of the
key technologies in 5G wireless networks [1], [2]. With the
densely deployed small cell access points (SAPs), not only the
cell coverage, but also the spatial reuse gain is significantly
enhanced [3]. To further improve the network performance,
the combination of SAPs and multiple-input multiple-output
(MIMO) technology is promising, where the spatial multiplex-
ing gain and/or diversity gain can be exploited [4]. However,
the dense deployment of SAPs increases the variation of traffic
demands among different cells, and the accommodation to
traffic fluctuation is essential. Dynamic time-division duplex
(D-TDD) has emerged as a potential solution to address the
asymmetric traffic demands [5]. Different from conventional
static time-division duplex (S-TDD), where all SAPs employ
the same uplink/downlink (UL/DL) configuration, D-TDD can
efficiently support the asymmetric traffic by allowing each
SAP to dynamically adjust its UL/DL resources [6], [7].
However, the flexibility is achieved at the expense of two new
types of inter-cell interference: the SAP-to-SAP interference
and mobile user to mobile user (MU-to-MU) interference.

To reduce the inter-cell interference, cell clustering has been
proposed as an effective approach [8]–[10]. With the cell

clustering scheme, small cells in close proximity are classified
into the same cluster, and adopt S-TDD in a per-cluster basis.
As such, SAPs within the same cluster synchronize their trans-
missions, and the SAP-to-SAP and MU-to-MU interference
can be eliminated within the cluster. Although the benefit of
cell-clustering scheme has been evaluated in heterogeneous
network [8] or centralized radio access network (C-RAN)
[9] via simulations, an analytical framework is essential to
fully understand the performance of clustered D-TDD scheme,
and capture the effect of key network parameters. However,
the spatial randomness of node’s geographical location and
the resulting aggregated interference distribution within a
given cluster, put rigorous challenges for the development of
analytical framework [11].

With tools from stochastic geometry, prior works model
node’s spatial irregularity by using classic spatial point process
like Poisson Point Process (PPP) in D-TDD networks, without
considering the cell clustering interference mitigation scheme
[12], [13]. The authors in [10] first model the cell clustering
scheme in a single-antenna small cell D-TDD network, and
use an approximation approach to compute the aggregated
interference from different clusters. With the extensive use of
multi-antenna technique, the multi-antenna small cell network
with clustered D-TDD is a promising architecture. In such a
network, an analytical framework is required to characterize
the synergy of cell clustering and multi-antenna techniques,
so as to provide guidelines for the network design. However,
to the best of our knowledge, there is no previous literature
evaluating the D-TDD network by jointly considering the
multi-antenna and cell clustering techniques.

In this work, we develop an analytical framework to
study the performance of multi-antenna small cell networks
operating clustered D-TDD. We model the SAP and MU
locations as two independent PPPs, and form each cluster
as a hexagon. Zero-forcing (ZF) beam-forming technique
is considered for both DL and UL transmissions to cancel
the inter-user interference within each cell. To reduce the
computational complexity, we use an approximate method to
calculate the aggregated interference, and derive tractable tight
upper bounds for success probability and network throughput.
The proposed analytical framework allows to characterize the
effect of key network parameters, and provides guideline for
the optimal design of cell clustering scheme.
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II. SYSTEM MODEL

A. Network model

We consider a small cell network operating clustered D-
TDD scheme, where the spatial locations of SAPs and MUs
follow two independent homogeneous PPPs Φs and Φu with
intensities λs and λu, respectively. We adopt the nearest
association policy where each MU connects to its closest SAP.
Let n ∈ {0, 1, ...., N} be the number of MUs associated
with each SAP where we limit the maximum number of
MUs served by each SAP to N . According to the nearest
association policy, the probability density function (PDF) of
the distance from a MU to its associated SAP can be derived
as fr(r) = 2πλsr exp(−πλsr

2) [14]. Each SAP is equipped
with M antennas, while each MU has a single antenna. The
transmit power of SAP (to each MU) and MU are defined
as Ps and Qu, respectively. The channel model consists of
two attenuation components, namely large-scale pathloss, and
small-scale Rayleigh fading. Specifically, the pathloss function
is given by g (‖x‖) = 1

‖x‖α with α > 2 being the pathloss
exponent, and the small-scale Rayleigh fading with unit mean
is given by h ∼ exp(1).

B. Transmission Scheme

In this network, we consider a fully-loaded model where
each SAP always has data to transmit to all its associated
MUs. We adopt the space division multiple access (SDMA)
scheme, where the maximum number of MUs (associated to
each SAP) N does not surpass the number of antennas M ,
i.e., N ≤ M . As a result, all the MUs can be served by
its associated SAP simultaneously. To cancel the inter-user
interference, we adopt ZF pre-coding at the DL SAPs, and
ZF receiver at the UL SAPs with perfect knowledge of the
channel state information (CSI). As such, the channel power
gain between an SAP and an MU is different when the SAP
acts as a serving SAP or interfering SAP in both DL and UL
mode, which is discussed in more details in Section III.

C. Cell Clustering Scheme

To reduce the interference from the opposite transmission
direction, the cell clustering scheme is adopted where we
group Voronoi cells that are closely located into clusters and
align the transmissions in each cluster, as depicted in Fig. 1.

To cover the whole network region without overlap, we form
each cluster as a hexagon. We define C(T, ρ) as a hexagon
centered at T with ρ being the cluster radius (from the hexagon
center T to the boundary). The area of C(T, ρ) can be easily
calculated as 2

√
3ρ2, and the cluster size, i.e., the average

number of SAPs per cluster, is given by l = 2
√

3ρ2λs. Note
that the cluster size l determines the operation pattern and
interference mechanism of the whole network. Obviously, as
l → ∞, the network degenerates into operate under S-TDD
scheme where all SAPs have the same transmission direction,
while l → 1 leads to the traditional D-TDD scheme where
each SAP individually sets its UL/DL configuration. With the
proposed cell clustering scheme, SAPs within the same cluster

Figure 1. An illustration of clustered D-TDD for two-antenna small
cell networks with ρ being the cluster radius, where SAPs located within
the same cluster simultaneously align their UL/DL configurations at
each time slot.

configure in DL (resp. UL) transmission with probability pD
(resp. 1 − pD).

III. PERFORMANCE ANALYSIS

A. Success Probability

We consider the constant bit-rate coding, and define γD and
γU as the DL and UL SINR thresholds. With the Slivyark’s
theorem [15], [16], it is sufficient to focus on the SINR of
a typical MU or SAP that locates at the origin. The success
probability is defined as

µTX , Pr(SINRTX > γTX), TX ∈ {D,U}. (1)

With the cell clustering scheme, for a generic cluster, we
can divide the locations of SAPs Φs (resp. MUs Φu) into two
independent PPPs Φin

s and Φout
s (resp. Φin

u and Φout
u ), which lie

within intra-cluster zone and cross-cluster zone, respectively.
By limiting the maximum number of MUs served by each
SAP to N , we can decompose Φin

s and Φout
s into N tiers

where the n-th (n ∈ {1, ..., N}) tier is constituted by SAPs
with exactly n associated MUs. According to this, we can
model the spatial locations of SAPs (MUs) in the n-th tier as
Φin

sn (Φin
un ) and Φout

sn (Φout
un ), respectively. To analyze the aggre-

gated interference from cross-cluster zone, we approximate
the cross-cluster zone into a sequence of disjoint hexagonal
rings. Specifically, let C(T, ρ) be the cluster of the typical
SAP or MU, the cross-cluster zone can be approximated by
{Ak}∞k=1 = {C(T,

√
k + 1ρ)\C(T,

√
kρ)}∞k=1 [17] where the

k-th hexagonal ring Ak corresponds to the k-th cluster, and
the area of Ak is the same as C(T, ρ), i.e., 2

√
3ρ2. In the

k-th ring, we define Φoutk
sk

and Φoutk
uk

as the spatial locations of
SAPs and MUs, respectively, and we have

Φs = Φin
s ∪ Φout

s =
(
∪Nn=1Φin

sn

)
∪
(
∪∞k=1 ∪Nn=1 Φoutk

sn

)
, (2)



Φu = Φin
u ∪ Φout

u =
(
∪Nn=1Φin

un

)
∪
(
∪∞k=1 ∪Nn=1 Φoutk

un

)
. (3)

For the typical MU located at the origin 0 in DL mode, the
received SINR can be expressed as

SINRD =
Psr
−α
0 ‖ h†0,0w0,0 ‖2

ID + σ2
, (4)

where h0,0 ∈ CM×1 and w0,0 ∈ CM×n0 , respectively, denote
the channel vector and the ZF pre-coding matrix at the tagged
DL SAP (to the typical MU), and ID denotes the aggregated
interference from DL SAPs and UL MUs, given by

ID =

N∑
n=1

∑
xi∈Φin

sn
\{x0}

Ps ‖ x0,i ‖−α| h†0,iWi |2

+

∞∑
k=1

[
1

outk
{TX=D}

N∑
n=1

∑
xj∈Φ

outk
sn

Ps ‖ x0,j ‖−α| h†0,jWj |2

+ 1
outk
{TX=U}

N∑
n=1

∑
zl∈Φ

outk
un

Qu ‖ z0,l ‖−α| h0,l |2
]
, (5)

where indicator functions 1outk
{TX=D} and 1outk

{TX=U} represent that
the SAPs in the n-th cluster are configured in DL and UL
direction, respectively. The first part, second part and last part
in (5) denote the DL interference from intra-cluster zone,
cross-cluster zone, and UL interference from cross-cluster
zone, respectively. The channel vectors from the interfering
DL SAP located at xi and xj are denoted by h0,i ∈ CM×1

and h0,j ∈ CM×1, respectively. For the UL interfering MUs,
the channel gain from zl to the typical MU is denoted by
h0,l ∼ CN (0, 1). We define H̃i = [h̃0,i, ..., h̃c,i, ..., h̃n−1,i]

† ∈
Cn×M as the channel matrix between a DL interfering SAP
and all the n associated MUs. The direction of each vector
channel is represented by h̃c,i ,

hc,i
‖hc,i‖ , where ‖ · ‖ denotes

the Euclidean norm. By using ZF pre-coding, the columns of
the pre-coding matrix Wi = [wi,c]1≤c≤n ∈ CM×n are exactly
the columns of the pseudo-inverse HH

i , H̃†i (H̃iH̃
†
i )
−1 ∈

CM×n, where (.)H and (.)† represent the pseudo-inverse and
conjugate transpose, respectively.

Let n0 ∈ {1, 2, ..., N} be the number of MUs associated
with the tagged DL SAP. The desired channel power gain can
be derived as hD

0,0 =‖ h†0,0w0,0 ‖2∼ Γ(M − n0 + 1, 1) [18],
the DL interference channel power gain is given by gD

xi,SAP =|
h†0,iWi |2∼ Γ(n, 1), and the UL interference channel power
gain is derived as gD

MU =| h0,l |2∼ Exp(1).
For the typical SAP located at the origin 0 in UL mode,

the received SINR can be expressed as

SINRU =
Qur

−α
0 ‖ v†0g0,0 ‖2

IU+ | v†0n0 |2
, (6)

where g0,0 ∈ CM×1 and v0 ∈ CM×1, respectively, denote the
channel vector from the expected UL MU located at z0 to the
typical SAP, and the unit norm ZF receive filter. The noise

power | v†0n0 |2= σ2, and the aggregated interference IU is
given by

IU =

N∑
n=1

∑
zi∈Φin

un
\{z0}

Qu ‖ z0,i ‖−α| v†0g0,i |2

+

∞∑
k=1

[
1

outk
{TX=U}

N∑
n=1

∑
zm∈Φ

outk
un

Qu ‖ z0,m ‖−α| v†0g0,m |2

+ 1
outk
{TX=D}

N∑
n=1

∑
xj∈Φ

outk
sn

Ps ‖ x0,j ‖−α| v†0H
†
0,jWj |2

]
, (7)

where the first part, second part and last part denote the
UL interference from intra-cluster zone, cross-cluster zone,
and DL interference from cross-cluster zone, respectively. The
symbols g0,i ∈ CM×1 and H†0,j ∈ CM×M denote the channel
vectors from the interfering MU located at zi and SAP located
at xj (to the typical SAP), respectively.

Let n0 ∈ {1, 2, ..., N} be the number of MUs associated
with the typical UL SAP. By using ZF receiver, a unit norm
receive filter v0 ∈ CM×1 is selected orthogonal to the channel
vectors of other n0 − 1 interferer associated with the same
typical SAP, i.e., | v†0g0,p |2= 0 for p = 1, ..., n0 − 1.1 As is
derived in [19], we have hU

0,0 =‖ v†0g0,0 ‖2∼ Γ(M−n0+1, 1),
gU,in

MU =| v†0g0,i |2∼ Exp(1), gU,out
MU =| v†0g0,m |2∼ Exp(1), and

gU
xj ,SAP =| v†0H

†
0,jWj |2∼ Γ(n, 1), respectively.

Theorem 1. The DL and UL success probabilities of the
typical SAP with n0 ∈ {1, 2, ..., N} associated MUs can be
approximated by

µD(n0) ≈
∫ ρ

0

2πλsr0 exp(−πλsr2
0)

[M−n0∑
i=0

1

i!
(−s)i

× di

dsi
LID

IN
(s)

]
s=

γDr
α
0

Ps

dr0, (8)

µU(n0) ≈
∫ ρ

0

2πλsr0 exp(−πλsr2
0)

[M−n0∑
i=0

1

i!
(−s)i

× di

dsi
LIU

IN
(s)

]
s=

γUr
α
0

Qu

dr0, (9)

where LID
IN

(s) and LIU
IN

(s) are given by

LID
IN

(s)

= exp
(
−sσ2

)
exp

{
−2π

N∑
n=1

λs,n

n∑
l=1

Cln

∫ ρ

r0

(
sPsr−α

)l
r

(1 + sPsr−α)n
dr

}

×
∞∏
k=1

{
pD exp

(
−2π

N∑
n=1

λs,n

n∑
l=1

Cln

∫ √k+1ρ

√
kρ

(sPsr−α)lr

(1 + sPsr−α)n
dr

)

+
(
1− pD

)
exp
(
−2π

N∑
n=1

λu,n

(
Θ
(
α, 1,

(
sQu

)−1
,
√
k + 1ρ

)
−Θ
(
α, 1,

(
sQu

)−1
,
√
kρ
)))}

, (10)

1It is worth noting that when n0 = 1, the ZF receiver becomes the maximal
ratio combining (MRC) technique.



LIU
IN

(s)

= exp
(
−sσ2

)
exp
(
−2π

N∑
n=1

λu,nΘ
(
α, 1,

(
sQu

)−1
, ρ
))

×
∞∏
k=1

{
pD exp

(
−2π

N∑
n=1

λs,n

n∑
l=1

Cln

∫ √k+1ρ

√
kρ

(sPsr−α)lr

(1 + sPsr−α)n
dr

)

+
(
1− pD

)
exp
(
−2π

N∑
n=1

λu,n

(
Θ
(
α, 1,

(
sQu

)−1
,
√
k + 1ρ

)
−Θ
(
α, 1,

(
sQu

)−1
,
√
kρ
))}

(11)

with λs,n = λsf(n), λu,n = λsf(n) · n and

Θ
(
α, β, u, d

)
,
∫ d

0

rβ

1 + urα
dr

=
dβ+1

β + 1 2

F1(1,
β + 1

α
; 1 +

β + 1

α
;−udα)

with 2F1(·, ·; ·; ·) being the Gaussian hyper-geometric function.
Proof: See Appendix A.

As can be seen from (8) and (9), the computation of µD(n0)
and µU(n0) requires evaluating higher order derivatives of the
Laplace transform. A larger parameter M−n0 leads to higher
computational complexity. In the following corollary, we de-
rive the upper bounds of µD(n0) and µU(n0) by employing
the complementary cumulative distribution function (CCDF)
of Gamma distribution.

Corollary 1. The DL and UL success probabilities of the
typical SAP with n0 ∈ {1, 2, ..., N} associated MUs are upper
bounded by

µD(n0) ≤
∫ ρ

0

2πλsr0 exp(−πλsr2
0)

[∆n0∑
i=1

(−1)i+1Ci∆n0

× LID
IN

(i · (Γ(∆n0 + 1))
− 1

∆n0 · s)
]
s=

γDr
α
0

Ps

dr0, (12)

µU(n0) ≤
∫ ρ

0

2πλsr0 exp(−πλsr2
0)

[∆n0∑
i=1

(−1)i+1Ci∆n0

× LIU
IN

(i · (Γ(∆n0 + 1))
− 1

∆n0 · s)
]
s=

γUr
α
0

Qu

dr0, (13)

where ∆n0
, M − n0 + 1, LID

IN
(s) and LIU

IN
(s) are given

by (10) and (11) in Theorem 1, respectively.
Proof: See Appendix B.

With the law of total probability, the overall DL and UL
success probabilities can be derived as

µD =

N∑
n0=1

µD(n0)f(n0), (14)

µU =

N∑
n0=1

µU(n0)f(n0). (15)
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Figure 2. Success probability as a function of SINR threshold with cluster
size l = 3, antenna number per SAP M = 8, and DL fraction pD = 0.5.

B. Network Throughput

With the success probability obtained above, we derive the
network throughput of the small cell network in this subsec-
tion. Conditioned on the DL fraction pD and the cluster size
l, the DL and UL network throughput (in Bits/Sec/Hz/m2)
can be written as

TD = pDλs log2(1 + γD)

N∑
n0=1

µD(n0)f(n0)n0, (16)

TU = (1− pD)λs log2(1 + γU)

N∑
n0=1

µU(n0)f(n0)n0. (17)

IV. NUMERICAL RESULTS

In this section, we first verify the theoretical model by
means of simulations, and then provide key design insights for
multi-antenna small cell networks under clustered D-TDD. We
perform all simulations over a square window of 1000 × 1000
m2 with 10000 iterations. With the clustered D-TDD scheme,
each SAP synchronizes its transmission to all the other SAPs
within the same cluster, and serves all its associated MUs.
Due to the high computational complexity of the analytical
results derived in (8) and (9), in the following figures, we only
plot the upper bound of the analytical results by using (12)
and (13), respectively. Unless otherwise specified, we use the
following default values of network parameters: SAP density
λs = 10−3m−2, MU density λu = 10λs, transmit power of
MU Qu = 17 dBm, maximum number of MUs associated to
each SAP N = 3, and the number of antennas equipped by
each SAP M = 8.

Figure 2 depicts the success probability as a function of
SINR threshold. We observe that the upper bound of DL
success probability is much tighter than that of UL success
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Figure 3. Success probability (a) and network throughput (b) as a function
of SAP antenna number M with DL fraction pD = 0.5, cluster size l = 3,
and SINR threshold γD = γU = 0dB.

probability. This can be explained by the use of PPP ap-
proximation for active MUs in UL mode. Note that with the
limitation on the maximum number of MUs N (associated
with each SAP) and the DL fraction pD, the active UL
interfering MUs do not distribute as a PPP.

Figure 3 depicts the success probability and network
throughput as a function of SAP antenna number M where
the cluster size is set to be l = 3. From Fig. 3(a) and (b), we
observe that an increasing antenna number of SAP M leads
to an improvement in both success probability and network
throughput. This can be explained by the enhanced spatial
diversity gain achieved by each MU. With the number of
served MUs N unchanged, a larger antenna number results
in the higher transmit diversity.
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Figure 4. Success probability as a function of DL fraction pD with cluster
size l = 3, antenna number per SAP M = 8, and SINR threshold γD =
γU = 0dB.

In Fig. 4, we plot the success probability as a function of
DL fraction pD. As pD grows, the DL interfering SAP density
increases while the UL interfering MU density decreases.
With the considered parameter settings, it shows that both DL
and UL success probabilities decrease with pD. This can be
explained by the huge difference in transmit power between
SAP and MU, which results in the incremental aggregated
interference.

Figure 5 depicts the success probability and network
throughput as a function of cluster size l, i.e., the average
number of SAPs per cluster, under different SAP transmit
power. We observe that both success probability and network
throughput in DL direction first grows and then decreases
with respect to cluster size. This can be explained by the
fact that when the cluster is small, the inter-cluster MU-
to-MU interference dominates the DL transmission, and an
enlargement of cluster eliminates the MU-to-MU interference,
thus, boosting up the DL performance. However, as the cluster
size keeps growing, the intra-cluster SAP-to-MU interference
begins to dominate the DL transmission. As more and more
SAPs are clustered and configured into the same direction,
the increasing intra-cluster DL interference degrades the DL
performance. Fig. 5 also shows that the UL performance
always benefits from the growing cluster. This comes from
the fact that the UL performance is dominated by the severe
SAP-to-SAP interference, and an increase in cluster size
helps eliminate the SAP-to-SAP interference, which improves
the UL performance. What’s more, a lower Pm leads to
an enhancement in UL performance and a decrease in DL
performance. Since l = 1 corresponds to the traditional
D-TDD scheme, Fig. 5(a) and (b) show the superiority of
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Figure 5. Success probability (a) and network throughput (b) as a function
of cluster size with antenna number per SAP M = 8, maximum number
of MUs associated to each SAP N = 4, DL fraction pD = 0.5, and SINR
threshold γD = γU = 0dB.

clustered D-TDD scheme over the traditional D-TDD scheme
in both success probability and network throughput. It further
reveals that our proposed analytical framework can be used to
determine the optimal cluster size (e.g., l = 3 in this example)
for the DL performance.

V. CONCLUSIONS

In this work, we proposed an analytical framework to
investigate the network performance of multi-antenna D-TDD
small cell network with cell clustering as the interference
mitigation scheme. The framework allows to evaluate the

success probability and network throughput by accounting
for the UL/DL configuration, cluster size, antenna number,
transmit power, SINR threshold, and maximum number of
MUs associated to each SAP. The superiority of the clustered
D-TDD over the traditional D-TDD is revealed by numerical
results. The proposed analytical framework can be used to find
the optimal cluster size for the DL network performance, and
it also revealed that a larger cluster size leads to better UL
network performance.

APPENDIX

A. Proof of Theorem 1
The success probability µTX, TX ∈ {D,U} is affected by

not only the interference, cluster size, but also the antenna
number. For an SAP associating with n0 MUs, the DL success
probability can be derived as

µD(n0)
(a)
=

∫ ρ

0

Pr
(
hD

0,0 > sID
IN |n0

)
fr(r0)dr0

(b)
=

∫ ρ

0
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1

i!
E{ID

IN
}
[
(sID

IN )ie−sI
D
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]
fr(r0)dr0

(c)
=

∫ ρ

0

M−n0∑
i=0

1

i!
(−s)i d

i

dsi
LID

IN
(s) · fr(r0)dr0, (18)

where ρ is cluster radius, fr(r0) = 2πλsr0 exp(−πλsr
2
0) is

the PDF of the typical link length, and ID
IN , ID + σ2. Step

(a) is derived by defining s =
γDr

α
0

Ps
, (b) follows from the

CCDF of a Gamma variable X ∼ Γ(k, θ), and (c) is derived
by substituting EX [Xne−sX ] = (−1)n dn

dsnLX(s) and hD
0,0 ∼

Γ(M − n0 + 1, 1).
To derive µD(n0), we need to first calculate the i-th deriva-

tive of the Laplace transform of ID
IN . Due to the independence

of ID and σ2, we have LID
IN

(s) = E
[
e−sσ

2
]
LID(s). Condi-

tioned on the typical link length r0, the Laplace transform of
ID can be derived as
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Specifically, the Laplace transform of the intra-cluster inter-
ference I in

D is given by
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where gD
xi,SAP ,| h†0,iWi |2, and λs,n = λsf(n). Step (a)

follows from the probability generating functional (PGFL) of
PPP, (b) follows from the fact that gD

xi,SAP ∼ Γ(n, 1), and (c)
comes from Binomial theorem and the change from Cartesian
to polar coordinates.

Similarly, the Laplace transform of the cross-cluster inter-
ference Iout

D is given by
LIout
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(s)
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where λu,n ≈ λsnf(n), and

Θ
(
α, β, u, d

)
,
∫ d

0

rβ

1 + urα
dr

=
dβ+1

β + 1 2

F1(1,
β + 1

α
; 1 +

β + 1

α
;−udα),

with 2F1(·, ·; ·; ·) being the hypergeometric function. Note that
the calculation of λu,n follows from the fact that there is a
mapping between an SAP and its associated MUs. Assume
an UL SAP associates with n MUs, then the density of
interfering MUs is equivalent to λsnf(n). Step (a) is due
to the fact that all SAPs in each cluster are simultaneously
configured in DL (resp. UL) with probability pD (resp. 1-pD),
and the approximation of dividing the cross-cluster zone into
a sequence of disjoint hexagonal rings.

Combining (20) with (21), we derive LID
IN

(s) in (10). By
substituting (10) into (18), µD(n0) is given by (8). Following
the similar method, we derive µU(n0) in (9). This concludes
the proof.

B. Proof of Corollary 1

Define γ(m, z) =
∫ z

0
tm−1e−tdt as the lower incomplete

Gamma function. The CCDF of Gamma distribution can be
expressed as F̄Z(z) = 1− γ(m,z)

Γ(m) . With Alzer’s inequality in
[20], we have

γ(m, z)

Γ(m)
> (1− exp(−cz))m. (22)

For m > 1, we have c = (Γ(m+ 1))−
1
m . By expanding the

expectation term, we have
EI [γ(m, zI)]

Γ(m)
≥ EI [(1− exp(−czI))m]

=
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k=0

(−1)kCkmLI(ckz). (23)

Take µD(n0) in (8) as an example, we have
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where we define ∆n0 = M − n0 + 1 (a) follows from the
fact that −(−1)k = (−1)k+1 and that
C0
M−n0+1LID

IN
(0) = 1. This concludes the proof.
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