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Abstract—Existing tag signal detection algorithms inevitably
suffer from a high bit error rate (BER) due to the difficulties in
estimating the channel state information (CSI). To eliminate the
requirement of channel estimation and to improve the system
performance, in this paper, we adopt a deep transfer learning
(DTL) approach to implicitly extract the features of communi-
cation channel and directly recover tag symbols. Inspired by the
powerful capability of convolutional neural networks (CNN) in
exploring the features of data in a matrix form, we design a
novel covariance matrix aware neural network (CMNet)-based
detection scheme to facilitate DTL for tag signal detection, which
consists of offline learning, transfer learning, and online detec-
tion. Specifically, a CMNet-based likelihood ratio test (CMNet-
LRT) is derived based on the minimum error probability (MEP)
criterion. Taking advantage of the outstanding performance of
DTL in transferring knowledge with only a few training data,
the proposed scheme can adaptively fine-tune the detector for
different channel environments to further improve the detection
performance. Finally, extensive simulation results demonstrate
that the BER performance of the proposed method is comparable
to that of the optimal detection method with perfect CSI.

I. INTRODUCTION

With the rapid development of the fifth-generation (5G)
wireless communications, the Internet-of-Things (IoT) has
been proposed as a versatile system which enables the connec-
tions of massive devices through the internet [1], [2]. However,
one of the key challenges in realizing the era of IoT is the
restricted lifetime of networks, as only limited energy storage
capacity in batteries can be adopted for most IoT devices [3].
To overcome this problem, one of the promising solutions is
ambient backscatter communication (AmBC), which enables
passive backscatter devices (e.g., tags, sensors) to transmit
their information bits to dedicated readers over ambient radio-
frequency (RF) signals (e.g., Wi-Fi signals, cellular base
station signals, and TV tower radio signals) [4]. In an AmBC
system, an AmBC tag could transmit its binary tag symbols
by choosing whether to backscatter the ambient RF signals
or not. Thus, one of the key tasks of an AmBC system is
to perform tag signal detection, i.e., recovering the tag signal
at the reader, which has attracted tremendous attention from
both academia [4] and industry [5], respectively. Generally,
there are two main challenges for tag detection: (1) since both
the direct link signal from the RF source and the backscatter
link signal from the tag could be received by the reader

simultaneously, the received direct link signal generally causes
severe interference to the received backscatter link signal; (2)
in contrast to the traditional wireless communication systems,
estimating the channel state information (CSI) in AmBC
systems is challenging due to the lack of pilot signals sent
from the ambient RF source [6].

Recently, various effective algorithms have been proposed
for tag signal detection in AmBC systems. In [7], an energy
detection (ED) method was proposed to decode tag symbols
which achieves good detection performance. However, this
energy detection method requires the knowledge of perfect
CSI which is not available in practical AmBC systems. To
overcome this issue, a semi-coherent detection method was
designed in [8] which requires only a few pilots and unknown
data symbols. In order to eliminate the process of channel
estimation, Wang et al. [9] adopted a differential encoding
scheme for tag bits and proposed a minimum BER detector.
On top of [9], a fundamental study of the BER performance for
non-coherent detectors was conducted in [10]. Furthermore,
machine learning (ML)-based methods have been proposed
recently which aim to directly recover the tag signals without
the need of estimating relevant channel parameters explicitly.
For example, Hu et al. [11] transformed the task of tag signal
detection into a classification task and designed a support
vector machine (SVM)-based energy detection method to
improve the BER performance. However, the proposed ML-
based method requires a large number of training pilots which
reduces the system effective throughput and is not suitable
for communication systems with short coherence times. More
importantly, there exists a large gap between the proposed
method and the optimal method. As a result, considering
the time-varying nature of wireless systems, a more practical
detector, which can dynamically adapt itself to the changes of
channel environment, is expected.

In contrast to the traditional ML methods [12], [13], deep
transfer learning (DTL), which adopts a deep neural network
(DNN) to extract the time-varying features with a few online
training data by transferring knowledge from a source domain
to a target domain, has proven its powerful capability in
capturing time-varying features in numerous research fields,
cf. [14]–[16]. Motivated by this, in this paper, we propose
a DTL approach to capture the real-time features of channel
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Fig. 1. An illustration of the considered AmBC system.

environment to further improve the tag signal detection per-
formance for AmBC systems. The main contributions of this
paper are as follows:
(1) In contrast to the traditional detection methods requiring

explicit channel estimation, e.g., [8]–[10], we propose a
DTL approach for tag signal detection to implicitly extract
the features of channel and directly recover tag symbols,
which adopts a DNN to transfer the knowledge learnt from
one tag detection task under offline channel coefficients to
another different but related tag detection task in real-time.

(2) We creatively adopt a convolutional neural network (CNN)
to explore the features of the sample covariance matrix
[17] and design a DTL-oriented covariance matrix aware
neural network (CMNet) for tag signal detection. Exploit-
ing the powerful capability of CNN in exploring features
of data in a matrix form, the proposed method could
further improve the BER performance.

(3) Specifically, according to the minimum error probability
(MEP) criterion, a CMNet-based likelihood ratio test
(CMNet-LRT) is derived for tag signal detection, which
enables the design of an effective detector.

The remainder of this paper is organized as follows. Section
II formulates the AmBC system model. In Section III, a
CMNet-based DTL scheme and the related algorithm are
proposed for tag signal detection. Extensive simulation results
are presented to verify the efficiency of the proposed method
in Section IV, and Section V finally concludes the paper.

Notations: Superscripts T and H indicate the transpose and
conjugate transpose, respectively. Term CN (µ,Σ) represents
a circularly symmetric complex Gaussian (CSCG) distribution
with mean vector µ and covariance matrix Σ. Term IM is
used to denote the M -by-M identity matrix and 0 is used
to denote the zero vector. (·)−1 indicates the matrix inverse
operation. det(·) is the determinant operator. E(·) represents
the statistical expectation. ‖ · ‖2 denotes the norm of an input
vector. exp(·) represents the exponential function. C denotes
the set of complex numbers.

II. SYSTEM MODEL

As depicted in Fig. 1, in this paper, we consider a general
AmBC system, which consists of an ambient RF source, a
backscatter tag, and a reader. The reader is equipped with an
M -element antenna array for signal detection, meanwhile the
RF source and the passive tag are both equipped with a single-
antenna. Due to the broadcasting nature of the RF source, the
transmitted RF signal is received by both the reader and the tag
simultaneously. The passive device, tag, can then transmit its
binary modulated tag symbols by choosing whether to reflect
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Fig. 2. The tag frame structure of the considered AmBC system.

the ambient RF signals to the reader. In this case, the reader is
able to recover the tag symbols through sensing the changes
of the received signals.

The frame structure of the received signal at the reader is
illustrated in Fig. 2, each frame consists of P pilot symbols
and T − P (T > P ) data symbols. The pilot tag symbols
are known by the reader, and the remaining tag symbols are
used for data transmission. In the considered AmBC system,
the tag transmits its information bits at a rate N times lower
than the sampling rate of the RF source signal. Thus, we
define the source-to-tag ratio (STR) as the number of RF
source symbols in one tag symbol period, which is N in the
considered system. Denote by c(t) ∈ {0, 1} the t-th tag symbol
with the binary on-off keying modulation, i.e., c(t) = 0 refers
that the tag does not reflect the RF source signal; otherwise,
the tag reflects the RF source signal. Correspondingly, we use
s
(t)
n to denote the n-th RF source signal sample within the tag

symbol c(t). Denote by x
(t)
n = [x

(t)
n,1, x

(t)
n,2, · · · , x

(t)
n,M ]

T
, n ∈

{0, 1, · · · , N − 1}, the n-th observation vector at the reader
within the t-th, t ∈ {1, · · · , T}, tag symbol period, where
x
(t)
n,m, m ∈ {1, 2, · · · ,M}, indicates the n-th discrete-time

sample observed at the m-th antenna element. In this case,
the received signal at the reader can be expressed as

x(t)
n = hs(t)n + αfgs(t)n c(t) + u(t)

n ,∀n, t. (1)

Here, h = [h1, h2, · · · , hM ]T is the direct link channel
coefficient vector, where hm ∈ C is the channel coefficient
from the RF source to the m-th antenna at the reader. Cor-
respondingly, g = [g1, g2, · · · , gM ]T is the backscatter link
channel coefficient vector, where gm ∈ C is the channel
coefficient from the tag to the m-th antenna at the reader.
Variables f , α ∈ C represent the channel coefficient from
the RF source to the tag and the reflection coefficient of the
tag, respectively. Considering that the ambient source signal
in practice may arise from an unknown or indeterminate
ambient RF source, a general approach is to model s(t)n by
a CSCG random variable [8]–[10], i.e., s(t)n ∼ CN (0, σ2

s),
where σ2

s is the signal variance. In addition, u
(t)
n ∈ CM×1

denotes the noise vector and is assumed to be an independent
and identically distribution (i.i.d.) CSCG random vector with
u
(t)
n ∼ CN (0, σ2

uIM ), where σ2
u is the noise variance at each

antenna of the reader.
Thus, the tag signal detection can be further formulated as

a binary hypothesis testing problem:

H1 : x(t)
n = ws(t)n + u(t)

n ,

H0 : x(t)
n = hs(t)n + u(t)

n ,
(2)



where w = h + αfg, and H1 and H0 denote the hypotheses
that the tag symbol c(t) = 1 and c(t) = 0, respectively. For
the ease of the following analysis, we first define the received
signal-to-noise ratio (SNR) of the direct link as

SNR =
E(||hs(t)n ||2)

E(||u(t)
n ||2)

. (3)

Besides, the relative coefficient between the direct signal path
and the backscattered signal path is defined as a ratio of their
average channel gains which is given by

ζ =
E(||αfg||2)

E(||h||2)
. (4)

Based on the above system model, we now introduce the
optimal likelihood ratio test as a benchmark to the considered
AmBC system. According to (2), the distribution of x

(t)
n is

x(t)
n ∼

{
CN (0,Σ1), H1

CN (0,Σ0), H0
, (5)

where Σ1 = σ2
swwH +σ2

uIM and Σ0 = σ2
shhH +σ2

uIM . Let
X(t) = [x

(t)
1 ,x

(t)
2 , · · · ,x(t)

N ],∀t, represent a sampling matrix
of the t-th tag symbol at the reader. If perfect CSI, e.g., w
and h, are known at the reader, the logarithmic form of the
optimal likelihood ratio test (LRT) under the CSCG ambient
source can be derived as [18]

L(X(t)) =

N−1∑
n=0

ln

p
(
x
(t)
n |H1; 0,Σ1

)
p
(
x
(t)
n |H0; 0,Σ0

)
 , (6)

where

p
(
x(t)
n |Hi; 0,Σi

)
=

1

πM det(Σi)
exp

(
−(x(t)

n )HΣ−1i x(t)
n

)
.

(7)
Although the LRT can achieve the optimal BER perfor-

mance, it requires the availability of perfect CSI which is not
always available in practical AmBC systems due to the lack
of pilot signals from the ambient RF source [11].

III. COVARIANCE MATRIX-BASED DEEP TRANSFER
LEARNING FOR TAG SIGNAL DETECTION

In this section, we propose a covariance matrix-based
DTL approach to intelligently explore the features of sample
covariance matrix to further improve the BER performance
of AmBC systems. In the following, we will introduce the
proposed covariance matrix-based neural network (CMNet)
structure, the CMNet-based DTL for tag signal detection, and
the CMNet-based detection algorithm, respectively.

A. CMNet Structure

As shown in Fig. 3, the CMNet consists of an input layer
(S0), two convolutional layers (C1 and C2), one pooling
layer (S1), one flattening layer (C3), two dropout layers
(D1 and D2), and two fully connected layers (F1 and F2).
The convolutional, pooling, and flattening layers are used for
extracting features from the input. Then, the dropout layers
are added to overcome the overfitting issue which is caused

S0 C1 S1C2 F2

Input: SCM of Tag Symbol

D1 C3 F1 D2

Convolution Convolution Pooling Flattening Full ConnectionDropout

( )

( )

Re{ ( )}

Im{ ( )}

t

t

N

N

x

x

R

R
and denote the

real part and imaginary
part, respectively.

Re{ } Im{ }

Fig. 3. The designed CMNet structure for tag signal detection.

TABLE I
HYPERPARAMETERS OF THE PROPOSED CMNET

Input:
Sample Covariance Matrix (Dimension: M ×M )

Layer Filter Size
S0 –

C1 + ReLU 64× (3× 3)
C2 + ReLU 64× (3× 3)

S1 (Max-Pooling) 2× 2
C3 (Flattening) 64× (12× 12)
D1 (ρ = 0.5) –
F1 + ReLU 128× 4608
D2 (ρ = 0.25) –
F2 + Softmax 2× 128

Output:
Feature Vector (Dimension: 2× 1)

by the limitation of insufficient training examples from pilots
[19]. Finally, the fully connected layers learn the non-linear
combinations of these extracted features to further improve the
performance of the task. The corresponding hyperparameters
are introduced in Table I. Here, “ReLU” and “Softmax”
denote the activation functions using rectified linear unit and
normalized exponential function [19], respectively. Flattening
means that we flatten the last layer to create a single long
feature vector. The dropout rate ρ refers to the probability of
training a given node in a layer.

According to Fig. 2, there are N RF source signal sampling
periods within one tag, the sample covariance matrix (SCM)
of the t-th tag symbol can be expressed as

R(t)
x (N) =

1

N

N−1∑
n=0

x(t)
n (x(t)

n )H . (8)

Considering R
(t)
x (N) ∈ CM×M is a complex-valued matrix,

we then adopt two different input channels to handle the
the real part and imaginary part of R

(t)
x (N), respectively.

Therefore, the CMNet can be expressed as

hθ(R
(t)
x (N)) =

[
hθ|H1

(R
(t)
x (N))

hθ|H0
(R

(t)
x (N))

]
, (9)

where hθ(·) is the expression of the CMNet under parameter
θ and hθ|Hi

(·) is the class score of Hi by CMNet.

B. CMNet-based DTL for Tag Signal Detection

In this section, we adopt the designed CMNet to facilitate
DTL for tag signal detection and propose a CMNet-based DTL
scheme which consists of offline learning, transfer learning,
and online detection, as shown in Fig. 4. According to [14],
[15], the training sets of offline learning and transfer learning
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Fig. 4. The proposed CMNet-based DTL scheme for tag signal detection.

are denoted by a source domain dataset DS and a target do-
main dataset DT , respectively. For simplification, we assume
that the channel coefficients of DS and DT are i.i.d. with
distinct values. In this case, the objective of DTL for tag signal
detection is to improve the BER performance of detection task
in DT based on the knowledge gained from the related but
different detection task in DS .

Based on the above discussion, in the proposed scheme,
we first establish a pre-trained CMNet to extract the common
features of statistical channel models through offline learning.
We then freeze the partial layers of the pre-trained CMNet and
only fine-tune the remaining layers to adjust the network to
the current channel coefficients through transfer learning with
a few pilots. Finally, we can apply the well-trained CMNet
for online detection. In the following, we will introduce the
modules of offline learning (Fig. 4(a)), transfer learning (Fig.
4(b)), and online detection (Fig. 4(c)), respectively.

1) Offline Learning: Given KS labelled tag symbols, we
adopt X

(k)
S = [x

(k)
S1
,x

(k)
S2
, · · · ,x(k)

SN
] ∈ CM×N to denote the

sampling matrix of the k-th, k ∈ {1, 2, · · · ,KS}, tag symbol.
Based on this, we build the source domain dataset as:

DS = (ΩS , ZS) =
{

(R(1)
xS

(N), z
(1)
S ), (R(2)

xS
(N), z

(2)
S ),

· · · , (R(KS)
xS

(N), z
(KS)
S )

}
,

(10)

Here, ΩS is the set of sample covariance matrices and
R

(k)
xS (N) = 1

NX
(k)
S (X

(k)
S )

H
is the k-th sample covariance

matrix. Correspondingly, ZS is the set of tag symbols and
z
(k)
S ∈ {1, 0} is the k-th label, where z(k)S = 1 (or 0) refers to

the hypothesis H1 (or H0). According to (9), the class score
can be rewritten as the following probability expressions [19]:

hθS |Hi
(R(k)

xS
(N)) = P (z

(k)
S = i|R(k)

xS
(N); θS), (11)

where i ∈ {1, 0} and P (z
(k)
S |R

(k)
xS (N); θS) denotes the condi-

tional probability under θS .

The goal of the offline learning is to maximize the likelihood

L(θS) = P (ZS |ΩS ; θS)

=

KS∏
k=1

(hθS |H1
(y

(k)
S ))

z
(k)
S

(hθS |H0
(y

(k)
S ))

1−z(k)
S
.

(12)

Therefore, we need to find parameter θ∗S to maximize the
posteriori probability P (ZS |ΩS), i.e.,

θ∗S = arg max
θS

P (ZS |ΩS ; θS), (13)

which is equivalent to minimizing the cost function

JCMNet(θS) =− 1

KS

KS∑
k=1

z
(k)
S ln(hθS |H1

(R(k)
xS

(N)))

+ (1− z(k)S ) ln(hθS |H0
(R(k)

xS
(N))).

(14)

Then, exploiting the backpropagation (BP) algorithm [19], we
can obtain the pre-trained CMNet:

hθ∗S (R) =

[
hθ∗S |H1

(R)

hθ∗S |H0
(R)

]
, (15)

where R denotes the input matrix given by (8) and hθ∗S (·) is
the expression of the pre-trained CMNet.

2) Transfer Learning: According to the frame structure in
Fig. 2, there are P pilots for transfer learning. For any pilot,
we use X

(k)
T = [x

(k)
T1
,x

(k)
T2
, · · · ,x(k)

TN
] to denote the sampling

matrix of the k-th, k ∈ {1, 2, · · · ,KT } tag symbol1. We can
then build the target domain dataset as:

DT = (ΩT , ZT ) =
{

(R(1)
xT

(N), z
(1)
T ), (R(2)

xT
(N), z

(2)
T ),

· · · , (R(KT )
xT

(N), z
(KT )
T )

}
.

(16)

Here, ΩT is the set of sample covariance matrices and
R

(k)
xT (N) = 1

NX
(k)
T (X

(k)
T )

H
is the k-th sample covariance

1Note that we can use data augmentation to generate KT ≥ P examples
based on the P pilot symbols



matrix. Correspondingly, ZT is the set of tag symbols and
z
(k)
T ∈ {1, 0}, ∀k, is the label.

Similar to (14), the cost function for transfer learning is

JCMNet(θT ) =− 1

KT

KT∑
k=1

z
(k)
T ln(hθT |H1

(R(k)
xT

(N)))

+ (1− z(k)T ) ln(hθT |H0
(R(k)

xT
(N))).

(17)

As shown in Fig. 4(b), during the training process, we can
reuse the convolutional layers of the pre-trained CMNet,
i.e., freezing the convolutional layers and only update the
parameters of the fully connected layers applying the BP
algorithm. Finally, we can obtain the well-trained CMNet:

hθ∗T (R) = hFCL
θ∗T

(hCL
θ∗S

(R)) =

[
hθ∗T |H1

(R)

hθ∗T |H0
(R)

]
, (18)

where hθ∗T (·) denotes the expression of the well-trained CM-
Net with the well-trained parameter θ∗T , hFCL

θ∗T
(·) denotes

the fully connected layers (F1 → F2) obtained through
fine-tuning, and fCL

θ∗S
(·) represents the convolutional layers

(C1 → C3) obtained from the pre-trained CMNet.
From a probabilistic viewpoint, we can then rewrite the

outputs of the well-trained CMNet as

H1 : hθ∗T |H1
(R) = P (H1|R),

H0 : hθ∗T |H0
(R) = P (H0|R),

(19)

where P (Hi|R) denotes the posterior probability expression.
Based on Bayes’ theorem, we can obtain the likelihood
expressions as

L(Hi|R) =
P (Hi|R) · P (R)

P (Hi)
=
h∗θ∗T |Hi

(R) · P (R)

P (Hi)
, (20)

where P (Hi) is the priori probability of Hi, and P (R) is the
marginal probability of the input matrix. Note that we always
set P (H1) = P (H0) = 0.5 for binary communication sys-
tems. Therefore, according to the minimum error probability
(MEP) criterion, we can then derive the CMNet-LRT:

LCMNet(R) =
L(H1|R)

L(H0|R)
=
hθ∗T |H1

(R)

hθ∗T |H0
(R)

≷ 1, (21)

where we make a decision that H1 holds if LCMNet(R) > 1,
otherwise, H0 holds.

3) Online Detection: Given the t-th tag symbol’s sampling
matrix for detection, denoted by X̃(t) = [x̃

(t)
1 , x̃

(t)
2 , · · · , x̃(t)

N ],
the corresponding sample covariance matrix is R̃

(t)
x (N) =

1
N X̃(t)(X̃(t))H . The decision of the CMNet-LRT is given by:

LCMNet(R̃
(t)
x (N)) =

hθ∗T |H1
(R̃

(t)
x (N))

hθ∗T |H0
(R̃

(t)
x (N))

c(t)=1
≷

c(t)=0

1, (22)

where c(t) = 1 if LCMNet(R̃
(t)
x (N)) > 1, otherwise, c(t) = 0.

4) Algorithm Steps: Based on the analysis above, a novel
CMNet-based detection algorithm is proposed in Algorithm
1, where iS and iT represent iteration indices, and IS and
IT indicate the maximum numbers of iterations of the offline
learning and the transfer learning, respectively.

Algorithm 1 CMNet-based Detection Algorithm

Initialization: iS = 0, iT = 0, IS = a, IT = b
Offline Learning:
1: Input: Training set DS = (ΩS , ZS)
2: while iS ≤ IS do
3: update θS by BP algorithm on JCMNet(θS)

iS = iS + 1
4: end while
5: Output: hθ∗

S
(·)

Transfer Learning:
6: Input: Training set DT = (ΩT , ZT )
7: while iT ≤ IT do
8: update θT by BP algorithm on JCMNet(θT )

iT = iT + 1
9: end while
10: Output: hθ∗

T
(·)

Online Detection:
11: Input: Real-time Test data X̃(t)

12: do CMNet-LRT in (22)
13: Output: Decision: c(t) = 1 or c(t) = 0

IV. SIMULATION RESULTS

This section presents simulation results to verify the ef-
ficiency of the proposed detection method under a classical
AmBC system as shown in Fig. 1. In the simulation, a CSCG
ambient source is adopted, the number of antennas at the
reader is M = 16, the number of pilots is set as P = 10.
The STR and the length of framework are set as N = 50 and
NT = 5, 000, respectively. All the channel coefficients follow
Rayleigh channel model and remain unchanged within each
tag frame. To evaluate the BER performance, we compare the
proposed CMNet method with other three related algorithms,
i.e., the optimal LRT method [18], the ED method with perfect
CSI [8], and the SVM-based method [11]. The hyperparam-
eters of the CMNet method are shown in Table I and we set
IS = 30, IT = 60 for Algorithm 1. For the training datasets,
we set KS = 60, 000 and KT = 2, 000. All the simulation
results are obtained by averaging over 100, 000 Monte Carlo
realizations.

We first present the BER curves with different SNRs in Fig.
5. It is shown that although the SVM-based method achieves
similar BER performance than that of the ED method with
perfect CSI, there is still a large gap compared to that of the
optimal LRT method. In contrast to them, the BER perfor-
mance of the proposed CMNet method approaches closely
to the optimal performance achieved by the LRT method
with perfect CSI. It is worth mentioning that the proposed
CMNet method achieves a SNR gain of 4 dB at BER ≈ 10−2

compared to the traditional SVM-based method. The reason
is that the SVM-based method makes decisions depending on
the sole energy-based feature of the received signals, while the
proposed CMNet method makes decisions by exploiting the
discriminative features from the sample covariance matrices
in a data-driven approach.

Fig. 6 presents the curves of BER versus relative coeffi-
cients. It is shown that when the value of relative coefficient ζ
increases, the BER of each method decreases gradually. This is
because the increase of ζ improves the strength of the reflected
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Fig. 5. BER curves with different SNRs under ζ = -30 dB.
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Fig. 6. BER curves with different relative coefficients under SNR = 5 dB.

path, which makes the tag signals easier to be distinguished
against the signals of the direct path. In addition, we can
find that the proposed CMNet method outperforms both the
SVM and ED methods dramatically, achieving almost the same
optimal performance as the LRT detector.

Fig. 7 shows the BER curves with different numbers of
antennas. It is shown that both the SVM and ED methods
improve the performance slowly, while the performance of the
CMNet method scales with the numbers of antennas with the
same slope as the optimal LRT method. This is because the
proposed method can efficiently exploit the spatial degrees of
freedom offered by the antennas and it can always exploit dis-
tinguishable features for improving the system performance.

V. CONCLUSIONS

This paper developed a DTL-based tag signal detection
approach to implicitly extract the features of channel and
directly recover tag symbols. To efficiently capture the time-
varying features of wireless environment, a novel CMNet
was designed to exploit the discriminative features of sample
covariance matrix through offline pre-training and online fine-
tuning with a few pilots in real-time. Specifically, a CMNet-
LRT was derived for tag signal detection, which enables the
design of an effective detector. Extensive simulation results
showed that the proposed CMNet method can achieve a close-
to-optimal performance without explicitly obtaining the CSI.
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