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Abstract—This work addresses a strategy to mitigate jamming
attack on low-latency communication by a Full-Duplex (FD)
adversary in fast-fading channel conditions. The threat model
is such that the FD adversary can jam a frequency band and
measure the jammed band’s power level. We first point out that
due to the presence of this FD adversary, Frequency Hopping
(FH) fails. We then propose a fast-forward cooperative relaying
scheme, wherein the victim node hops to the frequency band
of a nearby FD helper node that fast-forwards the victim’s
symbol along with its symbol. At the same time, the victim and
the helper cooperatively pour some fraction of their power on
the jammed band to engage the adversary. Due to fast-fading
channel conditions, the victim and the helper use amplitude
based non-coherent signalling referred to as Non-Coherent Fast-
Forward Full-Duplex (NC-F2FD) relaying. To minimize the error-
rate of this strategy, we jointly design the constellations at the
helper node and the victim node by formulating an optimization
problem. Using non-trivial results, we first analyse the objective
function and then, based on the analytical results, propose a low-
complexity algorithm to synthesize the fast-forwarded constella-
tions. Through simulations, we show that the error performance
of the victim improves after employing our countermeasure.

Index Terms—Full-duplex, optimization, non-coherent, low-
latency communication,

I. INTRODUCTION

Critical delay requirements in the industrial automation

system, medical industry and automotive applications in 5G

technology are such that <1ms end-to-end delay is expected

across layers [1]. Due to stringent latency constraints, it

becomes imperative to secure such applications from an attack

that introduces a delay in message delivery. One such simple,

yet effective attack is the Denial of Service (DoS) attack [2],

where the adversary reduces the Signal-to-Interferece-Noise

Ratio (SINR) at the receiver below the required threshold

by injecting excess noise. Although Frequency Hopping (FH)

is known to combat DoS attack, it requires the victim to

hop out of the operating frequency, thus dropping the power

level on the jammed band. Moreover, with advancements in

Self-Interference Cancellation (SIC) techniques in Full-Duplex

(FD) radios [3], a jammer can use an FD radio for jamming [4]

and to detect a drop in power level [5], [6]. For instance,

[5] and [6] model an adversary which uses in-band FD radio

to jam a frequency band while simultaneously measuring the

power fluctuation on the jammed band. The jammer, in this

case, detects a countermeasure if it experiences a drop in

the power level of the jammed frequency band. [5] and [6]

also discuss the mitigation techniques to combat FD jamming

attacks using fast-forward cooperative communication. Here,

the victim node and the FD helper node use non-coherent and

coherent modulation techniques, respectively.

The countermeasure provided by [5] and [6] assume a slow-

fading channel; thus, the helper uses coherent modulation

techniques. However, when channel conditions vary rapidly,

coherent detection is challenging. Therefore, the limitations

of FH in mitigating FD jamming attacks followed by the

challenges in performing coherent detection in fast-fading

channel motivates us to synthesize countermeasures that com-

bat FD jamming adversary in fast-fading channel conditions.

Therefore, in this paper, we propose a Non-Coherent Fast-

Forward Full-Duplex (NC-F2FD) relaying scheme, wherein

both the victim and the helper use non-coherent modulation

schemes.

A. Contributions

The proposed NC-F2FD relaying protocol is such that the

victim moves out of the jammed band and shares the uplink

frequency with a nearby FD helper node. Further, the victim

and the helper use modified constellations (from their original

constellation) for communicating with the base-station. Mean-

while, the base-station performs joint decoding of both users.

The focus of this paper is to choose the constellation points

at the victim node as well as the helper such that, the error

performance of the victim improves with increasing Signal-

to-Noise Ratio (SNR). The contributions of this paper are as

follows:

• For the proposed NC-F2FD scheme, we formulate a

constrained optimization problem to minimize the joint

probability of error at the base-station over the modified

constellations of the victim and the helper node.

• Using non-trivial analysis, we study the behaviour of the

objective function in terms of modified constellations, and

based on the behaviour of objective function, we propose

a low-complexity algorithm to obtain the modified con-

stellations.

• We present the joint error performance of two nodes as

a function of SNR when the constellation points are ob-

tained using the proposed algorithm. We also present the

joint error performance when the constellation points are

obtained using exhaustive search and show that the error

performance of the two methods overlap. Finally, when

using NC-F2FD, we show that the error performance of

the victim improves with increasing SNR.
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Fig. 1: System model comprising Alice (the victim), Charlie (the
helper), Bob (base-station) and Dave (FD adversary). Alice and Char-
lie cooperatively pour 0.5(1−α) and 0.5(1+α) on fCB , respectively.
The residual energy in poured on fAB , which is constantly monitored
by Dave. Λ represents the SIC achieved at Charlie.

B. Related work and Novelty

Our work can be viewed as a constellation design problem

for a non-coherent fast-forward strategy. With respect to

related work on constellation design, [7] and [8] compute

the optimal constellation points for multilevel non-coherent

signalling in Rayleigh fading channel for point-to-point com-

munication. Recently, [9] and [10] addressed the problem of

constellation design for non-coherent Multiple Access Chan-

nels (MAC). However, due to fast-forward FD relaying, our

work cannot be viewed as a direct extension of [7], [8], [9], or

[10]. The work closest to our idea are [5] and [6], where the

authors assume an FD jam and measure adversary. However,

[5] and [6] assume a slow-fading channel between the nodes

and base-station, whereas this work considers a fast-fading

channel. Thus, the overall system model is entirely different.

II. SYSTEM MODEL

We consider a network model with multiple single-antenna

transmitting nodes and a base-station with Nr antennas. The

transmitting nodes have heterogeneous demands. Further, the

symbols from these nodes experience fast-fading channels.

Fig.1 captures one such instance where two nodes, Alice

and Charlie convey their messages on orthogonal frequencies,

fAB and fCB, respectively, to the multi-antenna base-station,

Bob. Alice has messages with low-latency constraint, while

Charlie has messages with no such low-latency constraints.

Since low-latency messages are accompanied by low data-

rate (e.g., control channel messages (PUCCH) in 5G), we

assume that Alice uses two-level non-coherent Amplitude

Shift Keying (ASK). Additionally, due to fast-fading chan-

nel conditions, Charlie also resorts to a non-coherent ASK

signalling scheme. Although Alice and Charlie use non-

coherent ASK symbols, the average power on these nodes

may differ due to heterogeneous demands. We now introduce

an FD jam and measure adversary, Dave, who injects high

powered noise on fAB to introduce delay in Alice’s low-

latency messages. Since Dave is equipped with an FD radio, he

can simultaneously measure the power level on fAB besides

jamming fAB. Thus, in the presence of such a sophisticated

adversary, if Alice chooses to use a completely different band

for transmission, Dave will measure a considerable dip in

the power level of fAB , thus detecting the countermeasure.

The detection of countermeasure at Dave will compel him

to attack any of the remaining frequencies, further degrading

the network performance. Therefore, a countermeasure must

ensure reliable reception of Alice’s symbols at Bob using a

different frequency band, while maintaining the power level

on the jammed frequency band same as before implementing

the countermeasure. In the next section, we present a novel

relaying strategy wherein Alice, with the help of Charlie,

communicate her low-latency messages to Bob by sharing

Charlie’s uplink frequency through a non-coherent strategy.

Throughout the paper, (·)H represents Hermitian of a vector;

bold face represent a vector. Further, Γ(a, x), γ(a, x), and

Γ(x) are upper incomplete Gamma function, lower incomplete

Gamma function, and gamma function, respectively.

III. NON-COHERENT FAST-FORWARD FULL-DUPLEX

RELAYING (NC-F2FD)

In the proposed relaying scheme, Bob directs Alice to com-

municate her messages on fCB, i.e., the uplink frequency of

a nearby node, Charlie. Charlie is a single-antenna transceiver

supporting in-band FD communication on fCB, and being

a legitimate node in the network, has symbols to convey to

Bob. Therefore, Charlie listens and decodes Alice’s symbol

instantaneously on fCB , multiplexes the decoded symbol into

his symbol, and transmits the multiplexed symbol on fCB to

Bob. With this multiplexing strategy, Bob observes multiple

access channel on fCB and attempts to decode Alice’s and

Charlie’s symbols jointly. Notice that if, Alice utilises all

her power for communicating on fCB , Dave measures a

significant dip in the power level on fAB and therefore this

countermeasure is not effective. As a result, Alice and Charlie

must ensure that the power level on fAB remains the same

as before applying the countermeasure. To accomplish this,

Alice and Charlie cooperatively pour only a fraction of their

power on fCB , using α ∈ (0, 1), and the residual power from

the nodes are injected on fAB . Henceforth, we refer to α

as the power splitting factor. Furthermore, since both links

(Alice-to-Charlie, Charlie-to-Bob) are non-coherent, we refer

to our relaying scheme as Non-Coherent Fast-Forward Full-

Duplex (NC-F2FD) scheme. The aim of NC-F2FD is to help

Alice reliably communicate her messages to Bob on fCB with

acceptable degradation in the error performance of Charlie. We

will focus on the error analysis on fCB at Charlie and Bob in

the upcoming sections.

A. Signal Model:NC-F2FD

Before using the cooperative relaying scheme, let Alice and

Charlie choose symbols from a scaled version of S = {0, 1}.
Here, the scale factor determines the average transmit power,

such that the average powers are 0.5 and 1 for Alice and

Charlie, respectively. When Alice and Charlie start cooperat-

ing, Alice transmits x ∈
{

0,
√
1− α

}

on fCB for bit 0 and



bit 1, respectively. Therefore, the baseband symbol received

at Charlie is,

rC = hACx+ hCCy
′ + nC , (1)

where, hAC and nC are the baseband channel for Alice-to-

Charlie link and the additive white Gaussian noise (AWGN)

at Charlie, distributed as CN (0, σ2
AC) and CN (0, No), re-

spectively. Further, the Self-Interference (SI) channel between

Charlie’s transmit and receive antenna is defined by hCC ∼
CN

(

0,Λ (1+α)
2

)

[6], such that Λ is the degree of SIC achieved

by Charlie’s FD radio. Finally, y′ is the multiplexed symbol

transmitted by Charlie chosen from the Charlie’s modified

constellation, SC . Here, y′ is a function of the original symbol

from Charlie, i.e., y ∈ {0, 1} and the decoded symbol from

Alice, x̂. After decoding x, Charlie uses the following rule

for multiplexing; firstly, the ordering of the elements of SC
should follow Gray Mapping. Furthermore, to ensure that

he makes minimum compromise while helping Alice, after

decoding x̂ = 0, Charlie transmits symbols with energy on

the extreme ends. Hence, Charlie uses the following criterion

for multiplexing x̂ to his transmitting symbols,

y′ =



















√
ǫ1, x̂ = 0, y = 0, (2a)
√
αη1, x̂ = 1, y = 0, (2b)
√
αη2, x̂ = 1, y = 1, (2c)
√
ǫ2, x̂ = 0, y = 1. (2d)

The mapping also includes the power splitting factor α

in the transmit symbol of Charlie. Finally, it is evident that√
ǫ1 and

√
ǫ2 should have minimum and maximum energies,

respectively, are per the criterion. Moreover, the energy trans-

mitted by Charlie when y = 0 should be less than when y = 1,

therefore,
√
αη1 <

√
αη2. Further, due to Gray encoding

at Charlie,
√
ǫ1 and

√
αη2 cannot be adjacent neighbours.

Therefore, we have
√
ǫ1 <

√
αη1 <

√
αη2 <

√
ǫ2, where,

ǫ1, ǫ2, η1, η2 > 0.

Initially, the average power on fCB was 1, and after NC-

F2FD, Alice pours an average power of 0.5 (1− α) on fCB.

Thus, the rest of 0.5 (1 + α) must be poured by Charlie. Sim-

ilarly on fAB , Alice and Charlie pour 0.5α and 0.5 (1− α),
respectively, to manage an average power equal to 0.5. Further,

based on the signal model of NC-F2FD, if Charlie does

not make any error in decoding Alice’s symbol, the average

power on fAB is such that Dave does not observe any power

fluctuations on fAB . Now, to achieve the average power

constraint on fCB , the elements of SC must follow the equality

constraint:

1

4
(ǫ1 + αη1 + αη2 + ǫ2) =

1

2
(1 + α). (3)

Finally, the baseband symbol received at Bob is given by,

rB = hABx+ hCBy
′ + nB, (4)

where, y′ =
{√

ǫ1,
√
αη1,

√
αη2,

√
ǫ2
}

is chosen by Charlie

based on the decoded symbol x̂ and his original symbol

y as given by (2a)–(2d). We assume Nr receive antennas

at Bob, therefore, Alice-to-Bob link and Charlie-to-Bob link

are hAB ∼ (0Nr
, σ2

ABINr
) and hCB ∼ (0Nr

, σ2
CBINr

),
respectively, such that σ2

AB = σ2
CB = 1. Further, the AWGN

at Bob is given by, nB ∼ (0Nr
, NoINr

). We assume all

the channel realizations and noise samples are statistically

independent. Further, various noise variances at Charlie and

Bob are given by No = (SNR)−1. In the next section, we

analyse the error performance when decoding Alice’s symbols

at Charlie as it is important for evaluating the joint error

performance at Bob.

B. Error analysis at Charlie

Charlie computes the threshold, τ for energy detection based

on the received symbol rC in (1). The threshold is given by

τ = NC0NC1

NC0−NC1
ln
(

NC0

NC1

)

, where, NC0 = No + 0.5Λ(1 + α)

and NC1 = σ2
AC(1 − α) + 0.5Λ(1 + α) +No are the energy

levels corresponding to the two energy levels at Alice. Due to

vicinity of Alice and Charlie, we assume that σ2
AC > σ2

CB .

Now, the decision rule for decoding is, rCr
H
C

0

≶
1
τ . Therefore,

the probability of bit 0 decoded as bit 1 and vice-versa, is given

by P01 = e
− τ

NC0 and P10 = 1 − e
− τ

NC1 , respectively. As a

result, probability that bit 0 is correctly decoded at Charlie

is, P00 = 1 − P01, and the probability of that of bit 1 is,

P11 = 1− P10.

Next, we recollect very important results that determine the

behaviour of P11, P00, P01, and P10 as a function of α.

Lemma 1. The error probabilities at Charlie are such that

P10 < P11, ∀α ∈ (0, ν), where ν =
σ2

AC−No−
Λ

2

σ2

AC
+Λ

2

, and P00 >

P01 ∀α ∈ (0, 1). [6]

Lemma 2. P10 > P01, ∀α ∈ (0, 1). [6]

Lemma 3. For α∈(0, 1), P11 and P00 are decreasing function

of α, hence, P10 and P01 are increasing function of α. [6]

Remark 1. For a given SNR and Nr, the approximation

ln P11

P00
≈ 0 is tight when α is away from 1.

C. Error Analysis at Bob

Bob uses joint Maximum A Posteriori (MAP) decoder to

perform non-coherent energy detection and jointly decode

Alice’s and Charlie’s symbols from rB in (4). The joint MAP

decoder at Bob is defined as,

î, ĵ = argmax
i,j∈{0,1}

f (rB|x = i, y = j) , (5)

where, f (rB|x = i, y = j) is the probability density function

(pdf) of rB conditioned on the realizations of x and y. The

pdf described in (5) is a Gaussian mixture as shown in (6)–(9),

where, g(·) denotes the pdf of rB conditioned on x, x̂, and y.

Additionally, the first equality of (6)–(9) provide realizations

of f(·), for various combinations of i and j. Therefore, to
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Fig. 2: (a) Constellation symbols received at Bob. (b) Simplified
constellation as result of dominant error terms.

obtain the average probability of error at Bob using the joint

MAP decoder, one needs to solve pairwise error probability

that include Gaussian mixtures. However, solving Gaussian

mixtures for computing the average probability of error is

non-trivial. Therefore, we propose the Joint Dominant Decoder

(JDD), an approximate joint MAP decoder that considers only

the dominant terms in the Gaussian mixtures of (6)–(9). Using

Lemma 1, JDD is defined as,

î, ĵ = argmax
i,j∈{0,1}

fD (rB |x = i, y = j) , (10)

where, we dropped the coefficients of P01 and P10 in (6)–

(9) to obtain the approximation fD(·). In the next section, we

compute the probability of various error events when using

JDD.

IV. NC-F2FD JOINT DOMINANT DECODER

In this section, we use JDD defined in the previous section to

compute the average probability of error at Bob. A joint error

event is defined as an error at Bob in decoding a transmitted

pair (i j) as either (i j), (i j) or (i j), where, i and j denote

the symbols transmitted by Alice and Charlie, respectively,

such that i, j ∈ {0, 1}. Further, i and j denote the comple-

ment of i and j, respectively. Therefore, we have 4 pairs

corresponding to (i, j) ∈ {0, 1} × {0, 1}, and Bob receives

symbol corresponding to one of these pairs. However, due to

decode-and-forward relaying scheme, a transmitted symbol x

from Alice can be decoded with error at Charlie as well as

at Bob. We first consider error events at Charlie, and assume

that Alice transmits x = 1 for exposition. Subsequently, we

assume that Charlie decodes it incorrectly as 0, and then he

chooses either y′ =
√
ǫ1 or

√
ǫ2, instead of y′ =

√
αη1 or

y′ =
√
αη2. Similarly, when Alice transmits x = 0, and if

Charlie decodes it as 1, he transmits y′ =
√
αη1 or y′ =

√
αη2

rather than y′ =
√
ǫ1 or

√
ǫ2. Meanwhile, when x = 1 or

x = 0, Alice contributes 1 − α or zero power, respectively,

to the received symbol at Bob. Therefore, we have a total of

8 symbols received at Bob, 4 each for Charlie’s correct and

incorrect decisions. In Fig.2 (a), we present the energy levels

received at Bob corresponding to {(00), (10), (11), (01)} as

well as
{

(00), (01), (10), (11)
}

. Formally, based on (2a)–(2d)

and (4), the received symbol at Bob is a function of x, x̂ and

y, hence distributed as,

rB∼



























































CN (0Nr
, υ00INr

) , x = 0, x̂ = 0, y = 0;

CN (0Nr
, υ01INr

) , x = 0, x̂ = 0, y = 1;

CN (0Nr
, υ00INr

) , x = 0, x̂ = 1, y = 0;

CN (0Nr
, υ01INr

) , x = 0, x̂ = 1, y = 1;

CN (0Nr
, υ10INr

) , x = 1, x̂ = 0, y = 0;

CN (0Nr
, υ11INr

) , x = 1, x̂ = 0, y = 1;

CN (0Nr
, υ10INr

) , x = 1, x̂ = 1, y = 0;

CN (0Nr
, υ11INr

) , x = 1, x̂ = 1, y = 1.

(11)

where, υ00 = ǫ1 + No, υ10 = 1 − α + αη1 + No, υ11 =
1 − α + αη2 +No, υ01 = ǫ2 + No, υ10 = 1 − α + ǫ1 + No,

υ11 = 1−α+ ǫ2+No, υ01 = αη2+No, and υ00 = αη1+No,

are the variances of the corresponding received symbols at

Bob, representing the received pair.

It is well known that the decision statistics for non-coherent

energy detection, is given by, rBr
H
B ∼ Gamma(Nr, υ) where,

Gamma(·, ·) is the Gamma distribution [7] and υ is the

variance of the received symbol. Therefore, based on the

encoding rule at Charlie, the received energy rBr
H
B , follow

the order as shown in Fig.2 (a). We now use JDD that only

considers the dominant pairs {(00), (10), (11), (01)} for error

computation by neglecting the non-dominant pairs arising due

to Charlie’s erroneous decisions, i.e.,
{

(00), (01), (10), (11)
}

.

The simplified constellation as received by JDD is shown in

Fig.2 (b).

To analyse the error events, let a pair (i j) be transmitted

and decoded as (i∗ j∗), where, (i∗ j∗) ∈ {0, 1}×{0, 1}. Using

JDD defined in (10), a pair is in error when (i j) 6= (i∗ j∗),
and is defined as, ∆(i j)→(i∗ j∗).

∆(i j)→(i∗ j∗) =
fD (rB|x = i, y = j)

fD (rB |x = i∗, y = j∗)
≤ 1,

where, fD (·) is defined in (6)-(9) for each transmit-

ted pair (i j). Although, JDD considers only the dom-

inant pairs for error computation, the received symbols

at Bob could be any one of the non-dominant pairs

too. Therefore, the event ∆(i j)→(i∗ j∗) is conditioned

on whether the decision statistics, rBr
H
B at Bob corre-

sponds to a dominant pair or a non-dominant pair, i.e.,

“ ∆(i j)→(i∗ j∗)

∣

∣υ(i j)” or “ ∆(i j)→(i∗ j∗)

∣

∣ υ(i j)”, respec-

tively. Here, ∆(i j)→(i∗ j∗)

∣

∣υ(i j) is known as the counterpart

of ∆(i j)→(i∗ j∗)

∣

∣υ(i j) that arises due to error at Charlie.

Thus, we formally define an error event as,

Pr((i j)→ (i∗ j∗)) = Pi i Pr
(

∆(i j)→(i∗ j∗)

∣

∣ υi j

)

+

Pi i Pr
(

∆(i j)→(i∗ j∗)

∣

∣ υi j

)

.(12)

Further, since the decision statistics rBr
H
B ∈ R

+, for a given

pair (i j), we consider its adjacent neighbours for error compu-



f(rB |x=0, y=0)=P00g
(

rB |x=0, y′=
√
ǫ1
)

+P01g
(

rB | x = 0, y′ =
√
αη1

)

≈P00g
(

rB |x=0, y′=
√
ǫ1
)

,fD(rB |x=0, y=0) (6)

f(rB |x=0, y=1)=P00g
(

rB |x=0, y′=
√
ǫ2
)

+P01g
(

rB | x = 0, y′ =
√
αη2

)

≈P00g
(

rB |x=0, y′=
√
ǫ2
)

,fD(rB |x=0, y=1) (7)

f(rB |x=1, y=0)=P11g
(

rB |x=1, y′=
√
αη1

)

+P10g
(

rB |x = 1, y′ =
√
ǫ1
)

≈P11g
(

rB |x=1, y′=
√
αη1

)

,fD(rB |x=1, y=0) (8)

f(rB |x=1, y=1)=P11g
(

rB |x=1, y′=
√
αη2

)

+P10g
(

rB |x = 1, y′ =
√
ǫ2
)

≈P11g
(

rB |x=1, y′=
√
αη2

)

,fD(rB |x=1, y=1) (9)

tation. Therefore, from Fig.2 (b), all the possible error events

are, (00) → (10), (10) → (00), (10) → (11), (11) → (10),
(11) → (01) and (01) → (11), and the probability of each

error event is, P1 : Pr ((00)→ (10)); P21 : Pr ((10)→ (00));
P23 : Pr ((10)→ (11)); P32 : Pr ((11)→ (10)); P34 :
Pr ((11)→ (01)); and P4 : Pr ((01)→ (11)). Note that we

also have a counterpart associated with each error event whose

probabilities are given by P
C
1 , PC

21, PC
34, and P

C
4 , similar to (12).

Next, to compute the probability of error between dominant

pairs, we need to compute the detection thresholds as shown

in Fig.2 (b). Let ρ1, ρ2, and ρ3 be the 3 thresholds between

the 4 dominant pairs. Using first principles, the expression for

ρ1, ρ2, and ρ3 can be computed as,

ρ1 =
υ00υ10

υ00 − υ10

[

Nr ln

(

υ00

υ10

)

+ ln

(

P11

P00

)]

≈

Nr

υ00υ10

υ00 − υ10
ln

(

υ00

υ10

)

,(13)

ρ2 = Nr

υ10υ11

υ10 − υ11
ln

(

υ10

υ11

)

, (14)

ρ3 =
υ11υ01

υ11 − υ01

[

Nr ln

(

υ11

υ01

)

+ ln

(

P00

P11

)]

≈

Nr

υ11υ01

υ11 − υ01
ln

(

υ11

υ01

)

. (15)

In practice, Bob can receive both dominant as well as non-

dominant pairs. However, JDD assumes that Bob receives only

dominant pairs and computes the detection thresholds using

the dominant terms. Therefore, for computing the error when

Bob receives non-dominant pairs, i.e., PC
1 , PC

21, PC
34, and P

C
4 ,

we use the same detection thresholds, i.e., ρ1, ρ2, and ρ3. In

the following proposition, we present probability of error event

(00)→ (10), i.e., Pr((00)→ (10)).

Proposition 1.

Pr((00)→ (10)) = P00 Pr
(

∆(00)→(10)

∣

∣υ00
)

+

P01 Pr
(

∆(00)→(10)

∣

∣υ00
)

= P00P1 + P01P
C

1 ,

where, P1 =
Γ
(

Nr,
ρ1
υ00

)

Γ(Nr)
and P

C
1 =

Γ
(

Nr,
ρ1
υ
00

)

Γ(Nr)
.

On similar lines, we compute all the error events and

tabulate them in TABLE I.

Considering equally likely information symbols at Alice and

Charlie, the average probability of error at Bob is given by Pe,

Error Event Probability

Pr ((00)→ (10))
P00P1 + P01P

C
1 , where P1 =

Γ
(

Nr,
ρ1
υ00

)

Γ(Nr)
and P

C
1 =

Γ
(

Nr,
ρ1
υ
00

)

Γ(Nr)

Pr ((10)→ (00))
P11P21 + P10P

C
21, where P21 =

γ
(

Nr,
ρ1
υ10

)

Γ(Nr)
and P

C
21 =

γ
(

Nr,
ρ1
υ
10

)

Γ(Nr)

Pr ((10)→ (11))
P11P23, where P23 =

Γ
(

Nr,
ρ2
υ10

)

Γ(Nr)

Pr ((11)→ (10))
P11P32, where P32 =

γ
(

Nr,
ρ2
υ11

)

Γ(Nr)

Pr ((11)→ (01))
P11P34 + P10P

C
34, where P34 =

Γ
(

Nr,
ρ3
υ11

)

Γ(Nr)
and P

C
34 =

γ
(

Nr,
ρ3
υ
11

)

Γ(Nr)

Pr ((01)→ (11))
P00P4 + P01P

C
4

, where P4 =
Γ
(

Nr,
ρ3
υ01

)

Γ(Nr)
and P

C
4 =

Γ
(

Nr,
ρ3
υ
01

)

Γ(Nr)

TABLE I: Error events with their respective probabilities.

Pe=
1

|SC |

1
∑

i=0

1
∑

j=0

Pr((i j)→ (i j))+Pr((i j)→ (i j)), (16)

where, the events (00) → (11) and (11) → (00) are invalid.

Now substituting the probability computed for each error event

from TABLE I, and upper-bounding the complementary error

event, i.e., PC
1 , PC

21, PC
34, and P

C
4 by 1, an upper bound on the

average probability is given by,

Pe≤P
⋆
e =

1

4
[P00 (P1 + P4) + 2P01 + 2P10+

P11 (P21 + P23 + P32 + P34)] . (17)

In the next section, we find the values of {ǫ1, ǫ2, η1, η2, α}
that minimizes P

⋆
e . Interestingly, we can visualise

√
ǫ1,
√
ǫ2,√

αη1, and
√
αη2 as the modified constellation symbols at

Charlie, such that each symbol contains information about

Alice’s as well as Charlie’s symbol. Thus, we can identify

this work as a constellation design problem for the NC-F2FD

relaying scheme.

V. OPTIMIZATION OF AMPLITUDE LEVELS

We now formulate the optimization problem to synthesize

the amplitude levels
√
ǫ1,
√
ǫ2,
√
αη1, and

√
αη2, subject

to the average power constraint at Charlie. Our formulation

minimises the joint probability of error at Bob as given by,



min
ǫ1,ǫ2,η1,η2,α

P
⋆
e

s.t.
1

4
(ǫ1 + αη1 + αη2 + ǫ2) =

1

2
(1 + α),

0 < α < 1,

(18)

where, P⋆
e is the upper-bound on the average probability of

error obtained using JDD. To solve the optimization problem

in (18), one can solve a multivariate Lagrangian equation.

However, it is well known that solving a multivariate La-

grangian equation is hard. Therefore, in the next section, we

take a different approach towards obtaining {ǫ1, ǫ2, η1, η2, α}
by analysing P

⋆
e using some non-trivial relations.

A. Variation of P⋆
e

In this section, we analytically study the behaviour of the

objective function by varying only a subset of the variables

amongst {ǫ1, ǫ2, η1, η2, α}, while keeping the rest of them

fixed. We aim to reduce the dimensionality of the search

space {ǫ1, ǫ2, η1, η2, α}, thereby reducing the implementation

complexity.

Remark 2. From Proposition 1, P
⋆
e is minimum when υ00

is minimum, i.e., ǫ1 = 0, for any η1, η2, ǫ2, α satisfying the

constraint in (18).

Remark 3. Note that when η1 increases beyond 1, the energy

difference between pairs (11) and (01), and pairs (11) and

(10) reduces, thereby increasing P
⋆
e , therefore, 0 ≤ η1 < 1.

We rearrange the average power constraint in (3) as, ǫ2 =
2−α (η1 + η2 − 2) and substitute it in (17). With, ǫ1 = 0 and

ǫ2 expressed in terms of α, η1, and η2, the expression of P
⋆
e

is now only a function of α, η1, and η2 for a fixed No and

Nr. Thus, we have reduced the dimension of search space to

3. In general, we cannot comment on the nature of P
⋆
e as a

function of α, η1, and η2. Therefore, we analyse P
⋆
e in single

dimension by fixing η1, α and then observe the nature of P⋆
e

w.r.t. η2 ∈ R
+. Similarly, for a fixed η1 and η2, we observe the

nature of P⋆
e w.r.t. α ∈ (0, 1). Along these lines, we determine

the nature of all the error events in TABLE I as a function of

α and η2 by keeping η1 fixed.

Lemma 4. For a fixed η1 and α, P21 is independent of

η2. Also, P21 is an increasing function of α. However, P23

decreases when either η2 increases and α is fixed or when α

increases and η2 is kept constant.

Proof. In the first part, we will prove that P21 is independent

of η2. The term P21 is given by,

P21 =
γ
(

Nr,
ρ1

υ10

)

Γ (Nr)
.

From (13), we have,

ρ1

υ10
= Nr

υ00

υ00 − υ10
ln

(

υ00

υ10

)

,

= Nr

υ00

υ10 − υ00
ln

(

υ10

υ00

)

,

= Nr

ln (1 + κ1)

κ1
, (19)

where, κ1 = υ10−υ00

υ00
= 1−α+αη1

No
. Since υ10 > υ00, we have

κ1 > 1. We observe that, κ1 is independent of η2, therefore,

P21 is independent of η2.

Furthermore, differentiating κ1 w.r.t α gives us (−1 +
η1)N

−1
o . The term (−1 + η1)N

−1
o < 0, since η1 < 1

(Remark 3); thus, κ1 is a decreasing function of α. In addition,
ln(1+κ1)

κ1
is a decreasing function of κ1 > 0. Therefore,

Nr
ln(1+κ1)

κ1
and hence the ratio ρ1

υ10
in (19) is an increasing

function of α. Furthermore, since γ
(

Nr,
ρ1

υ10

)

is an increasing

function of ρ1

υ10
, as α increases, γ

(

Nr,
ρ1

υ10

)

increases. Thus,

P21 is an increasing function of α.

On similar lines, P23 is given by,

P23 =
Γ
(

Nr,
ρ2

υ10

)

Γ (Nr)

where,

ρ2

υ10
= Nr

υ11

υ10 − υ11
ln

(

υ10

υ11

)

,

= Nr

ln (1 + κ2)

κ2
, (20)

such that, κ2 = υ10−υ11

υ11
= α(η1−η2)

1−α(1−η2)
. Since, υ10 < υ11,

κ2 ∈ (−1, 0). Taking derivative of κ2 w.r.t. η2 gives −αυ10

υ2
11

.

This shows that κ2 is a decreasing function of η2. Now, as

η2 increases, κ2 decreases and therefore, the ratio in (20),
ρ2

υ10
= Nr

ln(1+κ2)
κ2

increases. Since, Γ
(

Nr,
ρ2

υ10

)

is a decreas-

ing function of ρ2

υ10
, Γ

(

Nr,
ρ2

υ10

)

decreases as ρ2

υ10
increases.

Thus, P23 is a decreasing function of η2.

Similarly, differentiating κ2 w.r.t. α gives η1−η2

(1−α+αη2)
2 < 0,

implying κ2 is a decreasing function of α. Now, as α increases,

κ2 decreases and therefore, the ratio in (20), ρ2

υ10
= Nr

ln(1+κ2)
κ2

increases. Since, Γ
(

Nr,
ρ2

υ10

)

is a decreasing function of

ρ2

υ10
, Γ

(

Nr,
ρ2

υ10

)

decreases as ρ2

υ10
increases. Thus, P23 is a

decreasing function of α.

Along similar lines, we can prove the behaviour of each

term in TABLE I, as either increasing, decreasing or indepen-

dent functions of α and η2 when the other is fixed. The same

is summarized in TABLE II.

From TABLE II, the components of P
∗
e are either mono-

tonically decreasing or monotonically increasing as a function

of η2 or α. In Fig.3 (a), we plot P∗
e , and the increasing and

decreasing components of P
∗
e as a function of η2. Similarly,

in Fig.3 (b), we plot P
∗
e , and the increasing and decreasing



P1 P21 P23 P32 P34 P4

η2 ⋆ ⋆ − − + +
α + + − − − −

TABLE II: Table depicting the behaviour of error events. For each
error event, the symbol “+”, “-”, and “⋆” represent, increasing,
decreasing, and independent behaviours, as a function of {α, η1, η2},
such that the entry in the first column is variable while the rest two
are fixed.
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e

Fig. 3: For SNR = 35dB, Nr = 32, (a) The dip experienced by P
⋆
e

as a function of η2 and the intersection of P34+P4 and P23+P32 are
approximately close for fixed η1 and α. (b) The dip experienced by
P
⋆
e as a function of α and the intersection of P11 (P34 + P32 + P23)+

P00P4 and 2P01 + 2P10 are approximately close for fixed η1 and α.

components of P
∗
e as a function of α. We observe that the

increasing and decreasing components of P
∗
e in both cases

intersect only once. Moreover, the intersection of the com-

ponents in both cases is very close to the value of η2 (α) at

which P
∗
e experiences minima. Thus, in the next two theorems,

for a constant η1, we prove that the increasing and decreasing

components of P⋆
e intersect only once when either η2 or α is

varied.

Theorem 1. For a given η1 and α, the decreasing and

increasing components of P
⋆
e in (17), i.e., P23 + P32

and P34 + P4, respectively, intersect only once for η2 ∈
(

η1, 0.5
(

3 + α−1 − η1
))

.

Proof. When α is fixed, the terms P1, P21, P00, P11, P01 and

P10 in (17) are independent of η2. From Table II, P23 and P32

are decreasing functions of η2, and P34 and P4 are increasing

functions of η2.

We have η2 ∈
(

η1, 0.5
(

3 + α−1 − η1
))

since, υ10 < υ11 <

υ01. For P23 +P32 and P4 +P34 to have one intersection, we

can straightaway prove that P23+P32 and P34+P4 have their

order reversed at the extreme values of η2. We first evaluate

P23 + P32 at extreme lower side of η2 to get,

lim
η2→η1

P23+P32=
Γ (Nr, Nr)

Nr

+
γ (Nr, Nr)

Nr

=1.

However, the value of P23 + P32 at the right most extreme of η2 is
given by,

lim
η2→0.5(3+α−1−η1)

P23 + P32=
Γ
(

Nr,
ρ2
υ10

)

Nr

+
γ
(

Nr,
ρ2
υ11

)

Nr

< 1.

Similarly,

lim
η2→η1

P34+P4=
Γ
(

Nr,
ρ3
υ11

)

Nr

+
γ
(

Nr,
ρ3
υ01

)

Nr

< 1,

lim
η2→0.5(3+α−1−η1)

P34+P4=
Γ (Nr, Nr)

Nr

+
γ (Nr, Nr)

Nr

=1.

Altogether, we have,

{

P23 + P32 > P34 + P4, η2 → η1,

P23 + P32 < P34 + P4, η2 → 0.5
(

3 + α−1 − η1
)

.

Therefore, the increasing and decreasing components in P
⋆
e

intersect only once as a function of η2 and this intersection can

be computed using the Newton-Raphson (NR) [11] algorithm.

This completes the proof.

Theorem 2. For a given η1 and η2, the decreasing and

increasing components of P
⋆
e in (17), i.e., P00 (P1 + P4) +

P11 (P21 + P23 + P32 + P34) and 2P01 + 2P10, respectively,

intersect only once for α ∈ (0, 1).

Proof. Rearranging (17), we get

P
⋆
e =

1

4
[P00P1 + P11P21 + P11 (P23 + P32 + P34)+

P00P4 + 2P01 + 2P10] .

We make the following observations

• Since each term in P11 (P23 + P32 + P34) + P00P4

is a decreasing function of α, the overall sum is

a decreasing function of α. Further, as α → 1,

P11 (P23 + P32 + P34) + P00P4 ≈ 0, since, P00 = P11 ≈
0 as α→ 1.

• For ǫ1 = 0, when α → 0, P00P1 + P11P21 ≈ 0, since

P1 = P21 ≈ 0 when, α → 0. Similarly, when α → 1,

P00P1+P11P21 ≈ 0, since P00 = P11 ≈ 0, when α→ 1.

• From Lemma 3, 2P01 + 2P10 monotonically increases

with α, and as α→ 1, P01 = P10 ≈ 1.

Thus, it is elementary to show that,



P11 (P23 + P32 + P34) + P00P4 > 2P01 + 2P10, α→ 0,

P11 (P23 + P32 + P34) + P00P4 < 2P01 + 2P10, α→ 1.

Further, the intersection can be computed using NR [11]

algorithm. This completes the proof.

In the next section, we use Theorem 1 and Theorem 2 to

present a low-complexity algorithm. Using this algorithm, we

obtain the local minima of η2 and α for a given η1.

B. Algorithm

Algorithm 1: Two-Layer Greedy Descent Algorithm

Input: Pe from (17), δP⋆
e
> 0, δη1

> 0

Output:
{

η
†
1, η

†
2, α

†
}

1 Initialize: η1 ← 0, η2 ← ηo2 , α← αo

2 while true do

3 P
o
e ← P

⋆
e (α, η1, η2)

4 while true do

5 Find ηi2 using Theorem 1 and update

P
η2

e ← P
⋆
e

(

η1, η
i
2, α

)

6 Find αi using Theorem 2 and update

P
α
e ← P

⋆
e

(

η1, η2, α
i
)

7 if Pα
e − P

η2

e ≥ δPe
then

8 η2 ← ηi2, α← αo

9 continue

10 end

11 else if Pα
e − P

η2

e ≤ −δPe
then

12 η2 ← ηo2 , α← αi

13 continue

14 end

15 else if |Pα
e − P

η2

e | < δPe
then

16 P
ι
e = min (Pα

e ,P
η2

e )
17 break

18 end

19 end

20 if |Pι
e − P

o
e | > δPe

then

21 η1 ← η1 + δη1
, Po

e ← P
ι
e

22 continue

23 end

24 else

25 η
†
1 ← η1, η

†
2 ← ηi2, α† ← αi

26 break

27 end

28 end

In the previous section, we proved that for a fixed η1 and

α, the value of η2 at which the increasing and decreasing

components in P
⋆
e intersect is very close to the value of η2 at

which P
⋆
e is minimum. Similar argument is also valid when

η1 and η2 are fixed while, α is the variable. We exploit these

properties to compute {η1, η2, α} such that P⋆
e is evaluated at

local minima for a given SNR and Nr.

25 30 35 40 45
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10-3

10-2

10-1

P
e

Fig. 4: Comparative error performance as a function of SNR, when
constellation symbols are obtained using the Two-Layer Greedy De-
scent Algorithm (’A’) and the exhaustive search (’E’). The subscript
associated with the number of antennas denote the method used
to obtain the constellation symbols, e.g., Nr = 2E means, for two
receive antennas, exhaustive search is used to obtain the constellation
symbols.

In the proposed algorithm, as presented in Algorithm 1, we

fix ǫ1 = 0 and initialise η1 = 0. We also initialise η2 and α

with arbitrary values ηo2 and αo, respectively. Using the initial

values, the algorithm computes P
o
e using (17). The algorithm

then obtains ηi2 and αi using Theorem 1 and Theorem 2,

respectively. The algorithm then evaluates P
η2

e , i.e., P
⋆
e at

{

η1, η
i
2, α

}

and P
α
e , i.e., P⋆

e at
{

η1, η2, α
i
}

. If for a given η1,

|Pα
e − P

η2

e | < δPe
, then the algorithm exits the inner while-

loop with P
ι
e such that Pι

e = min (Pα
e ,P

η2

e ) else, the algorithm

iteratively descents in the steepest direction with new values of

η2 and α. After traversing several values of η1, the algorithm

finally stops when for a given η1, the obtained P
ι
e is within

δPe
resolution of the previously computed value. The points

at which P
⋆
e is minimum as per the algorithm are given by

η
†
1, η

†
2 and α†. We rearrange the constraint in (3) to obtain

ǫ
†
2 = 2−α†

(

η
†
1 + η

†
2 − 2

)

. Further, in the beginning we fixed

ǫ1 = 0, therefore, ǫ
†
1 = 0. Thus, the algorithm computes all

the 5 variables, i.e., ǫ
†
1, ǫ

†
2, η

†
1, η

†
2, and α†.

In the next section, we showcase the efficacy of our algo-

rithm in finding the near-optimal constellation points at Charlie

for NC-F2FD. We also discuss the complexity analysis of our

proposed algorithm.

VI. SIMULATION RESULT AND COMPLEXITY ANALYSIS

In this section, we will demonstrate the error performance

of NC-F2FD relaying scheme for various values of SNR

and Nr. For all simulation purposes, we assume a practi-

cal FD radio at Charlie with SIC factor Λ = 10−5 [6].

We first compute the optimal amplitude levels
√
ǫ1,
√
ǫ2,√

αη1, and
√
αη2 that minimises P

⋆
e using exhaustive search
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Fig. 5: Error performance of Alice for Nr = 4, and Λ = 10−5 with
and without NC-F2FD.

(denoted by (·)E in Fig.4). We then plug these amplitude

levels in (17) to obtain the error performance of NC-F2FD.

We also compute the amplitude levels using the algorithm

in the previous section. The constellation obtained using the

algorithm is

{

√

ǫ
†
1,

√

ǫ
†
2,

√

α†η
†
1,

√

α†η
†
2

}

. We again sub-

stitute these points in (17), and plot the error performance

for various SNR (denoted by (·)A in Fig.4). It can be seen

in Fig.4 that the error performance of NC-F2FD exhaustive

search and the algorithm overlaps, thus proving that the local

minima
{

ǫ
†
1, ǫ

†
2, η

†
1, η

†
2, α

†
}

is close to the global minima.

Apart from plotting the error performance for various SNR,

we also plot the error performance of NC-F2FD for various

receive antennas at Bob. It is clear from the plots that as the

receive-diversity increases, the error performance improves.

Furthermore, in Fig.5, we plot the error performance of Alice

when she uses power splitting factor α† as a function of

SNR for 4 receive antennas at Bob, to showcase the efficacy

of our scheme. It is evident that the error performance of

Alice improves drastically after applying the countermeasure.

However, in the process of aiding Alice, Charlie’s performance

degrades w.r.t. using a non-coherent signalling for point-to-

point channel without using countermeasure [7].

In terms of complexity, the time taken by exhaustive

search is very large compared to our algorithm. This is

because the exhaustive search checks a number of quintets

(α, η1, η2, ǫ1, ǫ2) before computing the minima of P
⋆
e . The

number of quintets depends on the resolution of each ele-

ment. For instance, for the simulation results, δα = 10−3,

δη1
= δη2

= 10−5, and δǫ1 = δǫ2 = 10−4 give around 10

Million quintets for a given SNR and Nr. Here, δ(·) represents

the step-size for increment of the element in subscript. In

contrast, the Two-Layer Greedy Descent algorithm reduces

the search space by using the results of Theorem 1 and

Theorem 2. Alternatively, we can also take a different approach

and optimize P
⋆
e w.r.t. η1 and η2 for a given α. However, the

time taken for the latter approach is greater than the former

one, because with the former approach, the solution for η1 is

very close to the initialised value, i.e., η1 = 0. However, when

we initialise the outer loop of the algorithm with α = 0 or

α = 1, the algorithm takes more iteration as the optimal value

of α is far from both α = 0 and α = 1. For instance, for a

fixed SNR and Nr, the time taken by algorithms to converge

to a solution when outer loop of algorithm is initialised η1 = 0
and α = 0 is 1.2 seconds and 15 seconds, respectively.

VII. CONCLUSION

In this paper, we have presented DoS attack by a powerful

FD jam and measure adversary on nodes with low-latency

constraint messages in fast-fading channels. We synthesised a

fast-forward mitigation relaying scheme referred to as, NC-

F2FD, where the victim and the helper node use modified

non-coherent constellations to mitigate the jamming attack.

Through rigorous analysis and simulation results, we showed

that when both the nodes use NC-F2FD relaying scheme, the

victim can not only successfully evade the jammer, but also

compel the adversary to measure the same average power as

before NC-F2FD.

REFERENCES

[1] T. Wirth, M. Mehlhose, J. Pilz, B. Holfeld, and D. Wieruch, “5g
new radio and ultra low latency applications: A phy implementation
perspective,” in 2016 50th Asilomar Conference on Signals, Systems

and Computers, 2016, pp. 1409–1413.
[2] S. Khattab, D. Mosse, and R. Melhem, “Jamming mitigation in multi-

radio wireless networks: Reactive or proactive?” in Proc. 4th Int. Conf.

Secur. Privacy Commun. Netw., Istanbul, Turkey, 2008.
[3] D. Bharadia, E. McMilin, and S. Katti, “Full duplex radios,” SIGCOMM

Comput. Commun. Rev., vol. 43, p. 375–386, Aug. 2013.
[4] M. K. Hanawal, D. N. Nguyen, and M. Krunz, “Cognitive networks

with in-band full-duplex radios: Jamming attacks and countermeasures,”
IEEE Transactions on Cognitive Communications and Networking,
vol. 6, no. 1, pp. 296–309, 2020.

[5] V. Chaudhary and J. Harshan, “Fast-forward relaying scheme to mitigate
jamming attacks by full-duplex radios,” in 2020 IEEE 31st Annual

International Symposium on Personal, Indoor and Mobile Radio Com-

munications, 2020, pp. 1–7.
[6] V. Chaudhary and H. Jagadeesh, “Fast-forward mitigation schemes for

cognitive adversary,” IEEE Trans. Cogn. Commun. Netw., pp. 1–1, 2021.
[7] R. K. Mallik and R. D. Murch, “Noncoherent reception of multi-level

ask in rayleigh fading with receive diversity,” IEEE Trans. Commun.,
vol. 62, no. 1, pp. 135–143, 2014.

[8] A. Manolakos, M. Chowdhury, and A. Goldsmith, “Energy-based mod-
ulation for noncoherent massive simo systems,” IEEE Trans. Wireless

Commun., vol. 15, no. 11, pp. 7831–7846, 2016.
[9] K.-H. Ngo, S. Yang, M. Guillaud, and A. Decurninge, “Joint Constella-

tion Design for the Two-User Non-Coherent Multiple-Access Channel,”
arXiv e-prints, p. arXiv:2001.04970, Jan. 2020.

[10] M. Chowdhury, A. Manolakos, and A. Goldsmith, “Scaling laws for
noncoherent energy-based communications in the simo mac,” IEEE

Trans. Inf. Theory, vol. 62, no. 4, pp. 1980–1992, 2016.
[11] M. W. Hirsch and S. Smale, “On algorithms for solving f(x)=0,”

Communications on Pure and Applied Mathematics, vol. 32, no. 3, pp.
281–312, 1979.


	I Introduction
	I-A Contributions
	I-B Related work and Novelty

	II System Model
	III Non-Coherent Fast-Forward Full-Duplex Relaying (NC-F2FD)
	III-A Signal Model:NC-F2FD
	III-B Error analysis at Charlie
	III-C Error Analysis at Bob

	IV NC-F2FD Joint Dominant Decoder
	V Optimization of Amplitude Levels
	V-A Variation of Pe
	V-B Algorithm

	VI Simulation Result and Complexity Analysis
	VII Conclusion
	References

