© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. http://dx.doi.org/10.1109/GLOBECOM46510.2021.9685095

BePOCH: Improving Federated Learning
Performance in Resource-Constrained Computing
Devices

Lenart Ibraimi
Max van der Stoel Institute
South East European University
North Macedonia
L.ibraimi @seeu.edu.mk

Abstract—

Inference with trained machine learning models is now pos-
sible with small computing devices while only a few years ago
it was run mostly in the cloud only. The recent technique of
Federated Learning offers now a way to do also the training of
the machine learning models on small devices by distributing the
computing effort needed for the training over many distributed
machines. But, the training on these low-capacity devices takes
a long time and often consumes all the available CPU resource
of the device. Therefore, for Federated Learning to be done
by low-capacity devices in practical environments, the training
process must not only target for the highest accuracy, but also
on reducing the training time and the resource consumption.
In this paper, we present an approach which uses a dynamic
epoch parameter in the model training. We propose the BePOCH
(Best Epoch) algorithm to identify what is the best number
of epochs per training round in Federated Learning. We show
in experiments with medical datasets how with the BePOCH
suggested number of epochs, the training time and resource
consumption decreases while keeping the level of accuracy.
Thus, BePOCH makes machine learning model training on low-
capacity devices more feasible and furthermore, decreases the
overall resource consumption of the training process, which is an
important aspect towards greener machine learning techniques.

Index Terms—Federated Learning; medical dataset; health-
care applications

I. INTRODUCTION

Inference with trained machine learning models is now
possible on the smallest computing devices while only a few
years ago it was mostly run in the cloud only [1]. While
powerful computers in the cloud are needed to train large
machine learning models with huge amounts of data, the
recent technique of Federated Learning (FL) allows to dis-
tribute the computing effort of the model training over many
distributed machines with lower capacity [2]. In addition,
Federated Learning does not transfer the local training data,
which opens new opportunities to applications which train
with private data, such as sensitive medical data [3].

The training of machine learning models is a compute-
intensive task. If available, GPUs instead of CPUs are used for
better performance. On low-capacity devices such as single-
board-computers (SBCs), training takes a much longer time
than on higher end devices [4] [5]. In addition, often all cores
of the CPU are consumed during the training process. This

Mennan Selimi
Max van der Stoel Institute
South East European University
North Macedonia
m.selimi @seeu.edu.mk

Felix Freitag
Department of Computer Architecture
UPC BarcelonaTech
Spain
felix@ac.upc.edu

fact reduces the QoS (Quality of Service) which machine
learning model training on low-capacity devices can deliver,
such as having large training times. As a consequence, training
of machine leaning models on low-capacity devices may
not be feasible for applications that have time constraints.
Furthermore, computing nodes in user environments are often
not dedicated exclusively to the machine learning application.
Instead, they are used for instance as home servers providing
to the user other applications as well. Since training can
severely affect the user’s QoE (Quality of Experience) per-
ceived from other applications, it is of interest to avoid any
unnecessary training epochs.

For Federated Learning be used in realistic user envi-
ronments where the machine learning application co-exists
with other applications on the low-capacity device, novel
optimizations for efficient training will need to come into
play: the training process must not only target for the highest
accuracy, but also on reducing the training time and the
resource consumption of the device [6] [7].

In this paper we introduce a novel approach of using a
dynamic epoch parameter in the model training. We propose
the BePOCH (Best Epoch) algorithm to identify what is
the best number of epochs per training round in federated
machine learning model training taking into account the CPU
consumption of the devices. We show in experiments that
when applying the BePOCH suggested number of epochs,
the training time and resource consumption decreases while

keeping the level of accuracy.

The main contributions of the paper are:

1) We present the concept of the dynamic epoch parameter
to reduce the resource consumption and training time for
Federated Learning in environments with low-capacity
devices based on empirical evidences.

2) We propose the BePOCH algorithm and show with
experiments that train medical datasets with Federated
Learning conducted in a Raspberry Pi testbed how the
BePOCH dynamic epoch selection can optimize the
training process.

The insights gained from the work presented in this paper

reveal two initial benefits: First, the potential of the proposed
dynamic epoch parameter for leading to less resource con-

sumption in the machine learning model training process.
Secondly, by reducing the training time and CPU usage on
the client nodes, the feasibility from reducing the training time
and user acceptance from a higher QoE to conduct machine
learning model training on low-capacity devices increases.

The rest of the paper is organized as follows. In Section II
we describe the related work. Section III presented the sys-
tem model. Section IV describes the experimental setup, the
experiments carried out and the obtained results. Section V
concludes and points to future work.

II. RELATED WORK

In this section, we review selected work related to the
application of Federated Learning on low-capacity devices
and works in which the research explored mechanisms for
the preservation of the privacy of data, a critical requirement
when training concerns personal health or medical data.

The work of Y. Gao et al [8] makes an empirical evaluation
of two different state-of-art machine learning techniques,
namely split neural networks (SplitNN) and Federated Learn-
ing. For and end-to-end evaluation, a variety of datasets,
different model architectures, multiple clients and various per-
formance metrics was considered. The learning performance
was assessed for two types of distributed data, imbalanced
and Non-IID (Independent and Identically Distributed) data.
Model training was done on Raspberry Pi devices, where the
CPU consumption, memory usage, communication overhead
and training time was measured. From the experiments the
authors conclude that FL overall perform better in comparison
with SplitNN, because of the lower communication overhead
of FL. Since Y. Goa et al. conducted some experiments with
single Raspberry Pi devices, we apply some of the insights
from their work in our experimentation to set up the baseline
system. Specifically, we apply as reference epoch values the
configuration of 1 and 5 epochs which these authors used.

The privacy aspect in the training with medical data was
a primary issue for the proposition of Dopamine [9], a
Federated Learning system to be trained with medical data.
The work studies different machine learning and privacy pre-
serving techniques. Medical data is used to train deep neural
networks (DNN) for medical diagnosis. DNNs are trained
on distributed datasets by using Federated Learning with
differentially-private stochastic gradient descent (DPSGD),
which in combination with secure aggregation, was shown
to provide a better trade-off between differential privacy (DP)
guarantee and DNN’s accuracy.

A combination of blockchain technology and Federated
Learning techniques was proposed in [10] for training machine
learning models without exposing or leaking the actual data.
The authors consider the case of rapid data generation from
connected devices in an Industrial Internet of Things (IloT)
scenario. The authors argue that leakage of such data is a
serious concern in industrial environments. For prevention
they firstly designed a blockchain-empowered secure data
sharing architecture. Then the data sharing problem is dealt by
incorporating privacy-preserving mechanisms into Federated
Learning. From their results they found that privacy of the

data is maintained with the blockchain support while sharing
the model in the FL process.

In [11] the BlockFL system is proposed, which introduces
another blockchain-combined Federated Learning approach.
Mobile devices’ locally learned model updates are exchanged
by with the support of a distributed ledger. Their architecture
therefore does not use a central aggregator component. The
authors do an end-to-end investigation about the latency of
the learning completion in BlockFL. In their work, multiple
low-capacity devices, in this case mobile devices, are used to
train the model locally while leveraging the distributed ledger
based on blockchain technology.

In the paper of Jonathan Passerat-Palmbach et al. [12], the
authors purpose a blockchain-orchestrated Federated Learning
architecture for healthcare consortia. Their use case presents
the contribution of data to improve a machine learning model
while privacy and proper accounting is assured. The architec-
ture delivers privacy preserving audit trails that log events in
the network without revealing identities.

In the work of H. Kim et al. [13] the blockchain is an
enabler to use private distributed data in Federated Learning.
The authors present a system architecture and describe how
the use of the blockchain integrated in the Federated Learning
protocol can improve privacy while using distributed data the
training of the machine learning models.

The work of [14] presents another approach to decentralized
the Federated Learning process. Their proposal consists in
using IPFS! to replace the centralized server component.
Their work also breaks the rigid roles of worker nodes and
server and allows any node to initiate and join a Federated
Learning process. Furthermore it is interesting for the scenario
of low-capacity nodes that the layers of machine learning
models are split into partitions, and the responsibility over the
partition is distributed among the nodes. While the evaluations
conducted focused on model convergence and fault-tolerance,
the approach seems also to have an important potential for re-
ducing the storage and computing requirements for Federated
Learning nodes.

In the paper on BrainTorrent [15] a peer-to-peer approach
is presented in which the clients of Federated Learning di-
rectly communicate with themselves. The target scenario are
multiple medical centers which share whole-brain MRI T1
scans to solve a 20-class segmentation problem. The results
characterized the performance of the system with settings
which can be found in realistic environments such as an
unbalanced data distribution.

From the reviewed related works it can be seen that research
results have led to different approaches for privacy preser-
vation of the data withing Federated Learning, highlighting
the approach of differential privacy or combinations which
leverage the support of external components such as those
built with blockchain technology. It could also be observed
that machine learning applications which train with personal
data (e.g. medical data) and confidential data (e.g. sensor data
from the IoT) have a new opportunity with the technique
of Federated Learning. The application scenario of our work

Unterplanetary File System. https:/ipfs.io/

addresses machine learning applications for the increasing
personal and medical data generated in the user environments.
We envision that user-owned computing devices like SBC
in home environments will become increasingly used to run
the training and inference of machine learning applications in
peer-to-peer fashion, such as proposed in [14] and [15]. There-
fore, our contribution aims to provide new insights to improve
the practical feasibility of doing Federated Learning in real
resource-constraint devices exemplified by the Raspberry Pi
found in the user environments.

ITI. SYSTEM MODEL
A. Federated Learning

Federated Learning (FL) [2] is a distributed machine learn-
ing technique where many clients - workers (e.g. mobile
devices) in a collaborative way train a model under the
orchestration of a central server (e.g. hosted in the cloud).
During this process, the training data is kept locally on the
devices as highlighted in Figure 1.

In general, in the Federated Learning process the model
training occurs in the following way: first, the server initializes
the global model w; and sends it to all participating clients
or workers. Each client &, after receiving the model w;, trains
the global model on its local data. Each client trains the local
model for several epochs before sending it to the server in one
communication round. When training completed each client
returns the updated model wf to the server (s, is number of
training samples held by client k£). The server receives the
updated model from each client, aggregates all those models
to update the global model to get w;1;. The iteration of this
process often is called rounds. The client’s local iterations
of the model training is called epochs. The process can stop
either by having reached the maximum number of rounds or
until the model converges.

Client 2

Client 1 Client 3 Client 4

Fig. 1. Federated Learning Training Process.

B. Low-capacity computing nodes at the network edge

Without doubt, the computing capacity at the network edge
is growing. While an important share of this growth can be
attributed to mobile devices (e.g. smartphones), there is also a
growing availability of computing resources by single-board
computers (SBCs) on user premises, such as the Raspberry Pi
and other mini-PCs. Indeed, there is an intense development
in the major machine learning framework, e.g., Tensorflow

96.0%

——— Epochs 1 =——— Epochs 2 Epochs 3 =——— Epochs 4 —— Epochs 8

94.0% Epoch 4
.0%
Epoch 8
=X 92.0% -
>
)
o
=3
o
£ 90.0% -
2 ‘\‘,\ Epoch 3
'2 ’) och 2
88.0% A
: Epoch 1
86.0% -

T T T T T T T T T
o} 50 100 150 200 250 300 350 400
Rounds

Fig. 2. FL under different epochs. Increasing the number of epochs does not
necessarily lead to higher accuracy. Model trained with Epoch = 8 has lower
accuracy than Epoch = 4.

Lite?, to optimize trained machine learning models for running
efficiently on low-capacity devices. At the same time, there is
also a very active user community that builds machine learning
applications for these tiny computers.

For doing machine learning on edge devices, typically
the training and inference phase takes place at different
environments. Due to the lack of computing power at these
low-capacity devices, the training of the models is normally
done in the cloud. Once the models are trained with high-
capacity machines, they are optimized for a lower resource
consumption to fit better to the constraints of the low-capacity
devices, and finally inference can ruin on the edge devices.

We consider in this paper a system of distributed low-
capacity computing nodes, which are pooled together and
collaborate in a Federated Learning process run over edge
devices. The machine learning models are then trained at the
computing nodes. We look at model accuracy, but also on the
potential to reduce local epochs if there is no accuracy gain.

C. Proposed Algorithm: BePOCH

Performance of the Federated Learning (FL) algorithms is
known to be highly sensitive to the FL system parameters, the
hyper-parameters of the used machine learning model and the
data distribution [16]. In practice, tuning the parameters and
finding the right set for an FL algorithm is an expensive task
and there is no clear way how to explore the parameter space.
Taking into account the condition of resource-constrained
devices which reach limits, i.e. they do not have the elasticity
of a cloud resource, the problem becomes even more complex.

For instance, Figure 2 demonstrates how FL algorithm tries
to find the most optimal epoch for the Federated Learning
process. The most accurate and suitable epoch was 4, which
dominance can also be seen in our evaluation results (Table
I). Figure 2 reveals that increasing the number of epochs
does not necessarily lead to higher accuracy. Using more
epochs, however, increases the computation time and the use
of computing resources.

Taking into account the importance of the epoch metric
when training FL. models in resource-constrained devices, we
designed the BePOCH Algorithm (pseudocode highlighted in

Zhttps://www.tensorflow.org/lite

Algorithm 1). BePOCH addresses the lack of knowing the
right training parameter configuration of Federated Learning
in an edge environment. It aims to find the set of training
parameters that can lead to better learning performance in
resource-constrained devices, specifically Raspberry Pis. The
algorithm runs in several phases where the automation and
deployment of various FL. components occur (Phase 1, Phase
2 and Phase 3). For each of the pre-defined rounds (e.g.,
R = 100) by the user, the performance of each epoch
candidate configuration is estimated by evaluating the learning
performance in terms of model accuracy and CPU consump-
tion (Phase 4). The configuration with the best estimated per-
formance is considered the optimal parameter setting (Phase
5). Taking into account the devices with limited resources, the
algorithm is executed once per dataset.

IV. EXPERIMENTS AND RESULTS

In this section, first we present our real testbed created with
Raspberry Pi devices, the dataset and models used. Then, we
study the learning performance of our BePOCH algorithm
comparing with the FL-Gao and OPT-Gao algorithms [8]
which serve as our baselines. We focus our evaluation on the
resource consumption of the BePOCH (CPU, RAM memory)
and training time and temperature of the devices. In the
context of our use case, these metrics are of high importance,
since they prove applying machine learning on edge devices.
A moderate resource consumption of the FL models is desir-
able since we are dealing with resource-constrained devices.

A. Testbed

The experimental setup contains real devices that are
connected over a wireless network. As shown in Figure 3,
there are 16 Raspberry Pi devices connected to two different
wireless access points (APs). The two LANs at each AP are
interconnected over a wireless link. The Federated Learning
experiments use worker nodes in the LANs of both APs.
Ubiquiti Nanostation M5 devices are used to enable this
interconnection. With 150 Mbps real outdoor throughput and
up to 15km range operating at 2.4GHz and 5 GHz, these
devices deliver a good performance over the network. As
computing nodes, we use the latest Raspberry Pi 4 Model
B devices. They have a Quad core Cortex-A72 (ARM v8) 64-
bit SoC @ 1.5GHz processor, 8 GB SDRAM, 64 GB storage
and IEEE 802.11ac wireless connection. The software used is:
PyTorch version 1.8.0, OS Raspbian GNU/Linux 10 (buster)

3https://www.ui.com/airmax/nanostationm/

Server
R 5

RP14 - RP6 RP1Z | T — RPS5

e 9 9

- —
— —

Server

, — —
RP12 N RP§ — — — — — — "RP11

Fig. 3. Topology of the testbed

Algorithm 1 Best Epoch Algorithm - BePOCH

Require:
workers > Number of clients (2,4,8)
epoch > Local epoch (1,2,3,4,5)
batchsize > Batch size = 32
rounds > Number of training rounds (R=100)
« > Default parameter for Accuracy (o = 1.5)
B > Default parameter for Epochs (8 = 1)

clients.csv > Clients and their IP Addresses

Phase 1 — Connecting to the nodes

: procedure NODECONNECTION

nodes < read_hosts(clients.csv)
ssh_to_hosts(nodes)

: end procedure

bl B

Phase 2 — Server Start

: procedure SERVERSTART
: | server_start()
: end procedure

Phase 3 — Workers Start

> Start the server and wait for the workers

~N O\ W

8: procedure WORKERSTART

9: | if (worker has the ECGDataset) then

10: ‘ worker_start(ServerIP) > Start the workers
11: else DownloadDataset(ECGDataset)

12: | worker_start(ServerIP)

13: end if

14: end procedure
Phase 4 — Best Epoch
15: procedure FINDBESTEPOCH

16: if (rounds < 100) then

17: if (test_acc > best_test_acc) then
18: best_epoch < epoch

19: best_test_acc < test_acc
20: if (epoch = 5) then

21: best_test_acc <+ 0

22: epoch + 0

23: rounds ¢ rounds + 10
24: end if

25: end if

26: else epoch < epoch + 1

27: end if

28: end procedure
Phase 5 — Best Candidate

29: procedure BESTCANDIDATE

30: a+ 1.5

31: B+ 1

32: getBestEpoch ()

33: getBestAccuracy ()

34: for each d in data[] do

35: if (best_epoch — d[epoch] > [3) then
36: if (best_acc — dlacc] < «) then
37: \ best_candidate + d

38: end if

39: end if

40: end for

41: end procedure

and Python version 3.7.3. In our experiments, 15 Raspberry
Pi devices act as workers and one of them (or two) acts as a
server.

B. Dataset

For the performance evaluation of our BePOCH algorithm,
we are using the popular ECG (Electrocardiogram) datasets
from the MIT/BIH arrhythmia database [17] [18]. MIT-BIH is
a dataset for ECG signal classification or arrhythmia diagnosis
detection. In total we collect 26,490 samples, with total of
68,901 parameters. The baseline accuracy for the centralized
model of ECG is 97.78%. The samples collected represent

I FL-Gao OPT-Gao =3 BePOCH

97.7% 97.5% 98.2% 9 98% 97.7%
Z

100 A

90.8%

80 A

60 A

40 A

Test Accuracy (%)

M)A
i
)
AN
i

N

8

N

il N
4

Number of workers (W)

N

Fig. 4. FL-Gao vs OPT vs BePOCH (2, 4, and 8 workers)

5 heartbeat types (# of labels) : N (normal beat), L (left
bundle branch block), R (right bundle branch block), A
(atrial premature contraction), and V (ventricular premature
contraction).

C. Performance Evaluation

1) Learning Performance (IID and Balanced Dataset) :
Starting with balanced data distribution among workers, we
evaluate the learning performance of the BePOCH and our
baselines FL-Gao [8] and OPT-Gao using the ECG dataset.
Figure 4 detail the testing accuracy over 100 number of rounds
when the machine learning models are trained with 2, 4 and 8
distributed clients (Raspberry Pi devices) using three above-
mentioned algorithms. Baseline: As e baseline we are using
two algorithms:

o FL-Gao: As a first baseline we are using the imple-
mented version of FL for Raspberry Pi devices from
Yansong Gao et. al., [8]. In their tests, the 4conv+2dense
1D CNN model architecture is used. The learning rate is
set to be 0.001. The batch size = 32. Further, they are
testing the models just with 1 and 5 epoch and they are
using up to 100 simulated clients (not real devices).

o OPT-Gao: is the second baseline which refers to the
optimum configuration values (accuracy) in the FL-Gao
algorithm. For each of the pre-defined rounds (e.g., R
= 100) by the user, the performance of each epoch
candidate configuration (1-5 epochs) is estimated in terms
of model accuracy. Best accuracy epochs are plotted in
the Figure 4. Epoch number is not fixed and can change
per round.

Figure 4 depicts the testing accuracy of the FL-Gao, OPT-
Gao and BePOCH when two, four and eight distributed work-
ers are used to train the model. As can be seen from the Figure
4, in the case of two workers, the overall average accuracy
improvement of BePOCH over FL-Gao is 6.7%. Comparing
the BePOCH performance with the optimum values (OPT-
Gao), we can see the BePOCH is slightly under-performing
(0.2%). However, taking into consideration the number of
epochs used, BePoCH is using 3 epochs per round comparing
to OPT-Ga0 which is using 5 epochs per round. Less epochs
result in less CPU consumption. BePOCH slightly sacrifices
the accuracy but reduces the number of epochs per round
which is a critical metric for resource-constrained devices.

When increasing the number of workers to four, the overall
average accuracy improvement of BePOCH over FL-Gao is
6.5%. Again, comparing to optimum values, BePOCH is
slightly under-performing (0.4%), but is achieving to use less
number of epochs per round (3 epochs per round comparing
to 5 epoch per round used in OPT-Gao).

In our final use-case we use eight workers to train the
model. It is interesting to note that augmenting three algo-
rithms with more workers is not improving the accuracy. Fig-
ure 4 reveals that BePOCH is performing better than FL-Gao
and slightly is under-performing with OPT-Gao. However, in
the case of 8 workers, BePOCH is using 2 epochs per round
which is a significant improvement comparing to 5 epochs per
round used by the OPT-Gao algorithm. Overall, during the
model training with two, four and eight workers, BePOCH
is using 800 epochs in total comparing to 1500 used by the
OPT-Gao, by slightly sacrificing the accuracy. Table I shows
the best configurations selected by the OPT-Gao (highlighted
with purple color) and BePOCH (highlighted with yellow
color). To summarize, BePOCH decreases up to 46.7% the
number of epochs for 100 round experiment while keeping the
level of accuracy. Further, up to 4 training workers, BePOCH
decreases the training time on average for 37%.

2) CPU and Memory Consumption : Figure 5 depicts the
CPU and memory utilization of a single worker node during
continuous training operations for 15 minutes (epoch=10).
Figure 5 reveals that when the client trains the local model
for several epochs before sending it to the server in one
communication round, almost 4 cores of CPU is fully used
(98% of CPU). The results suggest that training complicated
models with several million parameters would be infeasible
for such devices. Regarding memory, the consumption is low
(110 MB) with regards to the available 8 GB of RAM.

3) Training Time and Temperature:: When comparing the
average training time for different number of workers, when
the number of workers increases, the training time increases
slightly due to the fact that the server awaits for all clients to
report back their newly trained model. As shown in Figure 6,
with 2 workers the average training time is 914 seconds and
with 8 workers 1046 seconds, respectively. As expected, more
local epochs (e.g., epoch=5) proportionally prolongs training
time on the client side. Regarding the CPU temperature, when
training on the Raspberry Pi devices, the temperature goes
high—usually more than 70°C (since FL training uses all 4
cores of the CPU). It is needed to cool down the device (.e.g.

‘Workers
2 4 8
R E A T(Gs) | E A T (s) E A T (s)
10 5 95.22 179 5 95.17 195 4 90.13 209
20 5 95.19 370 5 95.61 383 5 97 389
30 4 | 97.38 504 5 95.48 544 5 97.01 611
40 4 | 97.44 767 5 97.78 738 5 98.05 768
50 3 | 97.68 813 3 97.62 953 5 97.73 999
60 4 9756 | 1110 3 97.81 1160 | 5 97.67 1209
70 4 | 97.66 | 1128 5 97.31 1306 2 97.75 1470
80 4 97.6 1491 4 97.9 1591 4 97.7 1719
90 519775 | 1502 | 5 98.22 1631 5 97.79 1838
100 | S 97.61 1772 | 3 97.74 1987 4 95.47 1960
ABLE T

BEST CONFIGURATION SELECTED: BEPOCH (YELLOW COLOR),
OPT-GAO (PURPLE COLOR). EPOCH (E), ACCURACY (A), T (TIME-SEC)

Local Epoch

120
400 1

F 100

(%)

300
r 80

200 A r 60

Memory (MB)

CPU Utilization

F 40

100
F 20

0 200 400 600 800
Time (sec)

Fig. 5. CPU and Memory Consumption

fan, heat sink) to not suffer heat-related restrictions of the
device. In the Figure 6 Client O refers to the server, and other
15 nodes are the clients performing model training.

— 2000 41

1500 1

1000 +

—— 2 workers
—— 4 workers
—— 8 workers

500

Training time (sec

o4

o 20 40 60 80 100
Rounds

®
o
L

-3
o
L

CPU Temperature (°C)
N »
o (=]
P

o
I

7 8 9
Clients

10 11 12 13 14 15 16

Fig. 6. Training Time and Device Temperature

V. CONCLUSION

This paper addressed a practical computing environment
consisting of a set of distributed Raspberry Pi devices being
used for federated machine learning model training. Such an
environment is relevant as it becomes more and more available
among individuals and communities of users. On the other
hand, additional practical insights on resource consumption
and guidelines for the best training configurations are needed
in order to deliver an acceptable training experience on these
low-capacity devices.

The BePOCH algorithm was proposed as a tool to obtain
practical guidance on suitable parameter settings for the
Federated Learning process in low-capacity devices, such as
Raspberry Pi or similar. In the experiments it was shown
that local training in these devices has a very high CPU
consumption, for which it is of interest to be reduced at
its minimum required value. Using the BePOCH algorithm
it is possible to observe the best tradeoff in terms of model
accuracy between the number of the local training epochs and
the global model aggregation. In the experimentation it could
be observed that the best learning performance was achieved
when changing dynamically the number of training epochs at
each round of the Federated Learning process.

In future work we aim to investigate how the knowledge of
the most suitable number of training epochs can be extended
to individual client behaviours. A potential usage is that the

decision on the resources spent at the local client training
would be aware of the learning benefit.

ACKNOWLEDGEMENT

This work was partially funded by the Spanish Government
under contracts PID2019-106774RB-C21, PCI2019-111850-
2 (DiPET CHIST-ERA), PCI2019-111851-2 (LeadingEdge
CHIST-ERA), and the Generalitat de Catalunya as Consoli-
dated Research Group 2017-SGR-990. Suport was given also
by the Agency for Electronic Communications (AEK) of
North Macedonia.

REFERENCES

[1] F. Sakr, F. Bellotti, R. Berta, and A. De Gloria, “Machine learning on
mainstream microcontrollers,” Sensors, vol. 20, no. 9, 2020. [Online].
Available: https://www.mdpi.com/1424-8220/20/9/2638

[2] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, Jan. 2019. [Online]. Available: https://doi.org/10.1145/3298981

[3] O. Choudhury, A. Divanis, T. Salonidis, I. Sylla, Y. Park, G. Hsu, and
A. Das, “Differential privacy-enabled federated learning for sensitive
health data,” 2020.

[4] M. Selimi, A. Lertsinsrubtavee, A. Sathiaseelan, L. Cerda-Alabern,
and L. Navarro, “Picasso: Enabling information-centric multi-tenancy
at the edge of community mesh networks,” Computer Networks, vol.
164, p. 106897, 2019. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1389128618312787

[5] J. Panadero, M. Selimi, L. Calvet, J. M. Marques, and F. Freitag,
“A two-stage multi-criteria optimization method for service placement
in decentralized edge micro-clouds,” Future Generation Computer
Systems, vol. 121, pp. 90-105, 2021. [Online]. Available: https:
/lwww.sciencedirect.com/science/article/pii/S0167739X21000935

[6] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “Federated
learning for resource-constrained iot devices: Panoramas and state-of-
the-art,” 2020.

[7] Y. Jiang, S. Wang, B. Ko, W. Lee, and L. Tassiulas, “Model pruning
enables efficient federated learning on edge devices,” CoRR, vol.
abs/1909.12326, 2019. [Online]. Available: http://arxiv.org/abs/1909.
12326

[8] Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S. A. Camtep,
H. Kim, and S. Nepal, “End-to-end evaluation of federated learning and
split learning for internet of things,” in 2020 International Symposium
on Reliable Distributed Systems (SRDS), 2020, pp. 91-100.

[91 M. Malekzadeh, B. Hasircioglu, N. Mital, K. Katarya, M. E. Ozfatura,
and D. Gunduz, “Dopamine: Differentially private federated learning on
medical data,” ArXiv, vol. abs/2101.11693, 2021.

[10] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain and
federated learning for privacy-preserved data sharing in industrial iot,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 6, pp. 4177-
4186, 2020.

[11] H. Kim, J. Park, M. Bennis, and S. Kim, “On-device federated learning
via blockchain and its latency analysis,” CoRR, vol. abs/1808.03949,
2018. [Online]. Available: http://arxiv.org/abs/1808.03949

[12] J. Passerat-Palmbach, T. Farnan, R. Miller, M. S. Gross, H. L.
Flannery, and B. Gleim, “A blockchain-orchestrated federated learning
architecture for healthcare consortia,” CoRR, vol. abs/1910.12603,
2019. [Online]. Available: http://arxiv.org/abs/1910.12603

[13] Q. Zhang, P. Palacharla, M. Sekiya, J. Suga, and T. Katagiri, “Demo: A
blockchain based protocol for federated learning,” in 2020 IEEE 28th
International Conference on Network Protocols (ICNP), 2020, pp. 1-2.

[14] C. Pappas, D. Chatzopoulos, S. Lalis, and M. Vavalis, “Ipls : A
framework for decentralized federated learning,” 2021.

[15] A. G. Roy, S. Siddiqui, S. Polsterl, N. Navab, and C. Wachinger,
“Braintorrent: A peer-to-peer environment for decentralized federated
learning,” 2019.

[16] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50-60, 2020.

[17] G. Moody and R. Mark, “The impact of the mit-bih arrhythmia
database,” IEEE Engineering in Medicine and Biology Magazine,
vol. 20, no. 3, pp. 45-50, 2001.

[18] R. Mark and G. Moody, “Mit-bih arrhythmia database directory.” http:
/lecg.mit.edu/dbinfo.html, accessed: 2021-04-28.

