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Abstract—The usage of unmanned aerial vehicles (UAVs) in
civil and military applications continues to increase due to
the numerous advantages that they provide over conventional
approaches. Despite the abundance of such advantages, it is
imperative to investigate the performance of UAV utilization
while considering their design limitations. This paper investigates
the deployment of UAV swarms when each UAV carries a
machine learning classification task. To avoid data exchange with
ground-based processing nodes, a federated learning approach
is adopted between a UAV leader and the swarm members
to improve the local learning model while avoiding excessive
air-to-ground and ground-to-air communications. Moreover, the
proposed deployment framework considers the stringent energy
constraints of UAVs and the problem of class imbalance, where
we show that considering these design parameters significantly
improves the performances of the UAV swarm in terms of
classification accuracy, energy consumption and availability of
UAVs when compared with several baseline algorithms.

Index Terms—Class Imbalance, Federated Learning, UAV
Swarm.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are currently being de-
ployed to enhance services across a multitude of applications
[1]. Such applications cover for instance aerial surveillance in
law enforcement applications, cargo transport and conducting
reconnaissance tasks in military applications. Although the
deployment of UAVs introduces a new design degree of
freedom brought by the possibility of three dimensional UAV
mobility, this brings up the issue of the stringent energy
constraint due to the limited battery lifetime that operates the
UAV. Such energy constraints motivates the investigation of
their performances while carrying out such vital tasks.

Federated Learning (FL) is an emerging solution that pro-
motes decentralized model training [2]. FL can be exploited
as it does not require the conventional approach of exchanging
local training data between the client and the server. Instead,
the use of FL emerges as a potential candidate to distribute
machine learning tasks instead of relying on a centralized
processing node, for example a ground processing node. In
such setups, each UAV trains its learning model based on its
own collected data, and then exchanges the learned parameters
with other UAVs in the swarm to reach a global consensus. FL
can be utilized by UAVs to deliver various vital tasks such as
target recognition or path planning. In the literature, various
recent works have considered the problem of incorporating FL
into UAV swarms [3], where a UAV leader aggregates the local
learning-related parameters and updates the global ones over
several rounds of communications within the swarm members.

As the spatial dimension is significantly larger in an aerial
networks environment in contrast to its ground-based coun-
terparts, FL can minimize the communications between each
UAV and ground-based base-stations, where communicating
with ground BS nodes is made exclusive to the swarm leader.

Recently, FL has been considered as a distributed Ma-
chine Learning (ML) approach to reach an accurate global
learning model while considering several design constraints.
The efficiency of FL was assessed in [4] through extensive
experiments on various datasets. This work considered the
typical FL model, where a group of users exchange their
updated learning models with a central node responsible for
averaging and constructing a global model with a fixed global
aggregation frequency. Then, several studies have extended
this model. For instance, the authors in [5] investigated the
effect of non-Independent and Identically Distributed (non-
IID) data on the performance of FL. In particular, the work in
[5] has shown that the non identical distribution of the data
at different users can significantly decrease the obtained accu-
racy. Convergence analysis of Federated Averaging (FEDAVG)
algorithm is presented in [6] for convex and smooth problems
while considering non-IID data. In [7], the authors presented
an adaptive FL aggregation scheme that targets minimizing the
learning loss under resource-constrained environment, while
considering the non-IID data problem. In [8], a modified FL
algorithm is proposed using a local surrogate function that
allows each participant to update its local model up to a certain
accuracy level. Moreover, a resource allocation optimization
problem is solved to address the trade-off between the train-
ing time of the proposed algorithm and participant’s energy
consumption. In [9], the effect of the non-IID data in edge-
assisted FL environment is investigated, while assessing the
main parameters that affect the learning performance.

The problem of class imbalance arises in learning problems
when the training data corresponding to majority classes
accounts for a larger portion of the overall training data,
while the ones corresponding to minority classes account for a
lower portion. This may result in a reduction in classification
accuracy of minority classes, as investigated in [10]. In UAV
networks, data collected by UAVs may experience the problem
of class imbalance like in [11], where it was encountered when
UAVs were used to inspect power lines.

Several recent articles addressed the problem of FL in
UAV networks. For instance, in [3], the authors conducted a
convergence analysis for FL while considering several design
factors such as wireless propagation effects. In [12], the
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authors proposed a drone trajectory optimization approach
to serve FL networks to address the problem of learning
discrepancies between nodes. However, the ML task was not
selected to be drone-mounted. In [13], image classification was
performed by UAVs while carrying out an exploration task and
minimizing the computational aspect on the centralized ground
fusion center, and beamfroming is performed by each of the
UAVs to enhance the classification accuracy at relatively low
communication cost.

In contrast to the discussed literature, we propose a solution
to the problem of class imbalance in FL for energy-constrained
UAV networks, where the aim is to improve the classification
accuracy while considering the limited availability of UAVs
due to their stringent energy constraints. While the availability
of UAVs is determined by the expected service time of a
UAV given its energy level, the classification accuracy is
enhanced by developing a selection algorithm, where the set
of UAVs that delivers the lowest class imbalance will be
selected. Simulation results show that the proposed algorithm
provides significant classification accuracy and overall power
consumption gains when compared with several baselines.
Such results pave the way to explore the deployment of FL
in UAV networks, especially with the emergence of novel
computers that could be integrated to UAVs and deliver com-
putationally challenging services such as image processing1.

II. SYSTEM MODEL

We assume having a swarm of UAVs, where the kth

UAV k ∈ {1 . . .K} collects a set of input data denoted by
{xk1, xk2, . . . , xkQk

}, and Qk denotes the number of collected
samples at the kth UAV. We assume that xkq , q ∈ {1, . . . , Qk}
corresponds to a single output ykq , and thus yielding an
output vector {yk1, yk2, . . . , ykQk

}. The system model under
consideration is depicted in Fig. 1, where each UAV is shown
to be exposed to specific data, based on the considered
application, such as target recognition and localization. The
available UAVs will train their own models and then send
their weights updates to a more capable UAV leader while
aiming at reaching global convergence using FL. The weights
update is done through a slotted wireless communication based
user multiplexing scheme between the UAV leader and the
UAV swarm members. We note that even when the UAV
leader needs to recharge/swap its battery, its transceiver and
processors may continue operating to deliver its FL based tasks
while charging/swapping its battery.

In this paper, such setup mimics the case of training an
object recognition ML-based model, where a swarm of UAVs
is deployed to learn a global recognition model using an FL
approach. While training the ML model, some UAVs will be
exposed to certain data classes more-so than others, hence
creating the problem of class imbalance [11], [14].

Furthermore, as UAVs are governed with stringent energy
constraints, it is mandatory to select the optimal subset of
UAVs that will reliably complete the collective learning task.
We assume that throughout a time window τt, M out of

1https://www.dji.com/manifold-2
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Fig. 1: System model.

K UAVs will be available due to the need for K − M
UAVs to recharge their empty batteries/return back to a UAV
docking station at the next time window τt+1. In that event,
learning is not possible and the UAV will not contribute in
FL. More details on the considered FL model and UAV power
consumption model are provided in the next subsections.

A. Federated Learning Model

In FL, the convergence of the training process requires each
learning vector at the UAV to reach w∗, where the following
problem is solved

argmin
w∈Rd

K∑
k=1

Qk

n
Fk(w), (1)

where Fk(w) = 1
Qk

∑
i∈Sk f(w, xki, yki) captures the overall

loss function and Sk is the set of indexes for the kth user’s
data points, n =

∑K
k=1Qk. Moreover, the loss function F (w)

can take any form depending on the designer’s choice or the
application. An iterative update technique can be adopted to
solve the above problem, where the UAV leader generates an
initial global model wt that will be broadcasted to the UAV
swarm, where it will be used over each of the UAVs’ local data
to then send the updated trained model back to the UAV leader.
After receiving all updates from all UAV swarm members, the
UAV leader will aggregate the received FL vectors, and will
update it again to be re-sent to the UAV swarm members. This
process will be repeated over time until the gap between the
loss function F (w) and F (w∗) gets below a threshold ε, i.e.
|F (w)−F (w∗)| ≤ ε. Each UAV will compute ∇Fk(wt), the
average gradient related to its data, so then the UAV leader
collects the computed gradients and applies

wk
t+1 ← wk

t − λ∇Fk(wt), (2)

wt+1 ←
K∑

k=1

Qk

n
wk

t+1, (3)

where λ is the learning rate. Furthermore, the local update at
the kth UAV can be computed several times by applying

wk ← wk − λ∇Fk(wk). (4)



Then, model averaging at the UAV leader node can be imple-
mented. This approach is termed (FEDAVG). The FEDAVG
algorithm is governed by three main parameters: a) The
portion of the number of available UAVs M , b) the number
of training passes E applied by each UAV on its local dataset
for each communication round, c) the minibatch size B used
to update the model at the kth UAV, and d) the number of
communication rounds between the UAV leader and the UAV
swarm members to converge to the global learning model.

B. UAV Power Consumption Model

Unlike ground-based nodes, UAVs are constrained by their
energy demands making power consumption a necessary de-
sign consideration [15]. In this setup, we rotary-wing UAVs for
their ease of deployment. As the propulsion power is the most
significant part of the energy consumption model of a UAV
[16], the communication and processing required powers are
ignored. The propulsion power consumption is computed by
applying

Pk = P0

(
1 +

3V 2
k

U2
tip

)
+ Pi

(√
1 +

V 4
k

4v4
0

− V 2
k

2v2
0

) 1
2

+
1

2
d0ρsAV

3
k , (5)

where Vk is the speed of the kth flying UAV. Moreover, P0 and
Pi are the blade profile power and the induced power during
hovering, respectively, which can be written as

P0 =
δ

8
ρsAΩ3R3, (6)

and

Pi = (1 + ι)
W 3

2

√
2ρA

, (7)

Utip is the tip speed of the rotor blade, s, d0, ρ and A denotes
the rotor solidity, the fuselage drag ratio, the air density and
the rotor disc area, respectively, v0 is the mean rotor induced
velocity while hovering, W is the UAV weight in Newton, R
is the rotor radius, δ is the profile drag coefficient, ι is the
incremental correction factor to the induced power and Ω is
the blade angular velocity in radians per second. Further, the
power consumption during the hovering status of the UAV is

Ph = P0 + Pi. (8)

In our formulation, the location of the UAV docking station
must be known to all UAVs in order to calculate the expected
power consumption figures.

III. PROBLEM FORMULATION AND PROPOSED SOLUTION

In this section, we aim at developing a framework to
perform UAV selection in order to guarantee a reliable and
stable performance of FL while considering the problem of
class imbalance. It is worth noting that the number of classes

at each UAV must be exchanged between the swarm members
and the UAV leader. The optimization problem is

min
A∈Γ

∑
k∈A

Pk (9a)

s.t. βi ≥ βth, i ∈ {1, . . . , N} (9b)

card

(⋃
k∈A

Ck

)
= L, (9c)

∑
k′∈A′

L∑
l=1

Qk′

n
|Ck′,l −Ok′ | ≤ ε, (9d)

where Ck represents the set of indexes of active classes for the
kth UAV, Ck,l is the data size for the kth UAV at the lth class,
Ok = 1

Qk

∑L
l=1 Ck,l ∀k ∈ A, L is the number of classes that

is specific to the learning problem and ε is a threshold that
can be set by the designer. Note also that

card(A′) = min (card (A)) 3 card

(⋃
k∈A

Ck

)
= L, (10)

where A′ ∈ Γ
′
, and Γ

′
contains all combinations that cover

L classes. The constraint in (9b) guarantees that the selected
UAVs will have battery levels that are greater than βth, while
constraint (9c) insures that the set of selected UAVs will
collectively cover data-sets belonging to all L classes, and
the constraint in (9d) insures the uniformity of the distribution
of the data-sets between the classes.

In other words, our aim is to maximize the availability of
the UAVs so that the process of convergence to the global
model will not be interrupted by the absence of a UAV(s). The
availability of a UAV is determined first by setting a threshold
on the UAV battery level, thus disregarding the presence of
a UAV that has a low battery level as its presence is not
guaranteed. Then, we select the set A∗ of UAVs such that
the total consumed power for all UAVs is minimized while
guaranteeing that all classes are available.

Remark 1. The problem in (9a) may not be feasible to solve as
the condition in (9c) may not be reached. Hence, a feasibility
problem can be formulated by replacing L in (9c) with L′,
where L′ can be calculated by applying

L′ = max
k∈A

(
card

(⋃
A∈Γ

⋃
k∈A

Ck

))
, (11)

where Γ is a set containing all possible combinations of the
selected UAVs. Thus, L in (9c) will be replaced by L′ defined
above.

To solve the formulated optimization problem, we propose
the following algorithms. ALGORITHM 1 is aimed to satisfy
the Eqs. (9c), (9d) and (10). Hence, we have considered that
Eq. (9b) is already satisfied, i.e. ψ contains only the indexes of
UAVs with battery levels greater that βth. At first, we satisfy
the constrains defined in Eqs. (9c) and (9d). Then, we removed
the combinations that have a number of UAVs greater than N3

which is the minimum of number of UAVs per combination.



Hence, we are minimizing the total power consumption.

 

As for ALGORITHM 2, it addresses the availability of UAVs
by maximizing the minimum of the available UAV battery
levels, and then maximizes the sum in case of not having
a unique solution. The first two loops are aimed to find
the combination that has the highest minimum battery level
that guarantees the maximum availability of all UAVs of the
combination. Moreover, if the problem still does not yield a
unique solution, the two last loops will be aimed to return the
combination that has the highest aggregation of battery levels.

IV. NUMERICAL RESULTS

In this section, we present the numerical results, where
we compare the proposed solution with several baseline al-
gorithms. The implementation of the FL algorithm that was
used throughout the paper was adopted from [17]. All UAVs
are assumed to be assigned to a fixed location and hover,
mimicking a surveillance scenario. The parameters related to
the UAV power consumption model are given in Table I.

Moreover, the learning rate is λ = 0.01, the number of
training passes each UAV performs over its local data (E)
is equal to 5, and the local minibatch size B is equal to 10.
Furthermore, the UAVs are assumed to be randomly distributed
in a circle of radius 1 km with an altitude η = 100 m. To test

 

Parameter Value Parameter Value
W 50 Newtons ρ 1.225 kg/m3

R 0.25 m A 0.1963 m2

Ω 400 Radians/s Utip 100
d0 0.3 k 0.1
vo 10.2 m/s ι 0.1
δ 0.012 V 18.46 m/s
s 0.05 K 10

TABLE I: Parameters used throughout the simulations.
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Fig. 2: Testing accuracy vs. comm. rounds.

our proposed approach, the MNIST dataset is used, where
we perform a digit recognition task, having a total of 10
classes. Note that this dataset was selected for the sole purpose
of demonstrating the improvements made by adopting the
proposed approach, and the type of the used dataset by itself
is irrelevant at this stage. Moreover, we use a 2-hidden layer
multilayer-perceptron neural network with 200 units, and each
adopting ReLu activation functions (199210 total parameters).
In the simulation setup, we define the class imbalance rate µ
(unitless), which controls the number of active classes for a
certain UAV. For instance, µ = 0 means that a UAV has data
in all available classes, while if µ = 0.9 signifies that the UAV
has a single visible class. This design parameter allows us to
partially control the class imbalance at each UAV. Moreover,
we assume that equal amounts of data are distributed amongst
the available UAVs.

To visualize the effects of the number of available UAVs
M and the class imbalance rate on the testing accuracy, we
begin by depicting the result in Fig. 2, where the testing
accuracy is plotted vs. the number of communication rounds.
As the number of communication rounds increases, the testing
accuracy also increases, while saturating to different values
depending on M and µ. When µ is high, for instance µ = 0.8,
and a low number of UAVs (M = 3) is selected, the testing ac-
curacy is observed to be significantly low. For the same µ, the
testing accuracy is observed to improve significantly, reaching
around 89%. It is also worth noting that when µ = 0.2, the
number of active users M has a relatively negligible effect
when it comes to the testing accuracy, thus emphasizing on
the importance of UAV selection and the design constraint in
(9c). To highlight the improvements made by adopting the
proposed algorithm, Fig. 3 depicts the testing accuracy vs.
the number of selected UAVs, where we plot the proposed
approach explained in Section III when compared with a
worst-case scenario baseline. In this setup, an equal number of
selected UAVs was assumed and µ = 0.5. For the worst-case
baseline, however, it was assumed that the selected UAVs do
not conform with the second constraint in Eq. (9a), but selects
UAVs that are exposed to similar classes. The difference in
the testing accuracies is very well pronounced between the
two approaches, hence highlighting the importance of UAV
selection based on the available data classes. Moreover, the
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Fig. 3: Testing accuracy vs. M of our proposed UAV selection
scheme and the worst-case solution. µ = 0.5.
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worst-case baseline is heavily dependent on the number of
UAVs, while for our proposed approach, selecting 2 UAVs
already improves the testing accuracy to around 90%.

Fig. 4 shows the testing accuracy vs. the number of selected
UAVs while varying µ. For a fixed value of µ, the accuracy
is increased when augmenting the number of selected UAVs,
except for the case when there is no class imbalance and
µ = 0. However, we would like to note that the testing
accuracy may not increase for all cases when µ is increased.
For instance, when M ∈ {2, 4, 6, 8}, the testing accuracy when
µ = 0.5 is better than the case when µ = 0.2, which is counter
intuitive since a lower µ should yield a better accuracy. This
is due to the fact that although when µ = 0.2 means that
each UAV has eight out of ten active classes, the eight active
classes experience sever class imbalance, while when µ = 0.5,
all active classes have equal amounts of data in them. Hence,
this justifies the constraint in (9d).

Figs. 5 and 6 compare the performance of our proposed
algorithm with four baseline algorithms, namely a Select All
(SA) algorithm, Baseline 1 (BL 1), Baseline 2 (BL 2) and
Baseline 3 (BL 3). In particular, the SA algorithm selects
all available UAVs, i.e. mimicking the performance of the
standard FEDAVG approach. Furthermore, BL 1 insures that
constraint (9c) is satisfied while disregarding the power con-
sumption aspect. On the other hand, BL 2 and 3 are aimed to
address the minimization of the power consumption objective,
while neglecting constraint (9c). However, BL 2 is designed to



select the same number of users selected using the proposed
algorithm, while BL 3 could select lower number of users
satisfying the power consumption objective.
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The results show that our proposed solution outperforms
the baseline algorithms. For instance, while selecting all UAVs
(SA) yields high testing accuracy results, it results in a higher
power consumption figure than the rest of the baselines.
Moreover, BL 3 yields a lower power consumption level when
compared with the rest of the baselines for µ = 0.7, but
results in lower classification accuracy (around 67%), which
is significantly lower than the one resulting form our proposed
algorithm (around 83%). Also, due to the constraint in (9d),
our proposed solution shows an improvement in the testing
accuracy when compared with BL 1 and BL 2.

V. CONCLUSION

In this paper, we studied the problem of enhancing the
accuracy of a learning problem using UAVs. Specifically, we
investigated an FL setup to reach high testing accuracy levels
in a UAV swarm while maximizing the availability of the
UAVs, all while conducting a task such as object recognition.
The accuracy was enhanced by constraining the selected UAVs
with the aim of resolving the problem of class imbalance in
the considered FL setup. Our algorithm showed significant
improvements in terms of accuracy, power consumption and
availability when compared with several baselines.
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