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Abstract—The system capacity can be remarkably enhanced
with the help of intelligent reflecting surface (IRS) which has
been recognized as a advanced breaking point for the beyond
fifth-generation (B5G) communications. However, the accuracy
of IRS channel estimation restricts the potential of IRS-assisted
multiple input multiple output (MIMO) systems. Especially, for
the resource-limited indoor applications which typically contains
lots of parameters estimation calculation and is limited by
the rare pilots, the practical applications encountered severe
obstacles. Former works takes the advantages of mathematical
based statistical approaches to associate the optimization issue,
but the increasing of scatterers number reduces the practicality
of statistical approaches in more complex situations. To obtain
the accurate estimation of indoor channels with appropriate
piloting overhead, an offset learning (OL)-based neural network
method is proposed. The proposed estimation method can trace
the channel state information (CSI) dynamically with non-priori
information, which get rid of the IRS-assisted channel structure
as well as indoor statistics. Moreover, a convolution neural
network (CNN)-based inversion is investigated. The CNN, which
owns powerful information extraction capability, is deployed to
estimate the offset, it works as a offset estimation operator.
Numerical results show that the proposed OL-based estimator
can achieve more accurate indoor CSI with a lower complexity
as compared to the benchmark schemes.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) as a
promising technology of the fifth-generation (5G) wireless
communications systems has received increasing attention in
both academia and industry [1], [2]. Although massive MIMO
with beamforming has been proved a effective approach to
improve the spectral efficiency as well as to boost the system
throughput, the inaccurate channel estimation greatly limits its
application. The non-line-of-sight (NLOS) links between the
transceiver suffer from deep fading and shadowing which is
caused by unfavourable propagation conditions.

With the tireless exploration of scientists, intelligent reflect-
ing surface (IRS) has been explored and applied to enhance the
coverage and capacity of the wireless communication system
with low hardware cost and energy consumption [3]. The IRS
works without power supply and can be deployed properly to
establish extra links between the access point (AP) and user
equipments (UEs) owing to the low-cost and passive advantage
of reflecting materials. While the beams are reflecting by
the reconfiguring IRS elements those inflected by the radio
environment, the received signal power is enhanced and the

interference is suppressed. Therefore, a high beamforming
gain can be reached [4]. It should be emphasized that the
specific reconfiguring method of IRS is to adjusting the phase
shifts of IRS elements, furthermore, the higher beamforming
gain of IRS is based on the accurate channel state informa-
tion (CSI) of all links between UEs and APs. In spite of
the superior prior works on channel estimation in wireless
communication systems, channel estimation of an IRS-assisted
wireless communication system is still an arduous difficulty,
which is resulted by following reasons. First of all, IRS, a
passive device, does not possess any radio frequency chains,
that means the IRS can not deal the pilot signal [5], which
renders IRS incapable of conventional pilot-aided channel
estimation. Secondly, the training process is time restricted,
all the adjusting of IRS elements must finish in a very short
time. As a result, mobility situation under indoor scenarios e.g.
supermarket, commercial towers, shopping mall, may beyond
the capacity of IRS. Thence, we devote our passion to develop
efficient indoor channel estimation solution for IRS-assisted
beyond 5G system.

A. Contributions

IRS has been envisioned as superior and enabling technique
to improve the communication condition and signal coverage
in the next generation wireless communications. In more
detail, deep learning (DL) technique has been introduced into
the IRS system. This interdisciplinary research has attracted
significant attention recently. Usually, prior works mainly put
the focus on the open environment, such as the squares, streets,
etc. rather than the indoor condition. As a fact, the micro-
or pico-cell are usually deployed in indoor scenarios where
the scatter is typically numerous. Moreover, the smart factory
scene where the devices are highly dense and served by few
APs, is also a typical indoor scenario which is important as
the outdoor. In the indoor scenario, rich short-distance scatter
path, which yields increased channel dimension, diversity
and computation complexity in channel estimation, make the
joint optimization of indoor channel estimation and reflection
elements of IRS a highly complex problem to tackle with a
mathematical-based deterministic approaches. Even worse, the
channel status may change intensely with the slight movement
of UEs. In order to satisfy the requirement of indoor B5G
wireless communication, we proposed a novel channel esti-
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Fig. 1: Generic indoor communication with clusters between
AP-IRS and an IRS mounted in the wall.

mation techniques with deep learning architecture to reliably
estimate the IRS-assisted channels with a reduced number
of pilot overhead in indoor communication scenario. To ad-
dress the computationally expensive optimization problem
with mathematical-based deterministic algorithm, we unroll
the iterative procedures of the ADMM-based deterministic
algorithm to a supervised model-driven network. Thanks to
the DL architecture, all the parameters (e.g., sparse transforms,
regularization operator, penalty parameters, etc.) can be trained
and learned discriminatingly from the training pairs of pilot
signal and estimated signal over the data flow graph.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. IRS-Assisted mmWave MIMO system

The model is based on an IRS-assisted mmWave indoor
communication system, in which an AP with N transmit
antennas is serving a single-antenna UE. The IRS is consist
of an L x L uniform rectangular array (URA) and it was
deployed to assist the communication between the UE and
the AP. Taking the complex indoor channel condition into
consideration, the widely used clustered statistical MIMO
channel model in 3GPP standardization is explore thoroughly
[6]. For the requirement in indoor scenario, the clustered
statistical MIMO channel model is studied, which is generally
used in 3GPP standardization [6]. As shown in Fig. 1, there
are M scatterers between the AP and the IRS, while assuming
a LOS channel link from the IRS to the UE. We assume the
UE transmit power as 7, i.e., E[|s;|?] = 7, Vz. Denote a,,, by,
and c as the distances from AP to the m-th scatterer, from the
m-th scatterer to the IRS, and from the IRS element to UE,
respectively. Thus, the received signal § € CX*! at the UE
can be written as

$o =W, (H{}, , + GOH ) x, + my, (1)

where Hyy € CV*E denotes the channels between the AP
and the UE, Hy € CLXE and G € CEXN denote the
channels from the AP to the IRS and from the IRS to the
UE, respectively. W, € CM*XK denotes antenna selectors.

© € CL*L is diagonal phase-shifting matrix of the IRS, which
can be expressed as

O = diag (Blejel,...,ﬁLejeL) , 2)

and 0; € [0,27), 5, € [0,1], I = 1,..., L being the reflection
amplitude and phase shift associated with the [-th reflecting
element of the IRS, respectively. n, € CM*1 is the additive
white Gaussian noise (AWGN) vector whose entries are with

zero mean and variance 2.

B. IRS-Assisted channel model

1) AP-IRS Channel: The model assumed that the whole
M scatterers are divided into C' clusters. Each of cluster is
consists of S, sub-rays for c = 1,...,C, thatis M = Zle Se
and there are sharing the same spatial and temporal dis-
tribution characteristics [7]. Then, the AP-IRS channel link
H;, € CEXK can be expressed as a clustered model as follows

H;y = His npos + Hjp 10s,

C S.
=y S5 B G075 LS Ya

c=1s=1

+Hjy 105,

—-—— is a normalization factor used in
o= Se

clustered channel models [6]. goﬁf; is the corresponding az-
imuth angle-of-arrival (AoA) to the AP; L denotes the
path gains of the AP-IRS channel associated with the (c, s)-
th propagation path. ¢'%5 (or 9/%5) denotes the corresponding
angle-of-departure (AoD) of the IRS. G(6%) denotes the
rotationally symmetric IRS element pattern with the (c, s)-th
directed scatterer [8]. Inspired by [8], the cos? pattern is used

to model the reflect arrays of IRS
Ge (0%) = 2(2¢ + 1)cos™® (01%)

IRS 91!?5) (3)

c,s77¢,s
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where 2(2¢ + 1) is defined as energy conservation and ¢ =
0.25G(0)—0.5 is consistent with in [9]. For the attenuation of
the (c, s)-th path, the close-in free space reference distance in
the 5G standard protocol is considered to model the frequency-
dependent of path loss, which is widely used for the indoor
hotspot and urban microcellular scenarios [10]:
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where d. ; = a. + b. s denotes the length of the (c, s)-th path,
and fp denotes a fixed reference frequency of the path loss
model, w denotes a system parameter, and X, ~ N(0,0?) is
the shadow fading factor in dB, which is the same in [11].

On the other hand, there is an existing LOS link from the
AP to IRS in (3). To this end, the LOS channel link attenuation
for each sub-ray is introduced from the AP to IRS, which is
calculated by

Hiy 105 = T'(dirs)

(&)
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where L% denotes the attenuation of the LOS link to be cal-
culated with (5), G (0/R) denotes the corresponding channel
gain of IRS,  ~ U0, 27] is the random phase and a(pfk) (or
a(RS. OIR%)) denotes the array response of the AP (or IRS).
I'(d.,s) is a Bernoulli random variable taking values between
0 and 1. Let p(T'(djgs)) be the frequency independent LOS
probability. Then, we can resort to the 5G channel model [10]

to achieve
1 des <1.2

p(Cdms)) = e~ 57— 12<d., <65 (7)
dy.s > 6.5.

de s —
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According to (7), it is not difficult to notice that if the
distance between the IRS and UE is less 4.5m, an LOS link
probability of greater than 50% is achieved. Therefore, this
distance generally takes place in indoor communication.

2) IRS-UE Channel: In indoor communication scenarios,
assuming that the IRS is close to the UE and there is a
clear LOS channel link between the IRS and the UE without
noticeable non-LOS (NLOS) channel link. To be specific, the
IRS-UE channel G can be formulated as

G = \/G. () L5 e na(oyi, 00z Ja(pios) ™, ()

where a(¢iRS O'RS) denotes the array response of IRS to be

calculated by the azimuth and elevation departure angles ¢k
and 0% a(pYL:) denotes the array response of the UE, and
LIRSR denotes the attenuation of the path loss along with
channel related parameters between the IRS and UE that is
obtained with (5). The gain of IRS G.(0R3) with respect to
the departure elevation angle /% is obtained by (4).

3) AP-UE Channel: As shown in [10], if the distance from
the UE to the IRS is less than the correlation distance, there
are common clusters in indoor environments. This motives us
to model the channel between AP and the UE by exploiting
shared clusters [12]. Therefore, the AP-UE channel can be

expressed as

c S.
Honp =730 ooy /Ge(674) LIRSa(pV )a(

c=1s=1
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where the parameters vy, C, LI and S, are defined as in

(3) and the common clusters are considered for the AP-UE
channel and the AP-IRS channel. By turning off the IRS
reflecting elements, i.e., 5 = 0, the channel Hys, can be
estimated by considered the conventional estimation schemes.
Combining (3), (8) with (9) and assuming the pilot signal
E[spsT] = I, we can further obtain (1) by using the vectoriza-
tion operation
Yy = (Pbs;, ® Wb)vec(Hb) + ny = ®hy, + ny, (10)
wherey, = y,—®Hya p, = (Ppsp) @W, is the measurement
matrix, h, = vec(H,) = vec(H;4®G) is the vectorized

channel. According to the definition of Hy, the cascade channel
Hj, can be further represented as

H, = H.©G
@ (Hianvos + Hia 10s)OG
= (FrosTrosF 53572 + Fyros,1 TvcosF f}’wm) OR; AGRY

(1)

where (a) is from (3), Fyros,i and Fypps2 denote the
overcomplete matrices and each of its columns has a form
of a(pY%) and a( RS, 6™%S), respectively; Fpos1, Fros2 are
defined with each of its columns having a form of a(¢{k), and
a(piRS ORS), respectively. Ry and Ry are similarly defined
with each of its columns having a form of as2(¢;) and
aap(¢y), respectively.

By stacking all the subcarriers, the received signal can be

given by

Y = ®;05H;05 + ®nrosHyros + N, (12)

where Y = [y;,¥5,..,¥5|7, ®ros and ®y;os are the
LOS and NLOS link of the measurement matrix, H;ps =
[hLOS,lahLOS727 ...7hL05}B]T is the LOS channel link, Hy; o5 =
[hNLOS,lahNLOS,% --~,hNLOS,B]T is the NLOS channel link and
N = [ny,ny,...,np]".

III. DEEP LEARNING BASED CASCADED CHANNEL
ESTIMATION

In this section, the channel estimation problem is described
and the detailed solution is presented. In [13], an superior
method which applying CS theory to reduce pilot overhead
is provided to tackle the high-dimensional channel estimation
problem under the angular-domain sparsity nature of mmWave
MIMO channels. Moreover, many other CS-based algorithms
are explored. Inspired by previous work [14], the augmented
Lagrangian function of a given CS-based channel model is
proposed, which splits the variables into several blocks and
can be optimized alternatively. With the introduced auxiliary
variable U, we rewritten the channel estimation optimization
problem (12) as

1
wmin [[Y — @H|[% + Aag, (Hios)

+ Aogy(Hnros) + g”H - Ul% (13)

s.t. U= Urps+ Unros,

where p is the penalty parameter and g,(-), A, and A, denote
regularization parameters, g, (-) are the regularization function
derived from the prior knowledge, such as l,-norm (0 < p <
2).

ADMM has proven to be an excellent variable splitting
algorithm to address the optimization of ill-posed inversion
problem (13) with convergence guarantee. But the iterative
processes to obtain A\, and )\, is with highly computational
complexity, making it inappropriate to deal with the indoor
scenarios. In order to overcome this difficulty, we developed a
unfolded architecture of the ADMM-based iterative procedure
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Fig. 2: The data flow graph for the ADMM algorithm
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Fig. 3: Overview of the offset learning based indoor channel estimation approach.

to form the framework of the deep learning network. As shown
in Fig. 2, it can be observed that each nodes of the graph
corresponding to different operations in ADMM, and directed
edges corresponding to the data flows between operations. it
follows that the k-th stage of the data flow graph corresponds
to the k-th iteration of ADMM algorithm.

With the guidance of ADMM framework, a linear offset
estimation module to ADMM for channel offset estimation
processing can be designed. As a result, the solution to the
problem in (13) can be written as follows:

1 2
HOD = argmin J ||V — @H} + £ HH —H® ‘

I

3 1 2
Hggsl) = argmin S HH<H1> — Hpos — Ff(lk) H + X8, (Hros),
Hios 2 F

1 2
Hz(vkLZ}v) = arg min o HH<k+l) — Hyios — ng) HF + Avgy (Hnros),

Hyros

HE S U T 6 (D D)

k1 k X k1
F¢(1+ ) ZF,(l)'i‘Qa (H()_Hgos >)v

F{D = F 4 o0 (HY - HLY)
(14

where F, and F} are dual variables (the Lagrange multipliers)
adding the constraints of (13) to the cost function, 7 is the
offset descriptor controlled by a parameter V (Details are
described in Appendix A), Hgk) is the k-th iteration of the
offset estimation result, ® is a Kronecker product operation. It
should be noticed that typically the optimization problem (14)
needs to run dozens of iterations to achieve a satisfactory es-
timation accuracy. Furthermore, it is challenging to determine
the shrinkage operator for the general regularization functions
8,(+) and g, (). To alleviate these difficulties, we will design
an ADMM-based deep learning framework to discriminatingly

learn all the above transforms, offset descriptor, regularization
functions and shrinkage operators. Theoretically, the chan-
nel estimation accuracy can be enhanced by employing the
OLNN-net, so as to optimize the parameters in OLNN-net.

As shown in Fig. 3, there are four main modules in
our proposed deep learning framework: a sparsity-promoting
estimation module, dual variables module, an offset estimation
module and a regularization module. The descriptor 7 in offset
estimation module actually works as a special filter, which
filters out undesired feature of the residual channel and keeps
the desired channel. Finally, the estimated channel will possess
the expected feature of the indoor scattering channel. To well-
described and analyze this framework, the k-th stage of the
proposed OLNN is provided as an example to depict four types
of modules as follows.

a) United Layer (U"Y): The inputs of this layer are
U1 H™ and Cé"’k). The corresponding output result is
expressed as

U(nk) — ‘ug’%k) U(n,kfl) + Mg”»k)H(n) _ Cgl»k)’ (15)
where the initial value of U™V is H™.

b) Convolution Layer (C g"’k) ): The input of this layer is U ()
and corresponding the output result can be given by

Y = w0 g g pn) (16)

c¢) Nonlinear Transform Layer (S(”’k) ) Cg"’k) is used as the

input of this layer, and the corresponding output result can be
given by

NC
SR = Spy <C§”’k’; {pi, g\" }i_1> : (17)



where a piecewise linear function Spp(-) is determined by a
Nc
fixed point set {pi, ql(-"‘k)} .
i=1
d) Convolution Layer (Cé"’k) ) By calculating (17), the cor-
responding result S0 can be used as the input of this layer,
and the output of this layer is expressed as

Cé"’k) _ wgn,k) NGO bé”’k). (18)

1) Regularization Module (Z](fL)OS): Since the signal power
of the NLOS links are generally weaker than LOS link, the
deconvolution module is used to learn the parameters by
exploiting the learnable Wiener Filtering layer [15]. In case of
multiple regularization kernels, we formulate the NLOS links
objective function as:

k 1 K
HI(VLJrols) = argmin o HHU(H) — Hypos — Fl(, )HF + )\ngHNLOSHgG
e

Hyros

19)

where G denotes the multiple regularization kernel that plays
the role of multiple regularizer filters.

2) Offset Estimation Module (R™): The inputs of this
module have two sets U™, H" | and the corresponding output
result is given by

H = U+ T & (B — (Hygs + Hyjo)) - 20)

where 7 denotes offset operator at the n-th of stage.

3) Dual Variables Operation Module (F (m) ): This module
aims to update the variables F, and F;. The outputs of this
layer are

FD = F® o, (H(k) - HLOS)
+ob (H ® — UNLOS)

IV. SIMULATION RESULTS

k+1 k

In this section, we take Monte Carlo simulations on several
key indicators with the IRS-assisted deep channel estimator
under the indoor communication scenario. The performance
will be provided after the description of OLNN-based network
framework simulation parameters. Then, the IRS-assisted deep
channel estimator will be comprehensively explored.

A. Simulation Prerequisites

As in a typical IRS-assisted indoor communication scenario,
the AP is equipped with Ny, = 36 antennas and the IRS is
equipped with 36 reflecting elements. There are two operating
frequencies, that is 28 and 73 GHz. They are adapted to
verify the feasibility and validity of the proposed OLNN. At
the same time, there are averaging 20000 independent Monte
Carlo realizations for each simulation to obtain the simulation
result. To adequately collect the training samples, different
direction of unit signals are generated from the transmitter to
the corresponding received signals. Besides,for each signal to
noise ratio (SNR) level, the dataset involved 150000 examples
for training and 20000 samples for validation. Following the
rules in [9], the IRS element gain G.(0) is calculated from

——OoMmP
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0.2r
@ Ll L L
w
(]
=
=4
011
0 5‘3 1‘0 1‘5 26 25
SNR (dB)
Fig. 4: (a) NMSE performance of LS, OMP and OLNN
estimators.

(0) = 4mA.(0)/\?, where the physical area of an IRS
element is given by A.(0) = (A/2)%.

In the first simulation, the performance of proposed OLNN
estimator is evaluated for two channel models, namely the LS
estimator in [16] and OMP [17]. Fig. 4 depicts the impact of
the SNR to NMSE of all considered estimation techniques in
the IRS-assisted indoor system. We investigate the NMSE of
the proposed OLNN scheme against the SNR levels, where the
training sequences L = 120. From Fig. 4, it is also evident that
the proposed OLNN generally achieves better performance
than the OMP and LS channel estimators. In particular, the
proposed OLNN scheme substantially improves the estimation
performance in terms of the NMSE value compared with the
LS, which benefits from the offset learning-based module that
can learn the channel error in indoor scenarios. We can con-
clude that the proposed OLNN scheme is an efficient channel
estimation approach, compared with the conventional LS or
OMP techniques. This numerical results further indicate that
the proposed OLNN is a promising technology for ensuring
the reliability of the IRS-assisted indoor system.

To show the effect of number of clusters on the IRS-assist
channel estimation, we also conduct the achievable rates of
different schemes versus the number of channel clusters in
Fig. 5. It is observed that there exists a tradeoff between the
the precision of IRS-assist channel estimation and training
overhead. This is because a small number of clusters M is
not sufficiently accurate for achieving high gain of IRS-based
channel, while too many clusters results in computationally
expensive in channel estimation process. Moreover, it is ob-
served that the proposed channel estimator with the operating
frequencies at 73Hz are slightly better than the 28Hz, at the
same number of clusters. It is worth noting that the proposed
scheme with OLNN-based framework can effectively escape
computing both system memory and time cost.

Finally, we conduct the NMSE performance of the chan-
nel estimation in different number of the transmit antennas
N;. According to Fig. 6, the NMSE values of the channel
estimation are reducing with the increasing number of ploits,
and it becomes stable gradually until the number of pilots are
sufficiently large. This indicates that the channel estimation
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Fig. 5: (a) NMSE performance against the number of
clusters at 73 GHz; (b) NMSE performance against the
number of clusters M at 28 GHz.

can be improved when introducing longer training sequences.
In addition, one can observe significant improvement of the
proposed OLNN by increasing the number of transmit anten-
nas V;.

V. CONCLUSION

In this paper, an OL-based neural network is proposed to
estimate CSI of an IRS-assisted mmWave MIMO system.
The OL-based neural network is integrated into the proposed
network framework to tackle the indoor environment. The
proposed network architecture is derived from ADMM, which
unrolls the iterative procedures to a supervised model-driven
network. Theoretical and simulation analysis demonstrate that
in the constructed indoor 5G system, the proposed channel
estimator exhibits superior performance compared to LS and
OMP estimators without any prior knowledge of the IRS-
assisted channel and pilot contamination. With the same pilot
overhead, the proposed OLNN has an obviously improved
accuracy compared with existing algorithms.
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