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Abstract—As the demand for Network Function Virtualization
accelerates, service providers are expected to advance the way
they manage and orchestrate their network services to offer lower
latency services to their future users. Modern services require
complex data flows between Virtual Network Functions, placed
in separate network domains, risking an increase in latency that
compromises the offered latency constraints. This shift requires
high levels of automation to deal with the scale and load of
future networks. In this paper, we formulate the Service Function
Chaining (SFC) placement problem and then we tackle it by
introducing SCHEMA, a Distributed Reinforcement Learning
(RL) algorithm that performs complex SFC orchestration for low
latency services. We combine multiple RL agents with a Bidding
Mechanism to enable scalability on multi-domain networks.
Finally, we use a simulation model to evaluate SCHEMA, and we
demonstrate its ability to obtain a 60.54% reduction of average
service latency when compared to a centralised RL solution.

Index Terms—Zero-touch Orchestration, Network Func-
tion Virtualization, SFC Placement, Distributed Reinforcement
Learning.

I. INTRODUCTION

Wireless mobile networks are evolving at a pace faster
than ever before. As networks are expanding from 5G to
Beyond 5G and 6G architectures, supporting greater quality
communications at a faster rate, lower latency and higher
reliability at a much larger scale, the urgency of automated
network management and orchestration is emerging amongst
providers and the academia.

The introduction of Software-Defined Networking (SDN)
and Network Function Virtualization (NFV) propelled the
transition from static architectures to complex and easily
scalable networks with multiple domains. These technologies
allow multiple network services to share the same physical
infrastructure and enables new business models. In particu-
lar, the Network—as—a—Service business model is expected to
play a pivotal role in 5G mobile networks, allowing mobile
network operators to tap into new revenue streams. The ease
of deployment Mobile-Edge Computing servers in the field,
which allows parts of services to be processed at the edge
of the network [1], introduced new networks with multiple
domains that span across different geographical locations.
SDN and NFV, with the help of adaptive network service
orchestration, are two of the main technical enablers that will
allow operators to cope with the diverse range of service and

user requirements. This state will characterize future network
applications and services.

This new variety of services will be implemented using
network softwarization features that are enabled by technolo-
gies such as SDN and NFV. These new services will be
built as a series of interconnected Virtual Machines (VMs)
or Containers, that together perform a specific function, hence
called Virtual Network Functions (VNFs). These VNFs are
typically chained together with data flows, forming more
complex structures called Service Function Chains (SFCs).

For the deployment of SFCs on the physical infrastructure,
the VNFs must be placed in a corresponding network node.
However, the underlying physical network can have network
domains that are geographically distributed, which yields a
service that has a spatial distribution that can extend large
distances, even hundreds of kilometres apart. Under these
circumstances, the placement of VNFs in the network plays
a significant role in the latency, performance and quality of
the offered service. All of these will determine the Quality of
Experience (QoE) of the end-user.

It is well known that telecommunication applications are
extremely sensitive to performance indicators, especially la-
tency, which tends to be influenced by the VNF arrangement.
Multi-domain NFV ensures network service providers great
flexibility in service deployment and cost optimization. As
most carrier networks have Wide Area Networks (WANs) and
use multiple domains, many SFCs are deployed over the WAN
with VNFs located in different data centres. For reference,
the upcoming 5G mobile networks are envisioned to support
various services such as machine-type communications and
the Internet of Things. Smart management and orchestration
can be regarded as the most important service that can con-
siderably reduce response time, especially in networks with
multiple domains.

As the mobile networks are getting larger and the demand
for computing resources increases, the necessity of automated
service management and orchestration is necessary to offer
better services to the users. The autonomous placement of
SFCs is a key aspect of the Zero-touch network and Service
Management (ZSM) in 5G and beyond networking [2]. The
European Telecommunications Standards Institute (ETSI) has
work evolving around ZSM and self-management on large-



scale networks. Researchers from both academia and the
industry are researching solutions under ETSI. Several studies
have proposed a solution to this problem, some addressing it
through new network architecture designs, such as the ETSI
proposals, and some through an algorithmic way [3], as we
follow in this paper.

The main contribution of this paper is a ZSM scheme
with attention to the scalability of multi-domain networks
and the minimization of service latency. We model the com-
plex multi-domain SFC placement problem as a Distributed
Markov Decision Process (MDP) space and solve it with a
proposed Distributed Reinforcement Learning (RL) algorithm.
A bidding mechanism is proposed to enable scalability while
maintaining the MDP space definition locally in geographi-
cally distributed domains, making the problem tractable in a
parallel and asynchronous manner. The main contributions of
this paper can be summarized as follows:

« A novel, practical and elastic SCF orchestration scheme,
that is focused on scalability on multi-domain network
architectures.

o A scalable SCF orchestration algorithm that is able to
optimize for low latency, specifically targeted to Ultra-
Reliable Low-Latency Communication (URLLC) ser-
vices.

« We evaluate our proposed algorithm and compare it with
existing solutions of the literature. We analyze the per-
formance with focus on providing low-latency services.

The remainder of this paper is organized as follows. Sec-
tion II provides an extensive discussion of related works of
the literature. Section III offers an overview of the System
Model. Section IV presents in detail the solution that we have
developed. Section V showcases the experimental setup and
verifies the performance of the proposed approach through
simulations. Finally, Section VI provides a conclusion of this
work and our future intentions.

II. RELATED WORKS

Autonomous SFC management and orchestration will play
an integral role in 5G and beyond networks, as demand for
services increases in the future. For this reason, problems such
as SFC embedding, VNF placement and orchestration, was at
the epicentre of the focus of both academia and industry in
the past years.

Although a big fraction of the literature studies VNF
placement and Virtual Network Embedding, the majority of
these works consider solutions for a single domain approach
regarding the placement. In [4], the authors attempt to maxi-
mize the revenue by optimizing the placement of the VNFs, by
modelling and solving the problem with Integer Linear Pro-
gramming (ILP). Similarly, authors in [5] develop a heuristic
algorithm to optimize the network bandwidth consumption by
taking advantage of the SFC placement. On the other hand, it
is also possible to study the placement or embedding problem
using tabular and Deep RL. One example of this is found in [3]
in which the authors use Deep RL to perform the placement
of Virtual Network Function - Forwarding Graphs (VNF-FGs)

considering the constraints of the underlying infrastructure.
Although these works may provide a satisfying solution for
the scenario they study, they both ignore the large input space
of the SFC placement problem on a modern, multi-domain
network.

Single agent algorithms are unable provide efficient solu-
tions for realistic environments with enormous problem and
actions spaces due to the exponential growth of complexity in
one centralized computing point. Most recently, a few works
have tackled the multi-domain VNF embedding issue. Authors
in [6] formulate the multi-domain VNF-FG embedding as an
ILP problem and introduce a decentralized network utilization
optimization scheme. However, their approach presents some
limitations regarding the complexity of the algorithm as the
load of the network increases. In contrast, Zhang et al. in [7]
propose a cooperative multi-agent solution splits the network
into a graph where each domain is responsible only for the
internal placement of the VNFs, enabling this way scalability
and great performance enhancements.

Inspired by the advancements of RL, researchers started
adapting it into their solutions. Authors in [8] attempt to both
minimize the operation cost of NFV providers and maximize
the total throughput of requests with a Policy Gradient al-
gorithm approach that automatically deploy SFCs. Similarly,
authors in [9] propose the use of a Deep Deterministic Policy
Gradient algorithm for the secure deployment of VNF-FGs
in multi-domain networks. Although these approaches are
beneficial to the orchestration of the SFCs in multi-domain
networks, none of these directly tackle the latency of the
offered services.

We can safely conclude that there is a gap in the multi-
domain SFC placement for URLLC services in the literature
awaiting to be filled. In this work, we tackle it directly, since
most of the works studying this issue do not focus on minimiz-
ing the latency on multi-domain networks. To the best of our
knowledge, we are amongst the first to propose a distributed
RL-based approach for multi-domain SFC orchestration for
URLLC services in this regard.

III. SYSTEM MODEL

We consider a 5G network with multiple geographically
distributed clouds, called Domains. Each domain consists of
interconnected servers with computational resources that are
able to instantiate, terminate or migrate VNFs to any other
domain in the network. User terminals are connected to the
domain servers through a millimetre wave (mmWave) 5G Base
Station (BS) and request access to a service in the network.
The services are comprised of multiple VNFs, located in
different servers and domains, forming complex SFC chains
between VNFs to execute a user service request.

We split the underlying network into two types of graphs
with distinct levels to enable a divide et impera approach,
separating the problem of SFC placement into smaller sub-
tasks. The higher-level network graph is denoted as Substrate
Network Graph and is comprised of the network domains and



the intermediate links that connect them. The domain sub-
graphs containing user devices, servers, their interconnected
links and their gateway devices to the rest of the network are
indicated as Domain-Level Network Graphs.

A. Substrate Network Graph
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Figure 1. Substrate Network graph.

The Substrate Network Graph is defined as a non-directed
weighted graph composed of a set of vertexes and links. As
G's we define the substrate network graph that consists of two
sets, Vg and Eg:

o As Vg = {v1,v9,...,v,} we denote the vertexes and m

is the total number of vertexes.

e The Es = {e1,ea,...,ex} is the set of links, with k the
total number of links that interconnect the Vg vertexes or
domains.

The vertexes represent the computational domains of the
network, whereas the links denote the physical links that
interconnect them. The links that interconnect all compu-
tational domains in the network are defined with physical
limitations g = {delay, bandwidth}. We assume that all
computational domains have a capacity that can be defined
as ¢; = {cpu,ram, storage}, which limits the number of
VNFs that each domain can serve and is equal to the sum of
all domain server resources.

B. Domain-Level Network Graph

The distributed Domain-Level Network Graphs are defined
as non-directed weighted graphs, composed of a set of vertexes
and links once more. As GGp we define the substrate network
graph that consists of two sets, Vp and Ep:

e As Vp ={v1,v9,...,0,,} we denote the vertexes in the

network and m is the number of vertexes.

e The Ep = {e1,ea,...,ex} is the set of links, with k the

number of links.
The vertexes represent the servers that can host VNFs of
the SFCs of the local domains, whereas the links denote
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Figure 2. Distributed Domain-Level Network graphs.

the physical links that interconnect them. Similar to the

substrate network grapg, the links have physical limitations
{delay, bandwidth} and the servers have a limited

computational capacity e; = {cpu, ram, storage}.

C. Service Function Chains

The VNFs, denoted with f;, are considered as a cluster
of interconnected VMs. Therefore, every VNF has computing
requirements that need to be satisfied by the placement. The
SFCs are a set of VNFs, denoted as s;, where f; are the VNFs:
si ={f1, f2,-.., fn} We consider a flow of data between the
VNFs of the chain whenever a user is granted access to the
service that utilizes the SFC s;. The flow of data is modelled
as a directed graph: flows = {f; — f;,f; — fx}. The
objective of this work is to identify and perform dynamically
an optimized mapping of all SFCs in the network that offers
minimal service latency to the users.

D. Delay Modeling

The VNFs f; are considered as parts of the service that
need to be placed in a server v; in the network. Every VNF
fi can be described as a set of delays regarding the latency
simulation, as follows: fz = Dprocessing,i + Dtransmission,i-

The total service delay that we minimize with our solution
can be calculated as follows:

SLtotal

=> /i )
=0

where u is the number of users in the network.

IV. SOLVING THE SFC PLACEMENT PROBLEM WITH
DISTRIBUTED REINFORCEMENT LEARNING

This section formalizes both the SFC orchestration problem
and the proposed solution. We define the RL algorithm and
the Bidding Mechanism that we have designed to solve the
problem.



A. Problem Overview

The network topology consists of multiple domains that use
SDN and NFV to provide URLLC services to the connected
users. The local domains are connected through a WAN that
we model as a link. Users are connected to the local domains
through a 5G mmWave connection and each one requests a
URLLC service from the network. Each service is offered by
the network as an SFC with flows between multiple VNFs.
Some VNFs are shared amongst the SFCs and they require
vertical scaling depending on the number of requests. It is
apparent that, due to the limited resources of the domain
hardware and the number of hops between the servers, the
mapping of the SFCs directly affects the offered URLLC
service latency. If there are available resources on the network,
the network accepts the incoming service requests.

The proposed system responds dynamically to the traffic
load variation by initiating re-configurations in predetermined
time-steps, only when required, to avoid additional costs or
load to the network. Unlike works in similar literature where
there is only one centralized entity responsible for the SFC
mapping even for multiple domains, we employ a distributed
system of agent that can operate on their own. Instead of
utilizing a global network algorithm responsible for the or-
chestration of the SFC VNFs, we employ a local placement
algorithm for each domain to share the enormous problem state
space of the placement algorithm. The domains are performing
VNF orchestration and VNF clustering internally, without
affecting the rest of the SFC chain in the other domains. When
there is a need for VNF migration between the domains, an
Auction is taking place in which each local agent bids with
its Confidence metric to receive and place locally a VNF
from another local domain, as we will later explore in this
section. The agents are bidding in the VNF auction through
a confidence metric and only the highest bidder receives the
VNF to place and orchestrate it locally its the output states.

B. Definition of the Reinforcement Learning agents

We formalize the intra-domain VNF placement and or-
chestration problem as an MDP by representing the problem
environment through Actions, States and Rewards. In this
specific problem we define them as follows:

o As State we define the intra-domain computational re-
sources of the servers that are able to host the SFC VNFs
(the available CPU cores, GBs of RAM and storage), the
available bandwidths and latencies of the domain links.

e The Action of the local domain agents is the Confidence
metric which is a float number indicating the willingness
to receive the VNF of the SFC that is offered through the
auction.

e As Reward we define the optimization function of the
RL algorithm. The Reward is common between all local
domain agents to enable cooperation as stated in [10]. The
goal of SCHEMA is the dynamic orchestration of SFC
with a distributed algorithm while keeping the service
latency low and it is defined as follows:

reward = Z LN, 2

where n is the total number of VNFs, T,,in is the mini-
mum service throughput and SL,,,, is the maximum service
latency.

To build the local domain RL agents, we utilize a Deep
Q-Network (DQN) agent as defined by the work of Mnih et
al. in [11]. The agents interact with the network through the
Observations, Actions and Rewards of the network. The goal
of the agents is to select placements or Actions that maximize
the Reward and thus, minimizing the service latency. We use
a Deep Neural Network (DNN) to approximate the optimal
action-value function, also known as Q-value function:

Q*(s,a) = In;iXE[Tt FYer1 + 7V o4 St = 8,08 = a, 7]
3)

The Q-value function can be defined as the maximum sum
of all rewards r;, discounted by the parameter ~ at each time-
step t. The maximum sum of all rewards r; is achieved by
a behavioral policy m = P(als), after an Observation s and
taking an Action a.

To avoid instability during the training of the agents, we
employ the Experience Replay technique, which randomizes
the Observations and removes the correlation between them
during the early training phase to force the agent to embrace
exploration. We store the experiences e; = (s¢, at, ¢, S¢41) of
the agent at each time-step ¢ in the dataset D, = ey,..., ey,
that we later use to retrieve them. We apply Q-learning value
updates on mini-batches of experience (s,a,r,s9), U(D),
drawn uniformly at random from the dataset D; of stored
experiences to perform learning for the agent. The Q-learning
update during iteration ¢ utilizes the following loss function:

Lz(ez) = €(s,a,r,s") U(D)[(T + ’YH}IE}XQ(Slv a/; 9;)
7@(57 a; 01))2]7

where ~ denotes the discount factor that determines the
agent’s horizon, 6 the parameters of the Q-network during
iteration ¢ and 6; are the network parameters used to compute
the target value at iteration i.

“4)

C. Confidence Metric

Every local domain is served by a VM instance of the
aforementioned RL agent and is responsible for the internal
re-configuration, by selecting the host that the VNF that
will be migrated. In addition to the placement Action, a
Confidence metric can be extracted as a percentage of how
confident the agent is for the chosen placement decision. The
Confidence metric is obtained before applying the arguments
of the maxima, also known as argmax function, in the output
vector of the DNN, which is described with the following
equation:



argmax f(z) = {z|f(z) = f(y)vy € D}, (5)
xE

where f(z) is the set of inputs x from the DNN output D
that achieve the highest function value. The Confidence metric
is extracted from the set D as max (D), whereas f(z) denotes
the placement.

D. Bidding Mechanism

We propose a multi-domain, distributed and non-cooperative
scheme to enable scalability in the SFC placement problem
while keeping the benefits of using RL. Scaling the SFC
placement with RL from one to multiple domains without in-
creasing exponentially the complexity requires the introduction
of alternative techniques instead of just scaling the DNNs.

Bidding Mechanism

Domain 1 Domain 2 Domainm

Figure 3. Overview of the Bidding Mechanism.

We introduce the Bidding Mechanism, an entity that per-
forms an Auction of all SFC VNFs at every time-step in a
serialized manner. Each local domain agent place a bid with
its placement Confidence metric to receive a VNF of the given
SFC and only the highest bidder can receive it to perform
an internal placement, as the output of the agent denotes.
Domains have only knowledge of their own resources making
them autonomous to the intra-domain placement procedure.
Local domain agents do not communicate with each other to
determine the optimal solution, but rather use the global Re-
ward to introduce cooperation between the agents, as proposed
by Mao et al. in [10].

V. SIMULATION RESULTS & EVALUATION

In this section, we conduct a simulation study in various
traffic scenarios and multi-domain networks to evaluate the
performance of the proposed scheme.

A. Simulation Setup

The simulation of the virtualized network entities was
simulated with Python language using a custom OpenAl Gym
enviironment. The RL agents were built using TensorFlow [12]
and the high-level Keras API open-source library [13].

For the simulation results presented in the following sub-
section, we have performed multiple simulation scenarios
with groups of U = {100,500, 1000, 1500, 2000} users and
D = {3,5,7,9,11} domains. The inter-domain links were
assigned a random latency following a normal distribution
[ € [2,3] ms. The intra-domain network is composed of
servers with 32 Cores, RAM 128 GB, 1TB storage and
the intra-domain links are assigned a random latency value
between /" € [1,2] ms. Users are connected through a 5G
mmWave wireless link to a BS connected directly to a server
of the inter-domain network with a 2% to 10% loss. The SFC
VNFs have 1 to 2 CPU cores, 2 to 4 GB RAM and 1 to 80 GB
storage as computational resource requirement for placement.

B. Baselines

The baselines considered to evaluate SCHEMA are a DQN
based single agent solution and a random placement method.
The parameters of the DQN DNN were scaled appropriately
to match the size of the network of each scenario.

C. Performance Evaluation

In our simulations, we examine the performance of the pro-
posed algorithm by comparing both the average user service
latency and the average number of service rejections that occur
during every simulation scenario.
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Figure 4. (a) Average service latency of accepted services for 3 domains. (b)
Rejected services by the number of users for 3 domains.

As we can observe in Fig. 4, increasing the number of users
in the network also increases the average service latency due
to insufficient computing resources in servers within the local
domains. Specifically, in the case of 3 domains, our proposed
scheme in Fig. 4a was able to outperform both baseline
solutions by offering considerably lower service latency by



almost 60.54% in the case of 1000 users. Accordingly, in Fig.
4b SCHEMA rejected less user services compared to the DQN
by 54.25% in the case of 1500 users, demonstrating better
SFC placements for the same infrastructure. As the number of
users increases we can see reaching the limit of insufficient
resources, near the 1600 users.
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Figure 5. (a) Latency variation in 500 and 1000 user scenarios for 3 domains.
(b) Average service latency of 500 users for 3 domains.
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Figure 6. (a) VNF Occupancy index or the average hosted VNFs per total
VNFs of 100 simulation iterations for 500 users. (b) Migration operations of
simulation iterations and 50 SFCs with 125 VNFs.

Moreover, Fig. 5a outlines the service latency variation for
the cases of 500 and 1000 users. After training, SCHEMA was
able to conceive a better placement than the DQN, leading to
consistently lower service latency by almost 63.33% in the
case of 5 domains. It is evident that the DQN is heavily
affected by the number of the users comparing the height
difference in the boxes. With the help of Fig. 6a, we can
conclude that SCHEMA gravitated towards consolidating the
SFC VNFs in the same server to further reduce the number of
hops to the end user. In Fig. 6b we have further evidence that

due to the introduction of the Bidding Mechanism, the local
agent of the depicted Domain in 6a was keeping the same
placement to avoid inter-domain SFC re-configurations.

VI. CONCLUSION

In this paper, we have studied the elastic multi-domain SFC
placement problem. We introduced SCHEMA, a distributed
SCF orchestration scheme that utilizes the domains of the net-
work to perform VNF placements locally, without affecting the
rest of the chain. We have introduced the Bidding Mechanism
that the local domain agents utilize to acquire and host VNFs
internally, with their local resources. The distributed agents
learn how to cooperate through a common reward and perform
SFC placements in multiple domains while keeping the service
latency low for URLLC services. The results confirm superior
performance in multiple scenarios, maintaining the same levels
of efficiency in multiple numbers of domains as compared to
a single RL agent solution.
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