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Abstract—Recently, a permutation-based successive cancella-
tion (PSC) decoding framework for polar codes attaches much
attention. It decodes several permuted codewords with indepen-
dent successive cancellation (SC) decoders. Its latency thus can
be reduced to that of SC decoding. However, the PSC framework
is ineffective for permutations falling into the lower-triangular
affine (LTA) automorphism group, as they are invariant under SC
decoding. As such, a larger block lower-triangular affine (BLTA)
group that contains SC-variant permutations was discovered for
decreasing polar codes. But it was unknown whether BLTA
equals the complete automorphism group. In this paper, we prove
that BLTA equals the complete automorphisms of decreasing
polar codes that can be formulated as affine trasformations.

I. INTRODUCTION

Polar codes [1], invented by Arıkan, are a great break
through in coding theory. As code length N = 2n approaches
infinity, the synthesized channels become either noiseless or
pure-noise, and the fraction of the noiseless channels ap-
proaches channel capacity. Thanks to channel polarization,
efficient SC decoding algorithm can be implemented with a
complexity of O(NlogN). However, the performance of polar
codes under SC decoding is poor at short to moderate block
lengths.

To boost finited-length performance, a successive cancella-
tion list (SCL) decoding algorithm was proposed [2]. As list
size L increases, the performance of SCL decoding approaches
that of maximum-likehood (ML) decoding. Accordingly, code
construction is optimized for SCL decoding, e.g., CRC-aided
(CA) [3] and parity-check (PC) [4] [5] polar codes. But in
practice, a majority of SCL decoding complexity and latency
is induced by path management, i.e., sorting and pruing paths
according to path metric (PM). Recently, a PSC decoding
framework [6] [7] [8] propose to decode L permuted instances
of the received codeword, and recover the most likely one
in the end. In contrast to SCL decoding, these instances are
independently decoded and do not require path management.
Apparently, PSC decoding requires the permutations to be SC-
variant. That is, instance SC decoders output distinct decod-
ing results to achieve diversity gain. Current PSC decoders
include stage permutation list decoding [6] that exploits stage
permutations [9] and automorphism ensemble (AE) decoding
[7] [8] that exploits the rich permutations found in polar
automorphism groups. For a decreasing polar codes, there

may not be enough SC-variant automorphisms available. Stage
permutations can be included, although some of them do not
fall into automorphism group. In [10] [11], stage permutations
are used to reduce the decoding complexity for RM codes.
For polar codes, permutation decoding achieves similar per-
formance to SCL in some cases with belief propagation (BP)
[12] and SC [6] as instance decoders.

The study of polar automorphism is inspired by [13], where
Reed-Muller (RM) codes are represented by monomials. The
automorphism group of RM codes is shown to be affine
transformation group of order n, denoted by GA(n). In [14],
polar codes with partial order [15] are viewed as decreas-
ing monomial codes, whose automorphism group includes
the aforementioned LTA group. As an application, N

4 -cyclic
shift is proposed for implicit timing indication in Physical
Broadcasting Channel (PBCH) [16]. In [8], Geiselhart et al.
proposed an efficient algorithm to find permutations defined
in a larger-than-LTA group called BLTA. The BLTA group
is shown to be a subgroup of automorphism group and the
authors further conjecture that the BLTA group is equal to
polar automorphism group. Aiming at better PSC decoding
performance, automorphisms in the upper-triangular linear
(UTA) group are designed in [17]. A brief overview of the
related works is illustrated in Fig. 1:

Fig. 1. Related works on automorphism group of RM and Polar codes

In this paper, we prove that for decreasing codes, per-
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mutations in BLTA are the complete affine transformation
automorphisms, a conjecture that is a bit more constrained
than that in [8]. This paper is organized as follows. In section
II, we review the background of polar code automorphism
groups. In section III we provide the proof. Finally we draw
conclusions in section IV.

II. BACKGROUND

A. Polar Codes as Monomial Codes

Given a B-DMC W : {0, 1} → Y , the channel transition
probabilities are defined as W (y|x), where y ∈ Y, x ∈ {0, 1}.
W is said to be symmetric if there is a permutation π, such
that ∀ y ∈ Y , W (y|1) =W (π(y)|0) and π2 = id.

Then the symmetric capacity and the Bhattacharyya param-
eter of W are defined as

I(W ) ,
∑
y∈Y

∑
x∈X

1

2
W (y | x) log W (y | x)

1
2W (y | 0) + 1

2W (y | 1)

and

Z(W ) ,
∑
y∈Y

√
W (y | 0)W (y | 1)

Let F =

[
1 0
1 1

]
, N = 2n, and HN = F⊗n. Starting

from N = 2n independent channels W , we obtain N po-
larized channels W (i)

N , after channel combining and splitting
operations [1], where

WN

(
yN1 |uN1

)
,WN

(
yN1 |uN1 HN

)
W

(i)
N

(
yN1 , u

i−1
1 | ui

)
,

∑
uN
i+1∈XN−i

1

2N−1
WN

(
yN1 | uN1

)
Polar codes can be constructed by selecting the indices

of K information sub-channels, denoted by the information
set A = {I1, I2, . . . , IK}. The optimal sub-channel selection
criterion for SC decoding is reliability, i.e., selecting the K
most reliable sub-channel as information set. Density evolution
(DE) algorithm [18], Gaussian approximation (GA) algorithm
[19] and the channel-independent PW construction method
[20] are efficient methods to find reliable sub-channels.

In particular, polar codes can be expressed as monomial
codes [14]. From this point of view, each synthetic channel
can be represented by a monomial with n binary variable {xi},
0 ≤ i ≤ n− 1, and the monomial set can be denoted by

Mn
def
= {xg00 x

g1
1 . . . x

gn−1

n−1 |(g0, g1, . . . , gn−1) ∈ Fn2}

For instance, f = xi1xi2 . . . xis . The degree of f is s, denoted
by deg(f). Each row of the HN can be expressed as a
monomial, and thus we can use a subset of Mn to denote
the polar code. For convenience, we denote the information
set by M , and the polar code spanned by M as C(M).

B. Decreasing Monomial Codes

It was presented in [14] and [15] that the reliablity of
synthetic channels follows a partial order “�”. If f, g ∈Mn,
g � f means g is universally more reliable than f . For
monomials of the same degree, partial order is defined as

xi1 . . . xir � xj1 . . . xjr ⇐⇒ ik ≤ jk, 1 ≤ k ≤ r

and for monomials of different degree

g � f ⇐⇒ ∃f∗ | f, deg(f∗) = deg(g), and g � f∗

.
A decreasing monomial code C(M) is a monomial code

satisfying partial order. i.e.

∀f ∈M and g ∈Mn, if g � f ⇒ g ∈M

In practice, many polar codes can be regarded as decreasing
monomial codes, i.e., we can find the “largest" monomials
Mmin as generators [8], and the information set M can be
defined as:

M =
⋃

f∈Mmin

{g ∈Mn | g � f}

C. Automorphisms of Decreasing Monomial codes

The automorphism group Aut(M) of C(M) is defined as
the set of permutations π ∈ SN , where N is the code length
of C(M), π ∈ Aut(M) if and only if

π(c) ∈ C(M), ∀ c ∈ C(M)

where
π(c)i = cπ(i), 0 ≤ i ≤ N − 1

It’s well known that the automorphism group of Reed-
Muller codes of length N = 2n is given by the affine
transformation group GA(n) [13], that is

X
(A,b)∈GA(n)−→ Y = AX + b (1)

with X,Y ∈ Fn2 and A an n × n binary invertible matrix
plus a binary column vector b of length n. In [14], it is
shown that the automorphism group of a decreasing monomial
code contains at least LTA(n), where A is a lower triangular
matrix. Then, [8] prove that BLTA is a larger automorphism
subgroup containing the LTA. The BLTA is in the form of (1),
where A is shown in Fig. 2: Di,i in the diagonal are invertible
binary random matrixs of size si × si and Di,j 6=i are binary
random matrices.

As indicated in [17], not all automorphisms of decreasing
monomial codes can be represented by affine transformations.
Up to now, we do not have a unified framework to ana-
lyze the automorphisms which can not be viewed as affine
transformations. In the paper, we mainly focus on the affine
transformation automorphisms of decreasing polar codes.
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Fig. 2. The block lower triangular matrix A of the affine transformation [8]

D. Permutation-based SC Decoding
The PSC decoding framework [6] [7] [8] is shown in Fig. 3.

L different permutations are applied to the received vector y.
Each is decoded by an SC-based decoder to obtain a permuted
codeword x′i, which is deinterleaverd to xi. Finally, the most
likely candidate codeword is selected as the decoding output.

The permutations used in PSC decoding need to be carefully
selected. It is proved in [7] that permutations from LTA are
SC-invariant, i.e. SC(π(Lch)) = π(SC(Lch)). This renders
PSC decoding useless because all SC decoder instances out-
put the same codeword. In order to improve PSC decoding
performance, we need to find more SC-variant permutations.
They can be obtained either by permuting the stages of factors
graph [6] [9], or by exploring a larger automorphism group
[7] [8] [17].

Fig. 3. The PSC decoding framework [6] [7] [8]

III. ANALYSIS ON AUTOMORPHISMS OF DECREASING
MONOMIAL CODES

In this section, we prove that for decreasing codes, all the
automorphisms that can be expressed as affine transformations
are equal to BLTA.

A. Notations and Definitions
Let [i, j] , [i, i + 1, . . . , j]. Let Aut(M) be the automor-

phism group of C(M). BLTA(s, n) is the same as defined
in [8].

We define the affine automorphism group to be the sub-
group of Aut(M), which includes all the automorphisms that
can be expressed as affine transformations. And the affine
automorphism group of monomial codes M is abbreviated as
A-Aut(M).

Let S{i1,...,ik} denote the permutation group of the set
{i1, . . . , ik}, in particular, Sn is the permutation group of the
set [0, n − 1]. A permutation π ∈ Sn can be expressed as
(Aπ,0), where Aπ is a n× n permutation matrix.

If (A,0) ∈ A-Aut(M), we abbreviate it to A ∈
A-Aut(M). When A = Aπ , we further abbreviate it to
π ∈ A-Aut(M).

For a n× n matrix A, let A{i1,...,is},{j1,...,jt} be the s× t
corresponding submatrix of A. Where i1, . . . , is are distinct
integers and j1, . . . , jt are distinct integers as well.

B. Analysis on Automorphisms

In [8], the author proved that BLTA(s, n) ⊆ Aut(M),
and further conjectured that the equality holds. That is, BLTA
group is equal to polar automorphism group. However, the
conjecture seems a bit too aggressive as shown in [17], where
numerical experiments found some permutations in Aut(M)
are outside BLTA. Therefore, BLTA(s, n) 6= Aut(M).

However, the conjecture would be accurate if we focus on
affine automorphisms. In this paper, we prove the following
conjecture for all decreasing monomial codes, in which de-
creasing polar codes and RM codes are special cases.

Conjecture.

BLTA(s, n) = A-Aut(M)

According to [8], we only need to prove that if (A, b) ∈ A-
Aut(M) and ai,j = 1, i < j, then (i, j) ∈ A-Aut(M). It
amounts to proving the following Theorem.

Theorem 1. Let C(M) be a decreasing monomial code
in n variables with information set M . If ∃ (A, b) ∈
A-Aut(M), ai,j = 1, i < j, then

π = (i, j) ∈ A-Aut(M)

according to [8],

BLTA(s, n) = A-Aut(M)

In order to prove Theorem 1, we only need to prove the
following Theorem.

Theorem 2. Let C(M) be a decreasing monomial code
in n variables with information set M . If ∃ A ∈
A-Aut(M), ai,i+1 = 1, then

π = (i, i+ 1) ∈ A-Aut(M)

Proof. Theorem 2 ⇒ Theorem 1
If ∃ (A, b) ∈ A-Aut(M), ai,j = 1, i < j, then we can

prove that A ∈ A-Aut(M).
Because C(M) is a decreasing monomial code, (In, b) ∈

LTA(n) ⊆ A-Aut(M), where In is the identity matrix



of order n. By group’s closure property, we have (In, b) ◦
(A, b) = (A,0) ∈ A-Aut(M).

If ∃ ak,k+1 = 0, i ≤ k ≤ j − 1, because L1AL2 ∈
A-Aut(M), where L1, L2 are invertible lower triangular
matrices. That means we can add the latter columns of A to
the preceding columns, or add the top rows of A to the bottom
rows to get a new invertible matrix B, and B ∈ A-Aut(M).
If ai,k+1 = 1, add the i-th row of A to the k-th row, and
if ai,k+1 = 0, add the j-th column of A to the (k + 1)-th
column, then add the i-th row of A to the k-th row. As a
result, we get a new invertible matrix B ∈ A-Aut(M), where
bk,k+1 = 1,∀ i ≤ k < j.

Accoding to Theorem 2, (i, i + 1), . . . , (j − 1, j) ∈
A-Aut(M), so

(j − 1, j) ◦ · · · ◦ (i, i+ 1) ∈ A-Aut(M)

By [8], we conclude that

π = (i, j) ∈ A-Aut(M)

To prove Theorem 2, we need the following lemmas

Lemma 1. Denote an affine transformation by

xn1
. . . xnr

A−→ yn1
. . . ynr

, ym =
n−1∑
i=0

am,ixi. Then ∀
0 ≤ j1, . . . , jr ≤ n− 1, where j1, . . . , jr are distinct integers,
the coefficient of xj1 . . . xjr is non-zero in the expansion of
yn1

. . . ynr
iff

det(A{n1,...,nr},{j1,...,jr}) 6= 0

Proof.

yn1
. . . ynr

=

n−1∑
m1=0

· · ·
n−1∑
mr=0

an1,m1
. . . anr,mr

xm1
. . . xmr

=
∑

σ∈S{n1,...,nr}

an1,σ(j1) . . . anr,σ(jr)xj1 . . . xjr +R

=
∑

σ∈S{n1,...,nr}

(−1)σan1,σ(j1) . . . anr,σ(jr)xj1 . . . xjr +R

= det(A{n1,...,nr},{j1,...,jr})xj1 . . . xjr +R

The third equality is due to −1 = 1 (mod 2), and R contains
all the terms except xj1 . . . xjr .

Lemma 2. Let D be a P × Q matrix, rank(D) = t, if
det(D{p1,...,pr},{q1,...,qr}) 6= 0, and r < t, then there exists a
submatrix D{p1,...,pr,pr+1,...,pt},{q1,...,qr,qr+1,...,qt} containing
D{p1,...,pr},{q1,...,qr}, and

rank(D{p1,...,pr,pr+1,...,pt},{q1,...,qr,qr+1,...,qt}) = t

Proof. Because

rank
(
D{p1,...,pr},{[0,Q−1]}

)
= r, rank (D) = t

We can extend {p1, . . . , pr} to {p1, . . . , pr, pr+1, . . . , pt},
such that rank

(
D{p1,...,pr,pr+1,...,pt},{[0,Q−1]}

)
= t.

For the same reason, we can extend {q1, . . . , qr} to
{q1, . . . , qr, qr+1, . . . , qt}, such that

rank
(
D{p1,...,pr,pr+1,...,pt},{q1,...,qr,qr+1,...,qt}

)
= t

Lemma 3. Let {a1, . . . ,am} be linearly independent column
vectors, if {a1, . . . ,am−1,an} are linearly dependent, then
{a1, . . . ,am−1,an + am} are linearly independent.

Proof. Because {a1, . . . ,am−1,an} are linearly dependent,
and {a1, . . . ,am−1} are linearly independent, we have

an =

m−1∑
k=1

ckak, ck ∈ {0, 1}

If

an + am =

m−1∑
k=1

c′kak, c
′
k ∈ {0, 1}

then

am =

m−1∑
k=1

(c′k − ck)ak

This contradicts that {a1, . . . ,am} are linearly independent.

Proof of Theorem 2. we need to prove that
∀ xi1 . . . xir+1

∈M , then yi1 . . . yir+1
∈M , where

yj =


xi+1 j = i

xi j = i+ 1

xj otherwise

and i1 < i2 · · · < ir+1.
We take a divide-and-conquer approach. If i, i + 1 /∈
{i1, . . . , ir+1} or i, i + 1 ∈ {i1, . . . , ir+1}, the proof is
straightforward as yi1 . . . yir+1

= xi1 . . . xir+1
∈M .

If i /∈ {i1, . . . , ir+1} and i + 1 ∈ {i1, . . . , ir+1}, the proof
can be obtained by the "decreasing" property. Assuming im =
i+ 1, 1 ≤ m ≤ r + 1, then

yi1 . . . yir+1

= xi1 . . . xim−1
xixim+1

. . . xir+1

� xi1 . . . xim−1
xi+1xim+1

. . . xir+1

= xi1 . . . xir+1

Because C(M) is a decreasing monomial code, then
yi1 . . . yir+1 ∈M .

What remains to be proved is the most tricky case where
i ∈ {i1, . . . , ir+1} and i + 1 /∈ {i1, . . . , ir+1}. We further
divide it to the following three cases.

Case 1: i = ir+1

Consider the submatrix A{[0,i1],i},{[i1,n−1]}, because

rank
(
A{[0,i1],i},{[i1,n−1]}

)
+ rank

(
A{[0,i1],i},{[0,i1−1]}

)
≥ rank

(
A{[0,i1],i},{[0,n−1]}

)
= i1 + 2



and rank
(
A{[0,i1],i},{[0,i1−1]}

)
≤ i1, we obtain that

rank
(
A{[0,i1],i},{[i1,n−1]}

)
≥ 2

According to Lemma 2, ∃ 0 ≤ s1 ≤ i1, i1 ≤ t1 ≤ n − 1,
i 6= s1 and i + 1 6= t1, such that det

(
A{s1,i},{t1,i+1}

)
6= 0,

if det
(
A{s1,i},{i1,i+1}

)
6= 0, define A(1) = A, other-

wise, add the t1-th column of A to the i1-th column and
denote the new matrix by A(1), according to Lemma 3
det
(
A

(1)
{s1,i},{i1,i+1}

)
6= 0 and A(1) ∈ A-Aut(M). An

example is shown in Fig. 4.

Fig. 4. Operations on the BLTA matrix A for case 1

Suppose we have A(k) ∈ A-Aut(M), 1 ≤ k < r, and
det
(
A

(k)
{s1,...,sk,i},{i1,...,ik,i+1}

)
6= 0, sm ≤ im, 1 ≤ m ≤ k.

Because

rank
(
A

(k)
{[0,ik+1],i},{i1,...,ik,[ik+1,n−1]}

)
≥ ik+1 + 2− (ik+1 − k) = k + 2

According to Lemma 2, ∃ 0 ≤ sk+1 ≤ ik+1, ik+1 ≤
tk+1 ≤ n − 1, and s1, . . . , sk+1, i is a set of distinct indices,
and i1, . . . , ik, tk+1, i + 1 is another set of distinct indices,
such that det

(
A

(k)
{s1,...,sk+1,i},{i1,...,ik,tk+1,i+1}

)
6= 0, again if

det
(
A

(k)
{s1,...,sk+1,i},{i1,...,ik,ik+1,i+1}

)
6= 0, define A(k+1) =

A(k), otherwise, add the tk+1-th column of A(k) to the ik+1-
th column and denote the new matrix by A(k+1).

Finally, we obtain A(k+1) ∈ A-Aut(M), and
det
(
A

(k+1)
{s1,...,sk+1,i},{i1,...,ik+1,i+1}

)
6= 0.

When k = r − 1, we have A(r) ∈ A-Aut(M), and
det
(
A

(r)
{s1,...,sr,i},{i1,...,ir,i+1}

)
6= 0. Because sm ≤ im,

1 ≤ m ≤ r,
xs1 . . . xsrxi � xi1 . . . xirxi

By definition of dereasing monomial codes, we know
xs1 . . . xsrxi ∈ A-Aut(M).

Denote an affine transformation by xs1 . . . xsrxi
A(r)

−→
ys1 . . . ysryi, because det

(
A

(r)
{s1,...,sr,i},{i1,...,ir,i+1}

)
6= 0 and

due to Lemma 1, we have

ys1 . . . ysryi = xi1 . . . xirxi+1 +R

Therefore, xi1 . . . xirxi+1 ∈M [17].
Case 2: i = i1

Because

rank
(
A{[0,i2]},{i+1,[i2,n−1]}

)
≥ i2 + 1− (i2 − 1) = 2

According to Lemma 2, as in Case 1, we can obtain a
matrix A(1), such that det

(
A

(1)
{i,s2},{i+1,i2}

)
6= 0 and A(1) ∈

A-Aut(M). An example is shown in Fig. 5.

Fig. 5. Operations on the BLTA matrix A for case 2

Suppose we have A(k) ∈ A-Aut(M), 1 ≤ k < r, and
det
(
A

(k)
{i,s2,...,sk+1},{i+1,i2,...,ik+1}

)
6= 0, sm ≤ im, 2 ≤ m ≤

k + 1. Because

rank
(
A

(k)
{[0,ik+2]},{i+1,i2,...,ik+1,[ik+2,n−1]}

)
≥ ik+2 + 1− (ik+2 − k − 1) = k + 2

Again as in Case 1, we can obtain a matrix A(k+1) ∈
A-Aut(M), and det

(
A

(k+1)
{i,s2,...,sk+2},{i+1,i2,...,ik+2}

)
6= 0.

When k = r − 1, we have A(r) ∈ A-Aut(M), and
det
(
A

(r)
{i,s2,...,sr+1},{i+1,i2,...,ir+1}

)
6= 0, sm ≤ im, 2 ≤ m ≤

r + 1. The rest of proof is the same as in Case 1.
Case 3: i = im, 1 < m < r + 1

According to Case 1, we can obtain a matrix A(m−1) ∈
A-Aut(M),

det
(
A

(m−1)
{s1,...,sm−1,i},{i1,...,im−1,i+1}

)
6= 0

Then according to Case 2, we can obtain a matrix A(r) ∈
A-Aut(M), such that

det
(
A

(r)
{s1,...,sm−1,i,sm+1...sr+1},{i1,...,im−1,i+1,im+1,...ir+1}

)
6= 0

The rest of proof is the same as in Case 1.



IV. CONCLUSION

In this paper, we prove the conjecture that BLTA is the
complete affine automorphism group for decreasing monomial
codes, including decreasing polar codes and RM codes. Our
proof guarantees that all the automorphisms defined by affine
transformation can be found for decreasing polar codes.
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