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Abstract—This paper establishes an upper bound on the
capacity of line-of-sight multiantenna channels over all possible
antenna arrangements and shows that uniform linear arrays
(ULAs) with an SNR-dependent rotation of transmitter or
receiver can closely approach such capacity—and in fact achieve
it at low and high SNR, and asymptotically in the numbers of
antennas. Then, as an alternative to mechanically rotating ULAs,
we propose to electronically select among multiple ULAs having
a radial disposition at either transmitter or receiver, and we
bound the shortfall from capacity as a function of the number
of such ULAs. With only three ULAs, properly angled, 96%
of the capacity can be achieved. Finally, we further introduce
reduced-complexity precoders and linear receivers that capitalize
on the structure of the channels spawned by these configurable
ULA architectures.

Index Terms—Line-of-sight transmission, MIMO, multi-
antenna channels, reconfigurable arrays, mmWave frequencies,
terahertz frequencies

I. INTRODUCTION

An unrelenting trend in the evolution of wireless systems
is the move to ever higher frequencies, so as to exploit ever
wider bandwidths. The current frontier is at about 90 GHz,
but researchers already have their eyes set on sub-terahertz
bands where new applications await, including kiosk infor-
mation transfers [2], wireless backhaul [3]–[5], and wireless
interconnections within datacenters [6]. Another consolidated
feature of wireless systems are multiple-input multiple-output
(MIMO) techniques, which bring about major improvements
in spectral and energy efficiency [7].

At microwave frequencies, MIMO enables spatial mul-
tiplexing by virtue of multipath propagation, whereby the
environment acts as a lens that delivers a high-rank channel
[8]. As we move up in frequency, into the mmWave realm
and then into sub-terahertz territory, the transmission range
necessarily shrinks and the propagation becomes mostly line-
of-sight (LOS). The multipath lensing effect dwindles. At the
same time, because the wavelength also shrinks dramatically,
it becomes progressively possible to span a high-rank channel
based only on the array apertures themselves [9], [10]. In
particular, parallel uniform linear arrays (ULAs) can give
rise to a channel with all-equal singular values, ideal for
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spatial multiplexing [11], provided that the antenna spacing is
d =

√
λD/N where λ is the wavelength, D the transmission

range, and N the number of antennas at each end. With
this so-called Rayleigh spacing within the ULAs, directional
signals can be launched and then resolved at the receiver
without cross-talk. And, at sub-terahertz frequencies, Rayleigh
spacing become feasible within reasonably compact arrays: at
300 GHz, for instance, a 16-antenna array with an LOS range
of D = 5 m would occupy 26.2 cm, and far less if arranged
as a two-dimensional uniform rectangular array (URA).

With spatial multiplexing as an objective, the antenna
spacings that yield a channel with all-equal singular values
have been determined, not only for ULAs as detailed above,
but for a variety of array geometries [8], [12]–[19]. Moreover,
the efficacy of the ensuing spatial multiplexing has been
demonstrated experimentally, for now with up to N = 4
antennas at mmWave frequencies [20]–[27]. Spatial multi-
plexing, however, is the desirable transmission strategy only at
high SNR. At low SNR, alternatively, maximizing the received
power is of essence [7, ch. 5], and that demands beamforming
over a channel whose maximum singular value is as large
as possible, rather than having all-equal singular values [28],
[29]. This suggests that the ULA antenna spacings, and more
generally the antenna arrangements, should depend on the
SNR so as to strike a balance between spatial multiplexing and
beamforming [30]. As a step in this direction, [28] proposes
switching, as a function of the SNR, among three ULAs with
distinct antenna spacings. Also recognizing that both spatial
multiplexing and beamforming are relevant ingredients, other
works such as [11], [31], [32] propound the use of arrays-of-
subarrays, which mix small and large antenna spacings and,
advantageously, require a reduced number of radio-frequency
chains [33].

The present paper shows how a single ULA can be recon-
figured, through simple rotation, to closely approach the LOS
capacity at any desired SNR. Precisely:
• An information-theoretic footing is established in the

form of an upper bound on the LOS capacity over all
possible antenna arrangements.

• The ULA antenna spacings that are optimum as a func-
tion of the SNR are determined, and it is shown that
ULAs with such spacings approach the LOS capacity
within a gap that vanishes as the number of antennas
increases, and also at low and high SNR.

• An architecture is proposed in which ULAs can be
configured without changing their antenna spacing, rather
through mere rotation of transmitter or receiver, or else
by electronically selecting among various ULAs in a
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radial disposition.
• For such configurable architectures, low-complexity pre-

coders and linear receivers are also put forth.
The paper is organized as follows. Section II introduces

the LOS channel model and its capacity. Then, Section III
specializes the channel model to parallel and non-parallel
ULAs. The upper bound on the LOS capacity is presented
in Section IV, and proved in an appendix. Section V sets the
stage for the configurable architectures presented in Section
VI. Finally, the low-complexity precoders and receivers are
laid down in Section VII and the paper concludes in Section
VIII, with further proofs relegated to subsequent appendices.

II. CHANNEL MODEL AND CAPACITY

Consider Nt transmit and Nr receive antennas connected
by an LOS channel. The far-field complex baseband channel
coefficient from the mth transmit to the nth receive antenna
is

hn,m =

√
GtGr λ

4πDn,m
e−j

2π
λ Dn,m n = 0, . . . , Nr − 1 (1)

m = 0, . . . , Nt − 1

where Dn,m is the distance from the mth transmit to the nth
receive antenna while Gt and Gr are the respective antenna
gains. Provided the antenna apertures are small relative to
Dn,m, the magnitude |hn,m| is approximately constant across
m and n while Dn,m ≈ D such that only the phase variations
need to be modeled. These are captured by the normalized
matrix

H =

 e−j
2π
λ d0,0 · · · e−j

2π
λ d0,Nt−1

...
. . .

...
e−j

2π
λ dNr−1,0 · · · e−j

2π
λ dNr−1,Nt−1

 , (2)

which, letting σn(·) denote the jth singular value of a matrix,
satisfies

Nmin−1∑
n=0

σ2
n(H) = NrNt. (3)

For the sake of compactness, we define Nmin = min(Nr, Nt)
and Nmax = max(Nr, Nt). We further define H as the set
of normalized matrices H generated by all possible antenna
placements that respect the condition of apertures much
smaller than D.

At the receiver,

SNR =
λ2GtGrPt

(4πD)2BN0
(4)

where Pt is the transmit power, B the bandwidth, and N0 the
noise spectral density. For a range D and specific parameters
(wavelength, antenna gains, power, and bandwidth), the SNR
becomes determined. The information-theoretic capacity of a
specific channel realization H is then [7]

C(H,SNR) = max∑N−1
n=0 pn=SNR
pn≥0

N−1∑
n=0

log2

(
1 + pn σ

2
n(H)

)
(5)

=

N−1∑
n=0

log2

(
1 +

[
1

γ
− 1

σ2
n(H)

]+

σ2
n(H)

)
(6)

with γ such that
∑N−1
n=0 pn = SNR and [z]+ = min(0, z).

Achieving C(H,SNR) requires a precoder aligned with the
right singular vectors of H and whose powers on those
directions are p0, . . . , pN−1, as well as a linear receiver
aligned with the left singular vectors of H .

The problem of establishing the LOS capacity broadens to
that of identifying the antenna placements that yield the LOS
channel whose individual capacity is largest, i.e.,

C(SNR) = max
H∈H

C(H,SNR). (7)

III. ARRAY STRUCTURES

This section presents compact expressions for the LOS
channels spawned by different ULA configurations.

A. Parallel ULAs

For parallel transmit and receive ULAs with respective
antenna spacings dt and dr, basic trigonometry leads to [18]

hn,m = e−j
2π
λ

√
D2+(ndr−mdt)2 , (8)

which, under our proviso that the antenna apertures are small
relative to D, satisfies

hn,m ≈ e−j2π
D
λ e−jπ

n2

λD d
2
r︸ ︷︷ ︸

RX phase shifts

ej2π
nm
λD drdt e−jπ

m2

λD d
2
t︸ ︷︷ ︸

TX phase shifts

. (9)

The constant phase in the leading term and the phase shifts
across the transmit and receive arrays do not affect the
singular values, and can be easily compensated for, hence
we concentrate on the remaining term, which gives the
Vandermonde Matrix

HULA =


ej2πη

0×0
Nmax · · · ej2πη

(Nt−1)×0
Nmax

...
. . .

...

ej2πη
0×(Nr−1)
Nmax · · · ej2πη

(Nt−1)×(Nr−1)
Nmax

 (10)

where we have introduced

η =
drdtNmax

λD
(11)

as a parameter that compactly describes the parallel ULA
configuration. Rayleigh antenna spacings correspond to η = 1,
whereby the matrix becomes column-orthogonal if Nr ≥ Nt

and row-orthogonal if Nr ≤ Nt. The singular values are then
all identical and the singular vectors are Fourier basis vectors,
making for very simple precoder and receiver computation.

B. Non-parallel ULAs

In order to determine in complete generality the relative
position of two non-parallel ULAs, three geometric param-
eters are required, for instance (see Fig. 1) the elevation
angles of the transmit and receive arrays, θt and θr, and the
relative azimuth angle between them, φr. Parameterized by
these angles, hn,m is given by (12) at the top of the next
page and, invoking again the premise that the apertures are
small relative to D, it satisfies

hn,m ≈ e−j2π
D
λ e
−jπ

[
2n
λ dr sinθr cosφr+

n2

λD d
2
r (1−sin2θr cos2φr)

]

· ej2π nmλD drdt cosθr cosθt e
−jπ

[
2m
λ dt sinθt+

m2

λD d
2
t

]
. (13)
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hn,m = exp

−j 2π

λ

√√√√√(D + ndr sin θr cosφr −mdt sin θt︸ ︷︷ ︸
z−axis

)2

+

(
ndr cos θr −mdt cos θt︸ ︷︷ ︸

x−axis

)2

+

(
ndr sin θr sinφr︸ ︷︷ ︸

y−axis

)2

(12)

(a) At the transmitter (respectively the receiver), the clear and shaded circles
indicate the location of mth transmit antenna (respectively the nth receive
antenna) and its projection onto the x axis.

(b) Projected view on the xz plane.

(c) Projected view on the yz plane.

Fig. 1. Non-parallel ULAs.

The fixed phase and the phase shifts affecting only either the
transmitter or the receiver are again immaterial to the singular
values, hence the relevant term is the phase

2π
nm

λD
drdt cos θr cos θt. (14)

The ensuing normalized channel matrix exhibits the same
singular values as HULA in (10), only with

η =
(dr cos θr)(dt cos θt)Nmax

λD
. (15)

Under this more general definition of η, then, any ULA-
induced channel can be represented by HULA in (10) as far as
the singular values are concerned. Besides, interestingly, the
relative azimuth orientations represented by φr play no role
in the singular values, and therefore in the capacity. This is
capitalized on later in the paper.

IV. CAPACITY UPPER BOUND

We commence by establishing an upper bound on the LOS
capacity over all possible antenna placements, a technical

result that, besides serving as a benchmark in the sequel,
has broad relevance. As detailed in Appendix A, such upper
bound corresponds to a channel having ρ ∈ [Nmin] identical
nonzero singular values and Nmin − ρ zero singular values
with ρ depending on the SNR via

ρ(SNR) =



1 SNR < ζ1

2 ζ1 ≤ SNR < ζ2

3 ζ2 ≤ SNR < ζ3
...
Nmin ζNmin−1 ≤ SNR

(16)

where ζn is a threshold equal to the unique positive solution
of

f

(
NrNt

n2
ζn

)
= f

(
NrNt

(n+ 1)2
ζn

)
(17)

given the function

f(x) =
1√
x

log2(1 + x). (18)

We then have that

C(SNR) ≤ ρ(SNR) log2

(
1 +

NrNt

ρ(SNR)2
SNR

)
(19)

where the right-hand side is the capacity of such channel with
ρ(SNR) identical nonzero singular values. From (3), these
nonzero singular values equal

√
NtNr/ρ(SNR).

By relaxing the integer ρ into a real-valued parameter ρ̃ ∈
R, a slightly looser upper bound can be obtained in explicit
form, precisely

C(SNR) ≤ ρ̃(SNR) log2

(
1 +

NrNt

ρ̃(SNR)2
SNR

)
(20)

where

ρ̃(SNR) =


1 SNR < c

NminNmax√
NminNmax

SNR
c

c
NminNmax

≤ SNR < Nminc
Nmax

Nmin
Nminc
Nmax

≤ SNR

(21)

with

c = −1− 2

W0(−2/e2)
≈ 3.92, (22)

given W0(·) as the principal branch of a Lambert W function.
Within the precision of this slightly relaxed bound, then, the
transition away from pure beamforming (ρ̃ = 1) takes place
when NminNmaxSNR, which is the effective SNR including
the beamforming gains, equals precisely c. Combining (20)
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Fig. 2. Spectral efficiencies of ULAs with η = 0, 1/
√
N , and 1, for Nt =

Nr = N = 256. Also shown is the capacity upper bound.
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Fig. 3. Spectral efficiencies of ULAs with η ∈ [0, 1] for Nr = Nt = 256.
Also shown is the capacity upper bound.

and (21), we can express the relaxed upper bound in the more
compact form

C(SNR) ≤


log2(1 +NrNt SNR) SNR < c

NtNr√
NtNr

SNR
c log2(1 + c) c

NtNr
≤ SNR < Nminc

Nmax

Nmin log2

(
Nmax

Nmin
SNR

)
Nminc
Nmax

≤ SNR.

(23)

V. OPTIMUM ANTENNA SPACINGS FOR PARALLEL ULAS

Parallel ULAs adopting three SNR-based configurations are
proposed in [28], namely η = 0 for low SNRs, η = 1/

√
N for

medium SNRs, and η = 1 for high SNRs. Shown in Fig. 2 are
the spectral efficiencies achieved by these configurations for
Nt = Nr = N = 256, computed via (6) and (10), alongside
the capacity upper bound. The approach is seen to be effective
at very low and at high SNR, less so at intermediate SNRs.
At SNR = −5 dB, for instance, the spectral efficiency reaches
only about 55% of the capacity.

By releasing η and allowing it to take any value within
[0, 1], the upper bound can be hugged much more closely
(see Fig. 3). This involves fine-tuning the antenna spacings
depending on the SNR, computing the singular-value decom-
position of HULA to obtain the precoding directions and the
receiver, and solving (6) for the transmit powers.

To interpret the effectiveness of ULAs with antenna spac-
ings adapted to the SNR, let us examine the (n,m)th entry
of H∗ULAHULA, namely[
H∗ULAHULA

]
n,m

=

Nr−1∑
`=0

e−j2πη
(n−m)`
Nmax (24)

=
sin
(
πη (n−m)Nr

Nmax

)
sin
(
πη n−mNmax

) e−jπη
(n−m)(Nr−1)

Nmax , (25)

and let us denote by λ0, . . . , λNmin−1 the Nmin largest eigen-
values of η

Nmax
H∗ULAHULA. For any ε > 0, as both Nt and

Nr grow large with some ratio Nt/Nr > 0, these eigenvalues
can be shown to satisfy [34], [35]

lim
Nmin→∞

∣∣{` | λ` < ε
}∣∣

Nmin
= 1− η (26)

and

lim
Nmin→∞

∣∣{` | 1− ε < λ` < 1 + ε
}∣∣

Nmin
= η (27)

where |{·}| indicates the cardinality of a set. These eigen-
values polarize (asymptotically in the numbers of antennas)
into the states 1 and 0, and therefore the singular values of
HULA polarize into

√
Nmax/η and 0. It follows from (3)

that (asymptotically) we have ηNmin singular values equal
to
√
Nmax/η and (1− η)Nmin singular values equal to 0. By

adjusting the antenna spacings such that η = ρ(SNR)/Nmin,
we asymptotically obtain a channel matrix featuring ρ(SNR)
identical nonzero singular values and Nmin − ρ zero singular
values. This is the precise disposition that yields the capacity
upper bound, with ρ(SNR) as in (16).

Making matters precise, it is shown in Appendix B that
the capacity of the channel HULA with η properly adjusted
converges pointwise to the LOS capacity, i.e.,

lim
Nmin→∞

maxη∈[0,1] C(HULA,SNR)

C(SNR)
= 1 (28)

at every SNR.
For finite numbers of antennas, the polarization of the

singular values is not complete and thus the LOS capacity
cannot be strictly attained by ULAs in general, but, as
illustrated in Fig. 3, it is approached very closely. Moreover,
there are specific regimes where ULAs can achieve the LOS
capacity regardless of the numbers of antennas, as seen next.
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A. Low-SNR Regime

As the SNR drops, ρ(SNR) shrinks and, for SNR ≤ ζ1 =
8/NrNt, we have that ρ(SNR) = 1. Then, ULAs with tightly
spaced antennas become capacity-achieving irrespective of the
values of Nt and Nr, as the channel they create indeed exhibits
a single nonzero singular value. Such low-SNR capacity
expands as

C(SNR) = log2(1 +NminNmax SNR) (29)

= NminNmax SNR log2 e+O(SNR2). (30)

In contrast, Rayleigh-spaced ULAs would feature ρ(SNR) =
Nmin and thus

C(HULA,SNR) = Nmin log2

(
1 +

Nmax

Nmin
SNR

)
(31)

= Nmax SNR log2 e+O(SNR2). (32)

With tight ULAs, an Nmin-fold improvement is obtained in
low-SNR capacity relative to Rayleigh-spaced ULAs designed
for high-SNR operation.

B. High-SNR Regime

For SNR ≥ ζNmin−1, the upper bound reduces to the
capacity of Rayleigh-spaced ULAs, which in this regime
become optimum irrespective of the values of Nt and Nr.
Such high-SNR capacity expands as

C(SNR) = Nmin log2

(
1 +

Nmax

Nmin
SNR

)
(33)

= Nmin log2 SNR +O(1). (34)

VI. RECONFIGURABLE ULAS

Adapting η to the SNR by means of adjusting the an-
tenna spacings in parallel ULAs is implementationally very
challenging because separate moving parts would be required
for each individual antenna. This justifies the proposition of
having a few arrays with distinct but fixed spacings, and
the possibility of switching among them, with a performance
shortfall that depends on the number of such arrays [28].

This section presents an alternative method to tune η as a
function of the SNR with a single fixed-spacing ULA at each
end of the link.

A. Adapting η via ULA Rotation

To operate with fixed antenna spacings, we seek to adapt
η by modifying the relative orientation of the ULAs as a
function of the SNR. This can be realized by rotating one of
the two ULAs, either transmitter or receiver, while keeping the
other one fixed. Since, as seen in Section III-B, the relative
azimuth angle is immaterial to the channel singular values,
we set it to φr = π/2 (which seems preferable from the
standpoint of the directivity of the individual antennas). For
starters, we further set θt = 0 and consider rotating only the
receiver ULA using θr. Then, (15) reduces to

η =
(dr cos θr) dtNmax

λD
(35)

and, by fixing the antenna spacings at the Rayleigh values,
further to

η = cos θr, (36)

which indeed can be controlled by merely varying θr.
Recalling (28), we can therefore infer that any two ULAs

can achieve capacity (asymptotically in the numbers of anten-
nas) by setting φr = π/2, θt = 0, dtdr = λD/Nmax, and

θr = arccos
ρ(SNR)

Nmin
. (37)

Since ρ(SNR) ∈ [1, Nmin], every SNR maps to a feasible θt.
If the transmit elevation angle is not set to θt = 0, but

rather to some arbitrary value, then (37) generalizes to

θr = arccos
ρ(SNR)

Nmin cos θt
. (38)

B. Radial ULAs with Electronic Selection

Since ρ(SNR) takes on integer values, namely 1, . . . , Nmin,
the angles required as per (37) to reconfigure a rotating
ULA for every possible SNR are discrete. This suggests that,
as an alternative to the SNR-based mechanical rotation of
the receiver, complete reconfigurability is also possible by
deploying at the receiver Nmin radial ULAs angled at

θr,n = arccos
n

Nmin
n = 1, . . . , Nmin. (39)

Selecting the adequately angled ULA as a function of the SNR
(see Fig. 4), we can match the performance of a rotating ULA.
The number of radio-frequency chains continues to be Nr,
but Nmin(Nr− 1) + 1 antennas are now required—the central
antenna is common to all the radially arranged ULAs—as
opposed to Nr in the case of a single rotating ULA. To
keep the number of additional antennas to a minimum, the
radial architecture should be deployed at the end of the link
(transmitter or receiver) with the smallest number of antennas.

Now, a natural next step, especially with a view to hav-
ing large arrays, is to reduce the number of radial ULAs
below Nmin. Suppose that the values of η are taken from
the geometric series 1, r, r2, . . . where the ratio r < 1 is
a design parameter that determines the trade-off between
number of ULAs and performance. To span the entire range
η ∈ [1/Nmin, 1], the number of ULAs required for a given r
is

k = 1 +

⌊
logNmin

log 1/r

⌋
(40)

where b·c rounds down to the closest integer. We know that,
for a given η, the channel exhibits (asymptotically) ηNmin

singular values equal to
√
Nmax/η for a spectral efficiency of

ηNmin log2

(
1 +

Nmax

η2Nmin
SNR

)
(41)

meaning that, with k radial ULAs, we can hope for a spectral
efficiency of

R(SNR) ≈ max
η∈{1,r,...,rk−1}

ηNmin log2

(
1 +

Nmax

η2Nmin
SNR

)
(42)
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Fig. 4. Reduced-complexity configurable architecture.

where the approximation sharpens with the numbers of anten-
nas and the maximization determines the best possible ULA
at each SNR. If we make η dependent on the SNR via

η =



rk−1 SNR ≤ Nmin

Nmax
cr2k−3

...
...

r2 Nmin

Nmax
c r5 < SNR ≤ Nmin

Nmax
c r3

r Nmin

Nmax
c r3 < SNR ≤ Nmin

Nmax
c r

1 Nmin

Nmax
c r < SNR

(43)

where, recall, c ≈ 3.92, then (see Appendix C) the achievable
spectral efficiency satisfies

R(SNR)

C(SNR)
≥ log(1 + c r)√

r log(1 + c)
(44)

at every SNR. As r approaches unity, the capacity is ap-
proached ever more closely, albeit at the expense of a larger
number of radial ULAs as stipulated by (40).

If, rather than SNR ≥ 0 strictly, we have that SNR ≥
SNRmin with SNRmin > 0, we can truncate (43) into

η =



rk−1 Nmin

Nmax
c r2k−1 < SNR ≤ Nmin

Nmax
c r2k−3

...
...

r2 Nmin

Nmax
c r5 < SNR ≤ Nmin

Nmax
c r3

r Nmin

Nmax
c r3 < SNR ≤ Nmin

Nmax
c r

1 Nmin

Nmax
c r < SNR

(45)

where k now satisfies
Nmin

Nmax
c r2k−1 < SNRmin ≤

Nmin

Nmax
c r2k−3, (46)

ensuring that the SNR range [SNRmin,∞) is covered. Equiv-
alently,

k =

⌊
log Nmin c

NmaxSNRmin

2 log 1/r
+

3

2

⌋
. (47)

This truncation markedly reduces the number of necessary
ULAs, eliminating those that would correspond to SNRs
below the operating range of interest. For instance, with k = 3
radial ULAs, Nt = Nr = N , and SNRmin = −10 dB, the
largest possible ratio r is, applying (47), r = 0.48. Plugging
this value into (44), we infer that at least 95.9% of the LOS
capacity can be achieved (for large N ) with only three ULAs
angled at θr,0 = 0, θr,1 = 61◦, and θr,2 = 77◦.

VII. REDUCED-COMPLEXITY ARCHITECTURE

For η = 1, meaning with Rayleigh antenna spacings at
the ULAs, the precoder and the receiver are straightforward
to compute as the channel adopts a Fourier structure. This
is the situation at high enough SNR, when Rayleigh antenna
spacings are optimum. More generally, though, η < 1; then,
obtaining the precoder and receiver requires subjecting the
channel matrix to a singular-value decomposition (SVD), with
a computational cost of O

(
N2

minNmax

)
. This is not a limitation

in applications where the precoder and receiver recomputation
is sporadic, but in more dynamic settings, especially with
large arrays, less complex alternatives might be welcome. In
this section, we present one such alternative that very closely
approaches the LOS capacity with a computational cost of
O(Nmax logNmax).

While, for the purpose of capacity calculations, only the
singular values of the channel were relevant henceforth, to
devise the precoder and the receiver the singular vectors
become equally relevant. Then, (10) no longer suffices to
represent nonparallel transmit and receive ULAs, but rather
we need to generalize HULA to have its (n,m)th entry be
given by (12). For this more general form of HULA, it is
shown in Appendix D that

F ∗D∗txH
∗
ULAHULADtxF ≈

Nmax

η
diag

(
1, . . . , 1︸ ︷︷ ︸
ηNmin

, 0, . . . , 0
)

(48)
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Fig. 5. Diagonal power of F ∗D∗
txH

∗
ULAHULADtxF normalized by its total

power for various number of antennas.

where Dtx is a diagonal matrix with entries

[Dtx]m,m = e
jπ

[
2m
λ dt sinθt+

m2

λD d
2
t

]
(49)

while F is a Fourier matrix. Furthermore, the approximation
in (48) tightens as the dimensionality grows large.

Asymptotically then, D∗txH
∗
ULAHULADtx is diagonalized

by a Fourier matrix. This is illustrated in Fig. 5, which
depicts the power concentrated on the ensuing diagonal entries
relative to the total power, i.e.,∑Nt−1

n=0 [F ∗D∗txH
∗
ULAHULADtxF ]2n,n

‖F ∗D∗txH
∗
ULAHULADtxF ‖2F

. (50)

Let us see how to take advantage of this behavior.
Inserting between the precoder and the antennas a bank of

phase shifts corresponding to the diagonal entries of Dtx, a
Fourier precoder F yields at the receiver

y = HULADtxFx + v. (51)

With straight maximum ratio combining (MRC) at the re-
ceiver, then,

(HULADtxF )∗y = F ∗D∗txH
∗
ULAHULADtxFx + ṽ (52)

where the noise at the output of the MRC is

ṽ = (HULADtxF )∗v (53)

∼ NC
(
0,F ∗D∗txH

∗
ULAHULADtxF

)
. (54)

From (48), this transmit-receive architecture (asymptotically)
decomposes the channel into ηNmin parallel subchannels, each
with power gain (Nmax/η)2 and noise variance Nmax/η. By
transmitting ηNmin equal-power signal streams over these sub-
channels and separately decoding them, the spectral efficiency
(asymptotically) equals (41).

Applying the receiver matrix (HULADtxF )∗ to the vector
y entails a complexity of O(NrNt) = O(NminNmax), already
markedly lower than the O(N2

minNmax) that an SVD necessi-
tates. A further reduction can be attained by rearranging the
receiver into

(HULADtxF )∗ = F ∗(DrxHULADtx)
∗Drx (55)

where Drx is a diagonal matrix with entries

[Drx]n,n = ej2π
D
λ e

jπ
[

2n
λ dr sinθr cosφr+

n2

λD d
2
r (1−sin2θr cos2φr)

]
.

(56)

The application of F ∗ and Drx to a vector require com-
plexities of O(Nt logNt) and O(Nr), respectively. In turn,
(DrxHULADtx)

∗ has entries

[(DrxHULADtx)
∗]n,m = e−j2πη

nm
Nmax (57)

and, from the relationship

e−j2πη
nm
Nmax = e−jπη

n2

Nmax ejπη
(n−m)2

Nmax e−jπη
m2

Nmax , (58)

it follows that (DrxHULADtx)
∗ is a Toeplitz matrix pre-

and post-multiplied by diagonal matrices. Therefore, the
complexity of applying (DrxHULADtx)

∗ to a vector is
O(Nmax logNmax) [36]. Altogether, with a precoding com-
plexity of O(Nt logNt) and a receiver complexity of
O(Nmax logNmax), the performance equals (asymptotically)
that of an SVD-based architecture.

Fig. 6 illustrates how the reduced-complexity architecture
consisting of a Fourier precoder and a bank of phase shifts
at the transmitter, and an MRC at the receiver, can very
tightly track the LOS capacity upper bound. Complementing
the figure, Table I compares the performance of the low-
complexity architecture against those of its SVD-based coun-
terpart and of parallel Rayleigh-spaced ULAs, for various
SNRs and numbers of antennas. For SNR = −10 dB and
Nr = Nt = 256, for instance, parallel ULAs attain only
37.5% of the capacity upper bound whereas, by applying a
rotation of θr = 80.8◦, that share increases to 99.5% (with
SVD-based precoder and receiver) or 96.4% (with the lower-
complexity architecture).

A. Comparison with Other Architectures

The presence of the Fourier precoder is very consequential
in the proposed reduced-complexity architecture. Without it,
an MRC receiver would perform poorly because, from (27),

‖H∗ULAHULA‖2F =

Nmin−1∑
n=0

λ2
n (59)

≈ ηNmin

(
Nmax

η

)2

(60)

=
NminN

2
max

η
(61)

while the power on the diagonal entries adds up to
Nmin−1∑
n=0

[H∗ULAHULA]2n,n = NminN
2
max (62)
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reduced-complexity architecture with Nr = Nt = 256. Also shown, in
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TABLE I
CONFIGURATION PARAMETERS AND SPECTRAL EFFICIENCY (AS A SHARE
OF THE LOS CAPACITY UPPER BOUND) WITH RAYLEIGH-SPACED ULAS

AND Nr = Nt = N .

SNR [dB] -20 -10 0 10 N
η 0.05 0.16 0.5 1.0 any
θr 87.1◦ 80.8◦ 59.7◦ 0◦ any

Parallel 12.4% 37.5% 86.1% 100% 256
Rotated (SVD) 98.6% 99.5% 99.8% 100% 256

Rotated (Fourier+MRC) 89.1% 96.4% 99.1% 100% 256
Parallel 12.5% 37.5% 86.1% 100% 32

Rotated/SVD 95.0% 97.1% 99.1% 100% 32
Rotated (Fourier+MRC) 37.5% 84.0% 95.2% 100% 32

regardless of η. Thus, the share of power on the diagonal
equals η ≤ 1, meaning that there is more power on the off-
diagonal entries (which represent interference) than on the
diagonal entries (which represent intended signals).

VIII. CONCLUSION

This paper has shown that, through an SNR-dependent
rotation, ULAs with Rayleigh antenna spacings can be con-
figured to closely approach the LOS channel capacity. Such
capacity is actually attained asymptotically in the numbers
of antennas, and at low/high SNR. The same performance
can be achieved, avoiding the need for mechanical rotations,
by selecting among Nmin radially disposed ULAs. As the
number of radial ULAs shrinks, the performance declines very
gradually such that, with only a few properly oriented ULAs,
the vast majority of the capacity is still within reach.

In comparison with structures consisting of multiple ULAs
featuring distinct antenna spacings, the proposed architecture
is more compact and better performing. A structure with three
distinct-spacing ULAs, for instance, performs very well at

some SNRs, but drops down to only 55% of capacity at others.
In contrast, the proposed architecture ensures at least 96% of
the LOS capacity at every SNR.

Potential follow-up research directions include the exten-
sion to a variety of antenna configurations such as uniform
rectangular arrays (URAs), which offer superior form factors.
It is also interesting to optimize antenna arrangements un-
der uniform circular arrays (UCAs) structure, which has a
deep connection with orbital angular momentum multiplexing
techniques using multiantenna systems [37], [38]. Another
worthwhile direction is the analysis of the robustness in
the face of residual multipath propagation, i.e., in channels
exhibiting Rice fading [7, sec. 3.4] rather than being purely
LOS.

APPENDIX A

A proof of (19) can be found in [1]. Here, we provide an
alternative proof that relies on the following intuitive result.

Lemma 1: Consider N real numbers x1, . . . , xN . If we
successively replace two of them with their average, it is
possible to make all of them to be equal in the limit. Precisely,
letting t be an iteration counter, there exists a sequence
satisfying(

x
(t)
1 , . . . , x

(t)
N

)
t→∞→

(∑N
i=1 xi
N

, . . . ,

∑N
i=1 xi
N

)
. (63)

Proof: Averaging the largest and smallest values does
the trick. Since the sum of N numbers is invariant under the
averaging operations, we can let x1 + · · ·+ xN = 0 without
loss of generality. Now, observe

(
x

(t)
1

)2
+ · · · +

(
x

(t)
N

)2
at

iteration t. After one more iteration, this sum decreases by(
maxx

(t)
i

)2
+
(
minx

(t)
i

)2
− 2

(
maxx

(t)
i + minx

(t)
i

2

)2

=

(
maxx

(t)
i −minx

(t)
i

)2
2

. (64)

From the zero sum constraint, maxx
(t)
i ≥ 0 ≥ minx

(t)
i , and

thus(
maxx

(t)
i −minx

(t)
i

)2
2

≥

(
max

∣∣x(t)
i

∣∣)2
2

(65)

≥

(
x

(t)
1

)2

+ · · ·+
(
x

(t)
N

)2
2N

. (66)

where we capitalized on the fact that the maximum is no
smaller than the average. Altogether,(
x

(t+1)
1

)2
+ · · ·+

(
x

(t+1)
N

)2
≤
(

1− 1

2N

)[(
x

(t)
1

)2
+ · · ·+

(
x

(t)
N

)2]
(67)

≤
(

1− 1

2N

)t+1 [(
x

(0)
1

)2

+ · · ·+
(
x

(0)
N

)2
]

(68)

t→∞→ 0. (69)
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Fig. 7. Exemplification of the averaging process in a sequence of iterations.
Each point represents a real number xi, with the largest and smallest at each
iteration colored in gray. The distribution converges to a mass point as the
iterations progress.

Combining (6) and (7) we obtain, as starting point,

C = max∑Nmin−1

n=0 σ2
n=NrNt

σ2
n≥0

max∑Nmin−1

n=0 pn=SNR
pn≥0

Nmin−1∑
n=0

log2

(
1 + σ2

n pn
)
.

(70)

Then, defining

σ̄2
n =

σ2
n/NrNt + pn/SNR

2
NrNt (71)

p̄n =
σ2
n/NrNt + pn/SNR

2
SNR, (72)

we have that the argument of (70) satisfies, by virtue of the
inequality between the arithmetic and geometric means,
Nmin−1∑
n=0

log2

(
1 + σ2

n pn
)

(73)

≤
Nmin−1∑
n=0

log2

(
1 +

NrNt SNR

2

(
σ2
n

NrNt
+

pn
SNR

)2
)

=

Nmin−1∑
n=0

log2

(
1 + σ̄2

n p̄n
)

(74)

under constraints that are preserved, namely
Nmin−1∑
n=0

σ̄2
n = NrNt (75)

Nmin−1∑
n=0

p̄n = SNR. (76)

From the relationship σ̄2
n = NrNt

SNR p̄n, then,

C ≤ max∑Nmin−1

n=0 p̄n=SNR
p̄n≥0

Nmin−1∑
n=0

log2

(
1 +

NrNt

SNR
p̄2
n

)
. (77)

Now, armed with Lemma 1, we set out to prove by
induction that

max∑Nmin−1

n=0 pn=SNR
pn≥0

Nmin−1∑
n=0

log2

(
1 +

NrNt

SNR
p2
n

)

= max
ρ∈{1,2,...,Nmin}

ρ log2

(
1 +

NrNt

ρ2
SNR

)
. (78)

Introducing xn =
√
NrNt/SNR pn and X =

√
NrNtSNR,

the above becomes

max∑Nmin−1

n=0 xn=X
xn≥0

Nmin−1∑
n=0

log2

(
1 + x2

n

)
(79)

= max
ρ∈{1,2,...,Nmin}

ρ log2

(
1 +

X2

ρ2

)
. (80)

We start from the base case Nmin = 2, which boils down to
a single variable optimization given that x2 = X − x1. From

log2

(
1 + x2

1

)
+ log2

(
1 + (X − x1)2

)
= log2

((
1 + x2

1

) (
1 + (X − x1)2

) )
, (81)

it suffices to show that, when the domain is [0, X], the quartic
function

(
1 + x2

1

) (
1 + (X − x1)2

)
can attain its maximum

only at 0, X/2, or X . This quartic function is symmetric along
x1 = X/2. If the quartic function has its local maximum
at x̄ 6= 0, X/2, X , then it has one more local maximum at
X− x̄ from symmetry. This contradicts to the fact that quartic
function has at most one local maximum, which completes the
proof for the base case.

Assuming now that (80) holds for Nmin = N , let us prove
it for Nmin = N + 1. Let x0, x1, . . . , xN−1, whose sum is X ,
be given. Now, we replace the maximum and minimum ones
with x̄1 and x̄2 maximizing

log2

(
1 + x̄2

1

)
+ log2

(
1 + x̄2

2

)
(82)

and satisfying

x̄1 + x̄2 = max
i
xi + min

i
xi. (83)

From the base case, (x̄1, x̄2) turns out to equal either(
max
i
xi + min

i
xi, 0

)
,
(

0,max
i
xi + min

i
xi

)
(84)

or (
max
i
xi + min

i
xi

2
,

max
i
xi + min

i
xi

2

)
. (85)

Over the successive replacements, if at some iteration t it
happens that (x̄

(t)
1 , x̄

(t)
2 ) equal (84), the induction argument

becomes complete. Otherwise, with the averaging operation
describe in the lemma being performed at each iteration, we
know that
N∑
n=0

log2

(
1 + (x(0)

n )2
)
≤

N∑
n=0

log2

(
1 + (x(t)

n )2
)

(86)

t→∞→ (N + 1) log2

(
1 +

X2

(N + 1)2

)
.

(87)

APPENDIX B

For SNR ≥ Nminc
Nmax

, the LOS capacity upper bound is
achieved by setting η = 1, hence we concentrate on proving
(28) for SNR < Nminc

Nmax
. The numerator of (28) is lower
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bounded by any achievable spectral efficiency, and in par-
ticular the one obtained by setting

η = η̄ =

√
Nmax

Nmin

SNR

c
(88)

and driving only the subchannels with gain larger then
Nmax (1− ε)/η̄. This gives

max
η∈[0,1]

C(HULA,SNR) ≥
∣∣∣{` | 1− ε < λ` < 1 + ε

}∣∣∣ (89)

· log2

(
1 +

Nmax (1− ε)
η̄

SNR∣∣{` | 1− ε<λ`<1 + ε
}∣∣
)

= Nmin

∣∣{` | 1− ε < λ` < 1 + ε
}∣∣

Nmin

· log2

(
1 +

Nmax

Nmin
(1− ε)
η̄

SNR
|{` | 1−ε<λ`<1+ε}|

Nmin

)
, (90)

which, from the asymptotic polarization of the eigenvalues,
leads to

lim
Nmin→∞

maxη∈[0,1] C(HULA,SNR)

Nmin

≥ η̄ log2

(
1 + (1− ε)Nmax

Nmin

SNR

η2

)
(91)

= η̄ log2

(
1 + (1− ε) c

)
(92)

where the last step follows from (88).
Turning now to the denominator of (28), it is upper

bounded—recall Section IV—by

Nmin

√
Nmax

Nmin

SNR

c
log2(1 + c) = Nmin · η̄ log2(1 + c). (93)

Altogether then, (28) satisfies

lim
Nmin→∞

maxη∈[0,1] C(HULA,SNR)

C(SNR)
≥

log2

(
1 + (1− ε) c

)
log2(1 + c)

(94)

where ε can be arbitrarily small, making the ratio arbitrarily
close to 1. We note that this pointwise convergence does not
imply uniform convergence, and in fact

lim
Nmin→∞

min
SNR

maxη∈[0,1] C(HULA,SNR)

C(SNR)
< 1 (95)

because of the behavior around the SNR thresholds identified
in Section IV. Notwithstanding that, for the purposes of this
paper ULAs asymptotically achieve the LOS capacity.

APPENDIX C

Suppose that

Nmin

Nmax
cr2`+1 < SNR <

Nmin

Nmax
cr2`−1, (96)

such that η in (43) equals r` (` = 0, 1, . . . , k − 1). In this
interval,

R(SNR)

C(SNR)
≥
r`Nmin log2

(
1 + Nmax

Nminr2`
SNR

)
√
NminNmax

√
SNR
c log2(1 + c)

. (97)

With the substitution x = Nmax

Nminr2`
SNR, the right-hand side

becomes f(x)/f(c) with the above SNR range mapping to
cr ≤ x ≤ c/r and with f(·) as defined in (18). Since f(·) is
unimodal with maximum attained at c,

min
cr≤x≤c/r

f(x)

f(c)
=

min
(
f(cr), f(c/r)

)
f(c)

(98)

=
f(cr)

f(c)
(99)

where the last step follows from f(cr) ≤ f(c/r), as can be
verified.

APPENDIX D

This appendix builds on [39] to establish (48). Letting T =
H∗ULAHULA with

tn−m = e−jπη
(n−m)(Nr−1)

Nmax

sin
(
πη (n−m)Nr

Nmax

)
sin
(
πη n−mNmax

) (100)

its (n,m)th entry—the indexing depends only on the differ-
ence between n and m because T is a Toeplitz matrix—we
aim to show that∥∥∥F ∗TF − Nmax

η
diag

(
1, . . . , 1︸ ︷︷ ︸
bηNminc

, 0, . . . , 0
)∥∥∥2

F
(101)

=
∥∥∥T − Nmax

η
F diag

(
1, . . . , 1︸ ︷︷ ︸
bηNminc

, 0, . . . , 0
)
F ∗
∥∥∥2

F

is O(N2
t logNt) whereas ‖T ‖2F = Θ(N3

t ), meaning that the
relatively difference between the terms being subtracted in
(101) diminishes as Nr and Nt grow large with a fixed ratio.
Defining

C =
Nmax

η
F diag

(
1, . . . , 1︸ ︷︷ ︸
bηNminc

, 0, . . . , 0
)
F ∗, (102)

the (n,m)th entry of C, also Toeplitz, is given by

cn−m = e−jπ
(n−m)(bηNminc−1)

Nt

sin
(
π (n−m)bηNminc

Nt

)
ηNt

Nmax
sin
(
π n−mNt

) . (103)

With T and C being Toeplitz matrices, their squared differ-
ence can be written as

‖T −C‖2F =
∑
|`|<Nt

(Nt − |`|) |t` − c`|2. (104)

By means of the quantities defined as

x`=sin
πη`

Nmax
x` + ∆x`=

ηNt

Nmax
sin

π`

Nt
(105)

y`=sin
πη`Nr

Nmax
y` + ∆y`=sin

π`bηNminc
Nt

(106)

θ`=−πη `(Nr − 1)

Nmax
θ` + ∆θ`=−π `(bηNminc − 1)

Nt
,

(107)
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we rewrite the entries of T and C as

t` = ejθ`
y`
x`

(108)

c` = ej(θ`+∆θ`)
y` + ∆y`
x` + ∆x`

. (109)

Before examining this squared difference in (104), we intro-
duce the proceeding lemma.

Lemma 2: The quantities defined above satisfy
2η|`|
Nmax

≤|x`|, |x` + ∆x`| ≤
πη|`|
Nmax

(110)

|∆x`| ≤
1

6

(
πη|`|
Nmax

)3

(111)

|y`|, |y` + ∆y`| ≤ 1 (112)

|∆y`| ≤
π|`|
Nt

(113)

|∆θ`| ≤
2π|`|
Nt

(114)

for |`| ≤ Nt/2, and

1

x2
`

,
1

(x` + ∆x`)2
≤
(
Nmax

2ηNt

)2(
1

(|`|/Nt)2
+

1

(1− |`|/Nt)2

)
(115)

for |`| < Nt. We note that (110), (112), and (115), compactly
indicate inequalities that apply to two distinct quantities.

Proof: Eq. (110) can be directly derived from
2

π
|x| ≤ | sinx| ≤ |x| − π/2 ≤ x ≤ π/2, (116)

while (111) follows from

|∆x`| =
∣∣∣∣sin πη`

Nmax
− ηNt

Nmax
sin

π`

Nt

∣∣∣∣ (117)

≤
∣∣∣∣sin πη`

Nmax
− πη`

Nmax

∣∣∣∣ (118)

≤ 1

6

(
πη|`|
Nmax

)3

(119)

where the last inequality descends from Taylor’s theorem. In
turn, (112) follows from

| sin y| ≤ 1 (120)

and (113) from

|∆y| =
∣∣∣∣sinπη`Nr

Nmax
− sin

π`bηNminc
Nt

∣∣∣∣ (121)

≤
∣∣∣∣πη`Nr

Nmax
− π`bηNminc

Nt

∣∣∣∣ (122)

≤ π|`|
Nt

(123)

where, in (122), the mean value theorem has been applied.
Then,

|∆θ`| = π|`|
∣∣∣∣( ηNr

Nmax
− bηNminc

Nt

)
+

(
1

Nt
− 1

Nmax

)∣∣∣∣ (124)

≤ π|`|
(

2

Nt
− 1

Nmax

)
(125)

≤ 2π|`|
Nt

(126)

where (125) derives from the triangle inequality. Finally, (115)
can be obtained from

1

sin2 x
≤ π2

4

(
1

|x|2
+

1

(π − |x|)2

)
− π ≤ x ≤ π.

(127)

Utilizing the Toeplitz structure of T and C, we compute
the squared difference in (104) for three cases: 1) ` = 0, 2)
|`| ≤ Nt/2, and 3) |`| > Nt/2. In case of ` = 0 where both
t` and c` are indeterminate form, |t` − c`|2 is bounded by a
constant: (

Nr −
bηNminc
ηNt/Nmax

)2

≤
(
Nmax

ηNt

)2

. (128)

For 0 < |`| ≤ Nt/2,

|t` − c`|2 =

∣∣∣∣ y`x` − ej∆θ` y` + ∆y`
x` + ∆x`

∣∣∣∣2 (129)

=

(
y`
x`
− y` + ∆y`
x` + ∆x`

)2
+4 sin2 ∆θ`

2
· y`
x`

y` + ∆y`
x` + ∆x`

. (130)

Using Lemma 2 and the triangle inequality, the first term can
be further bounded by a constant:∣∣∣∣ y`x` − y` + ∆y`

x` + ∆x`

∣∣∣∣ ≤ ∣∣∣∣ y`∆x`
x`(x` + ∆x`)

− ∆y`
x` + ∆x`

∣∣∣∣ (131)

≤
∣∣∣∣ y`∆x`
x`(x` + ∆x`)

∣∣∣∣+

∣∣∣∣ ∆y`
x` + ∆x`

∣∣∣∣ (132)

≤
1
6 (πη|`|/Nmax)

3

(2η|`|/Nmax)2
+

π|`|/Nt

2η|`|/Nmax
(133)

=
πη`

6Nmax
+
πNmax

2ηNt
(134)

≤ πηNt

12Nmax
+
πNmax

2ηNt
. (135)

The second term also is bounded by a constant:∣∣∣∣4 sin2 ∆θ`
2
· y`
x`

y` + ∆y`
x` + ∆x`

∣∣∣∣≤ ∣∣∣∣(∆θ`)2 y`
x`

y` + ∆y`
x` + ∆x`

∣∣∣∣ (136)

≤
(
πNmax

ηNt

)2

. (137)

Altogether, for |`| ≤ Nt/2 the aggregate squared difference
satisfies ∑

|`|≤Nt/2

(Nt − |`|) |t` − c`|2 = O(N2
t ). (138)

Proceeding to |`| > Nt/2, we begin by noting that

|t` − c`|2 ≤ 2 (|t`|2 + |c`|2). (139)

Then, using again Lemma 2, we have that∑
|`|>Nt/2

(Nt − |`|) |t`|2 (140)

≤
(
Nmax

2ηNt

)2 ∑
|`|>Nt/2

Nt − |`|
(|`|/Nt)2

+
∑

|`|>Nt/2

Nt − |`|
(1− |`|/Nt)2

.
(141)
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where the first term satisfies(
Nmax

2ηNt

)2 ∑
|`|>Nt/2

Nt − |`|
(|`|/Nt)2

= O(N2
t ) (142)

while the second term satisfies(
Nmax

2ηNt

)2 ∑
|`|>Nt/2

Nt − |`|
(1− |`|/Nt)2

=

(
Nmax

2η

)2 ∑
|`|>Nt/2

1

Nt − |`|

= O(N2
t logNt), (143)

with the last equality holding by virtue of the logarithmic
growth of the harmonic series. The same result can be
obtained for c`, hence

‖T −C‖2F =
∑
|`|<Nt

(Nt − |`|) |t` − c`|2 (144)

= O(N2
t logNt). (145)
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