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Abstract—In low-power wide-area networks (LPWANs), various
trade-offs among the bandwidth, data rates, and energy per bit
have different effects on the quality of service under different
propagation conditions (e.g. fading and multipath), interference
scenarios, multi-user requirements, and design constraints. Such
compromises, and the manner in which they are implemented, fur-
ther affect other technical aspects, such as system’s computational
complexity and power efficiency. At the same time, this difference
in trade-offs also adds to the technical flexibility in addressing
a broader range of IoT applications. This paper addresses a
physical layer LPWAN approach based on the Aggregate Spread
Pulse Modulation (ASPM) and provides a brief assessment of its
properties in additive white Gaussian noise (AWGN) channel. In
the binary ASPM the control of the quality of service is performed
through the change in the spectral efficiency, i.e., the data rate
at a given bandwidth. Implementing M-ary encoding in ASPM
further enables controlling service quality through changing the
energy per bit (in about an order of magnitude range) as an
additional trade-off parameter. Such encoding is especially useful
for improving the ASPM’s energy per bit performance, thus
increasing its range and overall energy efficiency, and making
it more attractive for use in LPWANs for IoT applications.

Index Terms—Aggregate spread pulse modulation (ASPM),
intermittently nonlinear filtering (INF), Internet of things (IoT),
LoRa, low-power wide-area network (LPWAN), M-ary ASPM (M-
ASPM), physical layer (PHY), spread spectrum.

I . I N T R O D U C T I O N

In the Aggregate Spread Pulse Modulation (ASPM) [1], [2]
the information is encoded in the amplitudes 𝐴 𝑗 and/or the
“arrival times” 𝑘 𝑗 of the pulses in a digital “pulse train” 𝑥 [𝑘]
with only relatively small fraction of samples having non-zero
values:

𝑥 [𝑘] =
∑︁
𝑗

È𝑘 =𝑘 𝑗É𝐴 𝑗 , (1)

where 𝑘 𝑗 is the sample index of the 𝑗-th pulse, 𝐴 𝑗 is its amplitude,
and the double square brackets denote the Iverson bracket [3]

È𝑃É =

{
1 if 𝑃 is true
0 otherwise , (2)

where 𝑃 is a statement that can be true or false. The average
“pulse rate” 𝑓p in such a train is 𝑓p = 𝐹s/𝑁p, where 𝐹s is the
sample rate, and 𝑁p = 〈𝑘 𝑗 − 𝑘 𝑗−1〉 is the average interpulse
interval. Note that for 𝑁p � 1 the pulse rate is much smaller than
the Nyquist rate. Also note that for 𝑁p � 1 this train has a large
peak-to-average power ratio (PAPR) even when |𝐴 𝑗 | = const,
and is generally unsuitable for use as a modulating signal.

However, the designed pulse train 𝑥 [𝑘] given by (1) can be
“re-shaped” by linear filtering:

𝑥 [𝑘] = (𝑥 ∗ 𝑔) [𝑘] =
∑︁
𝑗

𝐴 𝑗 𝑔[𝑘−𝑘 𝑗 ] , (3)

where 𝑔[𝑘] is the impulse response of the filter and the asterisk
denotes convolution. The filter 𝑔[𝑘] can be, for example, a
lowpass filter with a given bandwidth 𝐵. If the filter 𝑔[𝑘] has a
sufficiently large time-bandwidth product (TBP) [4], [5], most of
the samples in the reshaped train 𝑥 [𝑘] will have non-zero values,
and 𝑥 [𝑘] will have a much smaller PAPR than the designed
sequence 𝑥 [𝑘]. Such low-PAPR signal can then be used for
modulating a carrier. If the combination of the amplitude 𝐴 𝑗

and the arrival time 𝑘 𝑗 of a pulse provides 𝑀 distinct “states,”
each pulse can encode log2 𝑀 bits, and the raw bit rate 𝑓b in
such a train is 𝑓b = 𝑓p log2 𝑀 . When 𝐵 � 𝑓b= (𝐹s/𝑁p) log2 𝑀 , it
results in a low-rate message encoded in a wideband waveform.

For example, for the arrival times in (1) one can use

𝑘 𝑗 = 𝑗𝑁p + Δ𝑘 [𝑚 𝑗 ] , (4)

where Δ𝑘 is a positive integer, 0 ≤ Δ𝑘 [𝑚 𝑗 ] < 𝑁p, and Δ𝑘 [𝑚] ≠
Δ𝑘 [𝑙] for 𝑚 ≠ 𝑙 . Then for 𝑚 𝑗 = 1, 2, . . . , 𝑀 and 𝐴 𝑗 = const the
pulse train given by (1) encodes log2 𝑀 bits per pulse. We will
refer to such M-ary encoding with 𝐴 𝑗 = const as “unipolar.”
Another bit can be added by using 𝐴 𝑗 = (−1)𝑎 𝑗 , where 𝑎 𝑗 is
either “0” or “1,” and we will refer to such signaling as “bipolar.”
Then for bipolar M-ary signaling equation (1) can be rewritten
as

𝑥 [𝑘] =
∑︁
𝑗

È𝑘 = 𝑗𝑁p+Δ𝑘 [𝑚 𝑗 ]É (−1)𝑎 𝑗 , (5)

where 𝑚 𝑗 = 1, 2, . . . , 𝑀/2 and 𝑎 𝑗 is either “0” or “1.”
For a given designed pulse sequence 𝑥 [𝑘] the spectral,

temporal and amplitude structures of the reshaped train 𝑥 [𝑘]
will be determined by the choice of 𝑔[𝑘]. In particular, it may
be desirable to select a filter 𝑔[𝑘] that minimizes the PAPR
of 𝑥 [𝑘]. Note that if the time duration of 𝑔[𝑘] extends over
multiple interpulse intervals, the instantaneous amplitudes and/or
phases [6] of the resulting waveform are no longer representative
of individual pulses. Instead, they are a “piled-up” aggregate of
the contributions from multiple “stretched” pulses.

The key property of the large-TBP pulse shaping filter
(PSF) 𝑔[𝑘] is that its autocorrelation function (ACF), i.e., the
convolution of 𝑔[𝑘] with its matched filter 𝑔[𝑘] = 𝑔[−𝑘], has a
much smaller TBP, in particular, sufficiently smaller than the
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ratio 𝐵/𝑓p. Then, after demodulation and analog-to-digital (A/D)
conversion in the receiver, the encoded binary sequence can be
recovered by filtering with 𝑔[𝑘] and sampling the resulting pulse
train at 𝑘 = 𝑗𝑁p+Δ𝑘 [𝑚] (i.e., using 𝑔[𝑘] as a decimation filter).

A good choice for the PSF would be a pulse that combines a
small TBP of its ACF (e.g., close to that of a Gaussian pulse)
with ACF’s compact frequency support. An example would be
a raised-cosine (RC) filter [7, e.g] with unity roll-off factor.
The minimum required (Nyquist) sample rate for such a filter
will be double its (baseband) physical bandwidth 𝐵, and the
sample rate 𝐹s can be expressed as 𝐹s = 2𝑁s𝐵, where 𝑁s ≥ 1 is
the oversampling factor. To minimize the power consumption,
the memory usage, and the computational complexity of the
digital processing, it is beneficial to keep the sample rate in the
transceivers designed for IoT applications as low as possible,
i.e., to use 𝑁s = 1. Through the rest of the paper, we will assume
sampling with the Nyquist rate 𝐹s = 2𝐵.

Since for a given designed pulse sequence 𝑥 [𝑘] the temporal
and amplitude structures of the reshaped train 𝑥 [𝑘] are
determined by the PSF 𝑔[𝑘], these structures can be substantially
different even for the pulse shaping filters with the same
ACF. As discussed in [1], one can construct a great variety of
large-TBP pulse shaping filters 𝑔𝑖 [𝑘] with the same small-TBP
ACF 𝑤 [𝑘], so that (𝑔𝑖 ∗ 𝑔𝑖 ) [𝑘] = 𝑤 [𝑘] for any 𝑖, while the
convolutions of any 𝑔𝑖 (𝑡) with 𝑔 𝑗 (𝑡) for 𝑖 ≠ 𝑗 (cross-correlations)
have large TBPs. Further, this property will also effectively
hold for the PSFs ℎ̂𝑖 [𝑘] such that ℎ̂𝑖 [𝑘] is the discrete Hilbert
transform of 𝑔𝑖 [𝑘], i.e., ℎ̂𝑖 [𝑘] = 𝐻 {𝑔𝑖 [𝑘]} [8], [9]. Therefore,
using various PSFs combinations we can design different coherent
and noncoherent modulation schemes with emphasis on particular
spectral and/or temporal properties of the modulated signal.

A. Binary (“one bit per pulse”) encoding
For example, in [10] we describe single-sideband, constant-

envelope coherent and noncoherent ASPM configurations that
use the “equidistant” designed train

𝑥 [𝑘] =
∑︁
𝑗

È𝑘 = 𝑗𝑁pÉ (−1)𝑏 𝑗 (6)

to encode the binary sequence (𝑏1𝑏2 . . . 𝑏 𝑗 . . . ). The raw bit rate
𝑓b in such a train is 𝑓b = 𝐹s/𝑁p, where 𝐹s is the sample rate and
𝑁p is the number of samples between pulses. We further show
that, predictably, for an additive white Gaussian noise (AWGN)
channel the uncoded bit error rate (BER) 𝑃b of these binary
ASPM configurations can be expressed as

𝑃b =
1
2

erfc

(√︂
𝐸b
𝑁0

)
=

1
2

erfc

(√︂
𝑁pΓ

2

)
(coherent)

𝑃b =
1
2

exp
(
− 𝐸b

2𝑁0

)
=

1
2

exp
(
−
𝑁pΓ

4

)
(noncoherent)

, (7)

where erfc(𝑥) is the complementary error function [11], 𝐸b is
the energy per bit, 𝑁0 is the (one-sided) power spectral density
of the noise, and Γ denotes the signal-to-noise ratio (SNR)
defined as Γ = (𝐸b/𝑁0) × (𝑓b/𝐵). Thus, at a given bandwidth,
in the binary ASPM the control of the quality of service is
performed through the change in the interpulse interval 𝑁p, i.e.,
the data rate.

I I . M - A RY VA R I A N T S O F A S P M

In the binary ASPM, each pulse encodes one bit, hence the
energy per bit 𝐸b and the energy per pulse 𝐸p are equal to each
other, 𝐸b = 𝐸p. By encoding log2 𝑀 bits per pulse with the same
energy, the energy per bit is reduced to 𝐸b = 𝐸p/log2 𝑀 . Such
encoding is especially useful for improving the ASPM’s energy
per bit performance, thus increasing its range and overall energy
efficiency, and making it more attractive for use in LPWANs for
IoT applications.

A. Single-sideband M-ary ASPM with constant-envelope pulses

For example, Fig. 1 illustrates a single-sideband M-ary ASPM
link which uses constant-envelope transmitted pulses and is
suitable for both coherent and noncoherent detection.

In Fig. 1(I), the designed pulse train 𝑥 [𝑘] according
to (5) is filtered with 𝑔[𝑘] and ℎ̂[𝑘] to form the shaped
trains 𝑥𝑔 [𝑘] and 𝑥ℎ [𝑘]. After digital-to-analog (D/A) conversion,
𝑥𝑔 (𝑡) and 𝑥ℎ (𝑡) are used for quadrature amplitude modulation of
a carrier with frequency 𝑓c, providing the transmitted waveform
𝑥𝑔 (𝑡) sin(2𝜋 𝑓c𝑡) +𝑥ℎ (𝑡) cos(2𝜋 𝑓c𝑡) (Fig. 1(II)). If 𝑔[𝑘] and ℎ̂[𝑘]
are, say, the real and imaginary parts, respectively, of a nonlinear
chirp with the desired ACF, e.g.

𝑔[𝑘] + 𝑖 ℎ̂[𝑘] = È0≤𝑘 <𝑛É exp (𝑖 Φ[𝑘]) , (8)

where Φ[𝑘] is the phase, then this waveform will occupy only
a single sideband with the physical bandwidth 𝐵 equal to the
baseband bandwidth of the chirp. In addition, if the pulses do
not overlap (e.g., 𝑁p > 𝑛 + max𝑚 (Δ𝑘 [𝑚])), this waveform will
consist of constant-envelope pulses.

For noncoherent detection (Fig. 1(III)), in the receiver’s (Rx)
quadrature demodulator the noisy passband signal is multiplied
by the orthogonal sinusoidal signals from a local oscillator,
lowpassed, and converted to the in-phase and quadrature digital
signals 𝐼 [𝑘] and 𝑄 [𝑘]. Filtering 𝐼 [𝑘] and 𝑄 [𝑘] with the pairs of
the filters 𝑔[𝑘] and ℎ[𝑘], as shown in Fig. 1(III), produces the
signal components 𝐼 ∗𝑔 +𝑄∗ℎ and 𝑄∗𝑔 − 𝐼 ∗ℎ. Further, the sum
of squares of these components forms the unipolar pulse train
𝑦2

nc = (𝐼∗𝑔 +𝑄∗ℎ)2 + (𝑄∗𝑔 − 𝐼∗ℎ)2 with the peaks corresponding
to the pulses in the designed train 𝑥 [𝑘]. For coherent detection
(Fig. 1(IV)), after multiplication by sin(2𝜋 𝑓c𝑡+𝜋/4), lowpass
filtering, and A/D conversion in the receiver, the resulting
signal 𝑥rx [𝑘] is filtered with 𝑔[𝑘]+ℎ[𝑘] to form the bipolar
baseband pulse train 𝑦c = 𝑥rx ∗ (𝑔 + ℎ) corresponding to the
designed train 𝑥 [𝑘].

Without loss of generality, the ACFs of 𝑔[𝑘] and ℎ̂[𝑘] can
be normalized to have the peak magnitudes equal to unity.
Then, to avoid the interpulse interference in both coherent and
noncoherent detection, we can require that

𝑤 [Δ𝑘 [𝑚]−Δ𝑘 [𝑙]] = 𝑣2 [Δ𝑘 [𝑚]−Δ𝑘 [𝑙]] = È𝑚=𝑙É , (9)

where 𝑤 [𝑘] = 1
2 (𝑔∗𝑔 + ℎ̂∗ℎ) and

𝑣2 [𝑘] = 1
4

[
(𝑔∗𝑔 + ℎ̂∗ℎ)2 + (ℎ̂∗𝑔 − 𝑔∗ℎ)2

]
. (10)

Note that the A/D conversion in the ASPM receiver can
be combined with intermittently nonlinear filtering described
in [12], [13], to make the link robust to outlier interferences,
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Figure 1. Illustration of single-sideband M-ary ASPM link with constant-envelope pulses and their noncoherent and coherent detection.

e.g. impulsive noise commonly present in industrial environ-
ments [14], and to increase the baseband SNR in the presence
of such interferences. Since in the power-limited regime the
channel capacity is proportional to the SNR, even relatively
small increase in the latter will be beneficial.

I I I . U N C O D E D B E R P E R F O R M A N C E O F M - A RY
A S P M I N AW G N C H A N N E L

A. Noncoherent M-ASPM

Let us assume that we transmit the 𝑗-th pulse with 𝑚 𝑗 = 1, and
in the receiver sample at 𝑗𝑁p + {Δ𝑘 [1],Δ𝑘 [2], . . . ,Δ𝑘 [𝑀]}. If
𝑦2
𝑚 = 𝑦2

nc
[
𝑗𝑁p + Δ𝑘 [𝑚]

]
, then the 𝑗-th symbol will be detected

correctly when 𝑦2
1 > max{𝑦2

2, 𝑦
2
3, . . . , 𝑦

2
𝑀
}.

For AWGN with constant power density 𝑁0, and in the
absence of interpulse interference, 𝑌 2

𝑚 for 𝑚 > 1 can be viewed
as i.i.d. variables having chi-square distribution with 2 degrees
of freedom [11]. Thus the cumulative distribution function of the
random variable M = max

{
𝑌 2

2 , 𝑌
2
3 , . . . , 𝑌

2
𝑀

}
can be expressed

as

𝐹M (𝑥) =
(
1−e−

𝑥
2

)𝑀−1
=

𝑀−1∑︁
𝑘=0

(−1)𝑘
(
𝑀−1
𝑘

)
exp

(
−𝑘

2
𝑥

)
, (11)

where
(
𝑛
𝑚

)
= 𝑛!

(𝑛−𝑚)!𝑚! is the binomial coefficient.
At the same time, 𝑌 2

1 will have the noncentral chi-square
distribution with 2 degrees of freedom and the noncentrality
parameter _ proportional to the peak power of the “ideal”
pulse [11], and its cumulative distribution function can be
expressed as

𝐹𝑌 2
1
(𝑥) = 1 −𝑄1

(√
_,
√
𝑥

)
, (12)

where 𝑄1 (𝑎, 𝑏) is the Marcum 𝑄-function defined as the integral

𝑄1 (𝑎, 𝑏) =
∫ ∞

𝑏

d𝑥 𝑥 exp
(
−𝑥

2 + 𝑎2

2

)
𝐼0 (𝑎𝑥) (13)

for 𝑎, 𝑏 ≥ 0, and where 𝐼0 (𝑥) is the modified Bessel function of
the first kind [15]. Therefore, the symbol error probability 𝑃s
can be expressed as

𝑃s (_) = 𝑃

(
𝑌 2

1 <M
)
=

∫ ∞

0
d𝑥 𝐹𝑌 2

1
(𝑥) d

d𝑥
𝐹M (𝑥)

= 1 +
∫ ∞

0
d𝑥 𝐹M (𝑥) d

d𝑥
𝑄1

(√
_,
√
𝑥

)
. (14)

Evaluating the integral in the right-hand side of (14) by parts
(see the Appendix), and noticing that the bit error probability 𝑃b
is related to the symbol error probability 𝑃s as

𝑃b (_) =
𝑀

2(𝑀−1) 𝑃s (_) , (15)

leads to the following expression for 𝑃b (_) of noncoherent
M-ASPM:

𝑃b (_) =
1

2(𝑀−1)

𝑀∑︁
𝑘=2

(−1)𝑘
(
𝑀

𝑘

)
exp

(
−𝑘−1

2𝑘
_

)
. (16)

1) Value of noncentrality parameter _: The noncentrality
parameter _ is the ratio of the baseband peak signal power 𝐴2

and the noise power 𝜎2
n , _ = 𝐴2/𝜎2

n , and it can be expressed in
several different ways, for example as

_ =
2𝐸b
𝑁0

log2 𝑀 =
2𝜎2

c
𝑁0 𝑓b

log2 𝑀 = 2𝑁p
𝜎2

c
𝑁0𝐹s

= 𝑁pΓ , (17)

where 𝜎2
c is the power of the modulated carrier, thus describing

the service quality in terms of different physical and numerical
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Figure 2. Uncoded BER vs 𝐸b/𝑁0 performances of LoRa (dashed lines) and
single-sideband M-ASPM (solid lines) for noncoherent detection in AWGN
channel.

parameters of the link. In (17), as before, the SNR is defined
as Γ = (𝐸b/𝑁0) × (𝑓b/𝐵). Note that the spreading factor in the
M-ASPM is 𝐵/𝑓b = 𝑁p/(2 log2 𝑀). Then, for example, in terms
of the energy per bit 𝛾b = 𝐸b/𝑁0, the bit error probability of
noncoherent M-ASPM is

𝑃b (𝛾b) =
1

2(𝑀−1)

𝑀∑︁
𝑘=2

(−1)𝑘
(
𝑀

𝑘

)
exp

(
−𝑘−1

𝑘
𝛾b log2 𝑀

)
.

(18)
Note that, for a given 𝛾b, the bit error probability is a decreasing

function of 𝑀 and, for 𝑀 ≥ 64, is the same as the bit error
probability of noncoherent LoRa with the spreading factor SF =

log2 𝑀 [16]. This is illustrated in Fig. 2, where the M-ASPM
BER performance is compared with the respective performance
of the noncoherent LoRa with different spreading factors. For
LoRa, the BER approximation proposed in [16] is used, which
is expressed as the product of the union bound on the bit error
probability and a correction function.

In Fig. 3, the BER vs. SNR performance of the noncoherent
16-ASPM (𝐵/𝑓b = 𝑁p/8) is compared with the respective
performances of the noncoherent LoRa with different spreading
factors. As can be seen from the figure, in terms of the energy

Figure 3. Uncoded BER vs SNR performances of LoRa (dashed lines) and
single-sideband 16-ASPM (solid lines) for noncoherent detection in AWGN
channel. For 16-ASPM, 𝐵/𝑓b = 𝑁p/8.

per bit performance for uncoded BER = 10−2 in an AWGN
channel, the noncoherent 16-ASPM is approximately 60% to
80% as efficient as LoRa with the spreading factors ranging
from SF = 6 to SF = 12.

B. 𝐸b/𝑁0 efficiency of coherent M-ASPM

By using additional 𝑀/2 distinct pulse locations in the binary
coherent ASPM, each pulse can encode 𝑚 = log2 𝑀 bits. For
example, for 𝑀 = 16, the pulse train

𝑥 [𝑘] =
∑︁
𝑗

È𝑘 = 𝑗𝑁p + (4𝑎 𝑗 +2𝑏 𝑗 +𝑐 𝑗 )𝑛É (−1)𝑑 𝑗 , (19)

where 𝑛 is a nonzero integer, encodes a 4-bit se-
quence (𝑎1𝑏1𝑐1𝑑1 𝑎2𝑏2𝑐2𝑑2 . . . 𝑎 𝑗𝑏 𝑗𝑐 𝑗𝑑 𝑗 . . . ). To correctly identify
a symbol in such M-ASPM, we need to correctly detect both
the arrival time and the polarity of the pulse.

When the arrival time of a pulse with the peak magnitude |𝐴|
is known, the probability of correctly detecting the polarity
of this pulse in the presence of AWGN with zero mean and
variance 𝜎n

2 can be expressed, using the complementary error
function, as 1

2 erfc(−`), where ` = |𝐴|/(𝜎n
√

2). We can further
assume that 𝑛 in (19) is sufficiently large, and thus interpulse
interference is negligible (e.g. 𝑛 ≥ 2 for coherent detection and
pulse shaping with the ACF as an RC pulse with unity roll-off
factor). Then, for a pulse train with the peak magnitude of the
pulses equal to |𝐴|, and 𝑚 = log2 𝑀 bits per pulse encoding,
the bit error probability can be expressed as

𝑃b (`) =
𝑀

2(𝑀−1)

[
1 − 1

2
erfc(−`) 𝑃 (|𝑋1 | > M)

]
, (20)

where 𝑋1 is a normal random variable with mean ` ∝ |𝐴| and
variance 1/2, and

M = max
{
|𝑋2 |, |𝑋3 |, . . . , |𝑋𝑀

2
|
}
, (21)

where 𝑋𝑖 , 𝑖 = 2, 3, . . . , 𝑀/2, are i.i.d. normal variables with zero
mean and variance 1/2.

For 𝑌 = |𝑋1 |, its cumulative distribution function is that of
the folded normal distribution, which can be expressed as

𝐹𝑌 (𝑥 ; `) = 1
2
[erf (𝑥 + `) + erf (𝑥 − `)] (22)

for 𝑥 ≥ 0. Then the probability to correctly detect the arrival
time of the pulse is

𝑃 ( |𝑋1 | > M) =
∫ ∞

0
d𝑥 [𝐹𝑌 (𝑥 ; 0)]

𝑀
2 −1 d

d𝑥
𝐹𝑌 (𝑥 ; `)

=

∫ ∞

0
d𝑥 [erf (𝑥)]

𝑀
2 −1

{
1
√
𝜋

[
e−(𝑥+`)

2
+ e−(𝑥−`)

2
]}

. (23)

For ` = 0 the right-hand-side integral is equal to 2/𝑀 , and for
` > 0 it can be easily evaluated numerically.

1) Value of `: For coherent detection, the ratio of the baseband
peak signal power 𝐴2 and the noise power 𝜎2

n is the same as for
noncoherent detection [10], and thus ` = |𝐴|/(𝜎n

√
2) =

√︁
_/2,

where _ is the noncentrality parameter of the noncoherent ASPM
given by (17). Then, for example,

` =

√︂
𝐸b
𝑁0

log2 𝑀 =

√︂
𝑁pΓ

2
, (24)
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Figure 4. Uncoded BER vs 𝐸b/𝑁0 performances of BPSK and LoRa (dashed
lines), and single-sideband M-ASPM (solid lines) for coherent detection in
AWGN channel. For 𝑀 ≥ 64, M-ASPM 𝐸b/𝑁0 efficiency is that of LoRa with
spreading factor SF = log2 𝑀 .

where Γ = (𝐸b/𝑁0) × (𝑓b/𝐵) is the SNR. The bit rate 𝑓b is
related to the pulse rate 𝑓p as 𝑓b = 𝑓p log2 𝑀 , and, as before, the
spreading factor in the M-ASPM is 𝐵/𝑓b = 𝑁p/(2 log2 𝑀).

Fig. 4 shows computed uncoded BER vs 𝐸b/𝑁0 performances
of BPSK and LoRa (dashed lines), and single-sideband M-
ASPM (solid lines) for coherent detection in AWGN channel.
Note that, just like in the noncoherent case, for 𝑀 ≥ 64 the M-
ASPM 𝐸b/𝑁0 efficiency equals that of LoRa with the spreading
factor SF = log2 𝑀 [16].

In Fig. 5, the BER vs. SNR performance of the coherent
16-ASPM (𝐵/𝑓b = 𝑁p/8) is compared with the respective
performances of the coherent LoRa with different spreading
factors. As can be seen from the figure, in terms of the energy
per bit performance for uncoded BER = 10−2 in an AWGN
channel, the coherent 16-ASPM is approximately 70% to 90% as
efficient as LoRa with the spreading factors ranging from SF = 6
to SF = 12.

2) Unipolar signaling: For both noncoherent and coherent
M-ASPM, bipolar encoding requires only 𝑀/2 distinct pulse
locations. In comparison with the unipolar signaling, this doubles
the maximum achievable data rate for a given 𝑀 . However, the

Figure 5. Uncoded BER vs SNR performances of LoRa (dashed lines) and
single-sideband 16-ASPM (solid lines) for coherent detection in AWGN channel.
For 16-ASPM, 𝐵/𝑓b = 𝑁p/8.

noncoherent detection always requires obtaining 𝑀 samples
per pulse, and has identical energy per bit and computational
efficiencies for either bipolar or unipolar encoding. In contrast,
after the synchronization has been obtained, the detection
for bipolar encoding in coherent M-ASPM requires sampling
at only 𝑀/2 data points per pulse, thus halving the per-bit
computational intensity of numerical processing. In addition,
the bipolar signaling in coherent M-ASPM has the advantage
of higher AWGN energy per bit efficiency compared to the
unipolar signaling.

Indeed, the bit error probability for the unipolar coherent
detection can be expressed as

𝑃
up
b (`) = 𝑀

2(𝑀−1)

{
1 −

∫ ∞

0
d𝑥 [erf (𝑥)]𝑀−1 d

d𝑥
𝐹𝑌 (𝑥 ; `)

}
(25)

=
𝑀

4

∫ ∞

0
d𝑥

{
2
√
𝜋

e−𝑥
2
}
[erf (𝑥)]𝑀−2 [erf (𝑥+`) + erf (𝑥−`)] ,

and it can be shown that 𝑃up
b (`;𝑀) > 𝑃b (`;𝑀) for ` > 0. This

is illustrated in Fig. 6, that compares the uncoded AWGN BER
vs. 𝐸b/𝑁0 performances of unipolar (dashed lines) and bipolar
(solid lines) signaling in coherent M-ASPM. Predictably, the
difference between 𝑃

up
b (`;𝑀) and 𝑃b (`;𝑀) becomes negligible

in the limit of large 𝑀 .

I V. S I M U L AT E D B E R V S S N R P E R F O R M A N C E O F
C O H E R E N T A N D N O N C O H E R E N T 1 6 - A S P M

Fig. 7 compares the calculated (dashed lines) and the simulated
(markers connected by solid lines) BERs for both coherent
and noncoherent 16-ASPM links with the spreading factors
𝐵/𝑓b = 𝑁p/8 = 16 and 𝐵/𝑓b = 𝑁p/8 = 32.

For the coherent 16-ASPM, the designed pulse train 𝑥 [𝑘] is
given by (19), where 𝑛 = 2. For the noncoherent 16-ASPM, the
designed pulse train is

𝑥 [𝑘] =
∑︁
𝑗

È𝑘 = 𝑗𝑁p + (8𝑎 𝑗 + 4𝑏 𝑗 +2𝑐 𝑗 +𝑑 𝑗 )𝑛É , (26)

where 𝑛 = 4. In the transmitter, filtering 𝑥 [𝑘] with the PSF 𝑔[𝑘]
forms the modulating component 𝑥I [𝑘], and filtering 𝑥 [𝑘] with

Figure 6. Comparison of uncoded AWGN BER vs 𝐸b/𝑁0 performances of
unipolar (dashed lines) and bipolar (solid lines) signaling in coherent M-ASPM.
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the PSF ℎ̂[𝑘] forms the modulating component 𝑥Q [𝑘]. The
ACF of 𝑔[𝑘] is an RC pulse with unity roll-off factor. The
filter ℎ̂[𝑘] approximates the discrete Hilbert transform of 𝑔[𝑘],
i.e., ℎ̂[𝑘] ≈ 𝐻 {𝑔[𝑘]} [8], [9], and thus 𝑥Q [𝑘] approximates
the discrete Hilbert transform of 𝑥I [𝑘], i.e., 𝑥Q [𝑘] ≈ 𝐻 {𝑥I [𝑘]}.
Therefore, if after digital-to-analog conversion 𝑥I (𝑡) and 𝑥Q (𝑡)
are used for quadrature amplitude modulation of a carrier with
frequency 𝑓c, the resulting modulated waveform 𝑥I (𝑡) sin(2𝜋 𝑓c𝑡)+
𝑥Q (𝑡) cos(2𝜋 𝑓c𝑡) occupies only a single sideband with the
physical bandwidth 𝐵 equal to the baseband bandwidth of 𝑔[𝑘].

In the coherent receiver, the noisy passband signal is multiplied
by the signal sin(2𝜋 𝑓c𝑡+𝜋/4) from the local oscillator, lowpassed,
and A/D converted to form the digital signal 𝑥rx [𝑘], which is
then filtered with 𝑔[𝑘] + ℎ[𝑘] to form the baseband pulse train

𝑦c = 𝑥rx ∗ (𝑔+ℎ) . (27)

For noncoherent detection, in the receiver’s quadrature demodula-
tor the noisy passband signal is multiplied by sin(2𝜋 𝑓c𝑡 +𝜑) and
cos(2𝜋 𝑓c𝑡 + 𝜑), lowpassed, and A/D converted to the in-phase
(I) and quadrature (Q) digital signals 𝐼 [𝑘] and 𝑄 [𝑘]. Then the
received unipolar pulse train is formed as

𝑦2
nc = (𝐼 ∗𝑔 +𝑄∗ℎ)2 + (𝑄∗𝑔 − 𝐼 ∗ℎ)2 . (28)

In the simulations, the bit error rates are determined by com-
paring the bit sequences extracted from the “ideal” transmitted
signals (without noise), and from the transmitted signals affected
by AWGN with a given power spectral density 𝑁0.

V. C O N C L U S I O N

In this paper, we demonstrate how M-ary signaling setup
can be utilized within the ASPM to improve its energy per bit
performance, increasing its range and overall energy efficiency
and making it more attractive for use in LPWANs for IoT. Using
various combinations of pulse shaping filters in ASPM we can
design numerous coherent and noncoherent modulations schemes,
with emphasis on particular spectral and/or temporal properties
of the modulated signal. This allows us to accommodate different
propagation conditions in different IoT environments, meet
diverse multiuser and physical layer security requirements, and,

Figure 7. Calculated and simulated BERs as functions of AWGN SNRs for
both coherent and noncoherent 16-ASPM links with 𝑁p = 128 and 𝑁p = 256.

overall, add to the technical flexibility in addressing a broader
range of IoT applications, both static and mobile.

A P P E N D I X

Substituting (11) into (14), and considering a single term in
the sum:∫ ∞

0
d𝑥 exp

(
−𝑘

2
𝑥

)
d
d𝑥

𝑄1

(√
_,
√
𝑥

)
(A.1)

= −1
2

∫ ∞

0
d𝑥 exp

(
−_ + (𝑘+1) 𝑥

2

)
𝐼0

(√
_𝑥

)
(A.1a)

= − 1
𝑘+1

exp
(
− 𝑘

2(𝑘+1) _
)
,

where we have used the the equalities [15], [17]

d
d𝑥

𝑄1

(√
_,
√
𝑥

)
= −1

2
exp

(
−_ + 𝑥

2

)
𝐼0

(√
_𝑥

)
, (A.2)

𝑄1 (𝑎, 0) = 1, and 𝑄1 (𝑎,∞) = 0, the substitution 𝑥 = 𝑣2/(𝑘 + 1)
in (A.1a), and the definition of the Marcum 𝑄-function (13).
Further,

𝑃s (_) = 1 −
𝑀−1∑︁
𝑘=0

(−1)𝑘
𝑘+1

(
𝑀−1
𝑘

)
exp

(
− 𝑘

2(𝑘+1) _
)

=
1
𝑀

𝑀∑︁
𝑘=2

(−1)𝑘
(
𝑀

𝑘

)
exp

(
−𝑘−1

2𝑘
_

)
. (A.3)
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[5] M. Vetterli and J. Kovačevic, Wavelets and subband coding. Prentice-Hall,
1995.

[6] B. Picinbono, “On instantaneous amplitude and phase of signals,” IEEE
Trans. Signal Process., vol. 45, no. 3, pp. 552–560, March 1997.

[7] J. G. Proakis and D. G. Manolakis, Digital signal processing: Principles,
algorithms, and applications, 4th ed. Prentice Hall, 2006.

[8] R. N. Bracewell, The Fourier transform and its applications, 3rd ed.
New York: McGraw-Hill, 2000.

[9] G. Todoran, R. Holonec, and C. Iakab, “Discrete Hilbert transform.
Numeric algorithms,” Acta Electroteh., vol. 49, no. 4, pp. 485–490, 2008.

[10] A. V. Nikitin and R. L. Davidchack, “Aggregate spread pulse modulation
in LPWANs for IoT applications,” in 2021 IEEE 7th World Forum on
Internet of Things (WF-IoT), New Orleans, LA, 14 June-31 July 2021.

[11] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
Dover, 1972.

[12] A. V. Nikitin and R. L. Davidchack, “Hidden outlier noise and its
mitigation,” IEEE Access, vol. 7, pp. 87 873–87 886, 2019.

[13] ——, “Complementary intermittently nonlinear filtering for mitigation of
hidden outlier interference,” in Proc. IEEE Military Commun. Conf. 2019
(MILCOM 2019), Norfolk, VA, 12-14 Nov. 2019.

[14] J. Courjault, B. Vrigneau, O. Berder, and M. R. Bhatnagar, “How robust
is a LoRa communication against impulsive noise?” in Proc. IEEE Int.
Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC 2020),
London, UK, 31 Aug.-3 Sept. 2020, pp. 1–6.

[15] M. K. Simon, “The Nuttall 𝑄-function: Its relation to the Marcum
𝑄-function and its application in digital communication performance
evaluation,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1712–1715, 2002.

6



Nikitin and Davidchack M-ary Aggregate Spread Pulse Modulation in LPWANs for IoT applications

[16] G. Baruffa, L. Rugini, L. Germani, and F. Frescura, “Error probability
performance of chirp modulation in uncoded and coded LoRa systems,”
Digital Signal Processing, vol. 106, p. 102828, 2020.

[17] Y. A. Brychkov, “On some properties of the Marcum Q function,” Integral
Transforms and Special Functions, vol. 23, no. 3, March 2012.

7


	I Introduction
	I-A Binary (``one bit per pulse") encoding

	II M-ary variants of ASPM
	II-A Single-sideband M-ary ASPM with constant-envelope pulses

	III Uncoded BER performance of M-ary ASPM in AWGN channel
	III-A Noncoherent M-ASPM
	III-A1 Value of noncentrality parameter 

	III-B Eb/N0 efficiency of coherent M-ASPM
	III-B1 Value of 
	III-B2 Unipolar signaling


	IV Simulated BER vs SNR performance of coherent and noncoherent 16-ASPM
	V Conclusion
	Appendix
	References

