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Abstract—The high overhead of the beam training process is
the main challenge when establishing mmWave communication
links, especially for vehicle-to-everything (V2X) scenarios where
the channels are highly dynamic. In this paper, we obtain
prior information to speed up the beam training process by
implementing two deep neural networks (DNNs) that realize
radar-to-communication (R2C) channel information translation
in a vehicle-to-infrastructure (V2I) system. Specifically, the first
DNN is built to extract the information from the radar azimuth
power spectrum (APS) to reconstruct the communication APS,
while the second DNN exploits the information extracted from
the spatial covariance of the radar channel to realize R2C
covariance prediction. The achieved data rate and the similarity
between the estimated and the true communication APS are
used to evaluate the prediction performance. The covariance
estimation method generally provides higher similarity, as the
APS predictions cannot always capture the mismatch between
the radar and communication APS. Compared to the beam
training method which exploits directly the radar APS without
an attempt to translate it to the communication channel, our
proposed deep learning (DL) aided methods remarkably reduce
the beam training overhead, resulting in a 13.3% and 21.9%
rate increase when using the communication APS prediction
and covariance prediction, respectively.

I. INTRODUCTION

MmWave technology has been deployed for large spectrum
demands of the fifth-generation (5G) mobile networks. To
support high throughput data transfer in 5G mmWave MIMO
systems, beamforming focuses the wireless signals towards
specific directions to compensate for the small antenna
aperture and achieve satisfying signal-to-noise ratios (SNR)
at the receiver (RX). However, when large antenna arrays
are deployed at both the transmitter (TX) and RX, the
overhead of the standard beam-training process is generally
high. The problem is especially pertinent to highly mobile
scenarios, e.g., V2X communication, where the mmWave-
vehicular channels are highly dynamic.

Efforts have been made in prior work to reduce the
overhead of the beam training process by exploiting out-
of-band information, which can be related to mmWave link
information. For example, spatial information at sub-6 GHz
can be extracted to help establish the mmWave link by
solving a weighted sparse signal recovery problem [1] or
for spatial covariance translation [2]. Previous works also
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propose sensor-aided beam training methods. Thus, local-
ization information obtained through radars and automotive
sensors is capable of assisting beam alignment [3], [4]. Prior
location information can also used to speed up the adaptive
channel estimation and beamforming stage [3]. An online
learning algorithm for position-aided beam pair selection and
refinement was proposed in [4]. LIDAR data can also be
used for beam selection based on deep learning as proposed
in [5]. Finally, radar covariance information has also been
used in previous work [6], [7] as a direct estimate of the
communication covariance to reduce beamtraining overhead.

Work described above has, however, some limitations. The
strategies proposed in [1], [2] require the state of the sub-6
GHz and the mmWave link to be strictly the same (both
are either line-of-sight (LOS) or non-line-of-sight (NLOS)),
while the location-aided search [3] and the LIDAR aided
beam selection [5] only reduce the effective beam search
areas in the presence of LOS propagation. Though the
online-learning algorithm in [4] works in NLOS, the time
complexity is compromised using the algorithm with lots of
iterations. Regarding the previous approaches that exploits
radar covariance information [6], [7], the main limitation
is the inherent mismatch between the true communication
covariance and the radar communication covariance used as
its estimate.

DL is promising for translating radar data to useful in-
formation about the communication channel, including mis-
matches between the propagation scenarios for radar and
communication. In this paper, we present two DNN archi-
tectures for vehicle-to-infrastructure (V2I) communication
link configuration that provide a mapping between the radar
and the communication spatial information. Our proposed
methods are applicable for NLOS scenarios, and we provide
system-level simulation results to validate our models. The
results show that the APS prediction method allows for
181 Mbps (13.3%) rate increase compared to the beam
training method exploiting directly the radar APS as a prior
without learning the mismatch (radar-only search), while the
covariance prediction method achieves a 12.4% higher rate
than the APS prediction strategy.

Notation: x, x, X represent a scalar, a column vector and
a matrix, respectively; xr, Xr denote the vector and matrix
related to the passive radar channel, and xc, Xc are related
to the communication channel.
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II. SYSTEM MODEL

Our model is based on the vehicle-to-infrastructure (V2I)
communication system described in [6]. In this system,
we have a roadside unit (RSU) on the side of a roadway
and an ego vehicle driving along the road. The RSU is
equipped with a passive radar uniform linear array (ULA)
and a communications ULA. The ego vehicle has 4 ULAs
for communications and 4 single-antenna automotive radars.
The communication arrays are placed in accordance with
3rd generation partnership project (3GPP) proposals [8], and
the radar arrays are placed at the front and rear corners to
model the mid range radar deployment of a Lexus LS or
a Toyota Mirai [9]. The passive radar array at the RSU will
use receptions of the automotive radar signals to estimate the
radar spatial covariance. This covariance will then be used to
configure the mmWave communication link.

A. Communication system model

The communication array on the RSU is equipped with
NRSU antennas and MRSU ≤ NRSU RF-chains. We let
A = 4 denote the number of communication arrays at
the ego vehicle. Each vehicle array has NV antenna ele-
ments and MV ≤ NV RF-chains. This hybrid architecture
supports Ns ≤ min{MRSU,MV} data-streams. The com-
munication link is a K subcarrier orthogonal frequency-
division multiplexing (OFDM) system, with modulated sym-
bols s[k] ∈ CNs×1 such that E[s[k]s∗[k]] = Pc

KNs
INs

and Pc

denotes the total average transmitted power. The baseband
precoder FBB[k] ∈ CMRSU×Ns and RF precoder FRF ∈
CNRSU×MRSU are combined to form the hybrid precoder
F[k] = FRFFBB[k] ∈ CNRSU×Ns on subcarrier k. The RF
precoder is realized using quantized phase shifters and is
the same across all subcarriers. Letting ζi,j be the quantized
phase, quantization is described as [FRF]i,j = 1√

NRSU
ejζi,j .

The total power constraint is enforced as
∑K
k=1 ‖F[k]‖2F =

KNs.
The baseband combiner W

(a)
BB[k] ∈ CMV×Ns and RF

combiner W
(a)
RF ∈ CNV×MV are combined to form the

hybrid combiner W(a)[k] = W
(a)
RFW

(a)
BB[k] ∈ CNV×Ns on

subcarrier k. The NV × NRSU frequency-domain MIMO
channel at array a ∈ A is denoted as H(a)[k]. Assuming
perfect synchronization, the received signal on subcarrier k
after processing is

y(a)[k] = W(a)∗[k]H(a)[k]F[k]s[k] + W(a)∗[k]n(a)[k], (1)

where n(a) ∼ CN (0, σ2
nI) is additive white Gaussian noise.

B. Channel model

The wideband channel is modeled geometrically with C
clusters. Each of the clusters experiences a mean time delay
τc ∈ R, mean angle-of-arrival (AoA) θc ∈ [0, 2π), and mean
angle-of-departure (AoD) φc ∈ [0, 2π). Assuming there are
Rc paths in each cluster, each path rc ∈ [Rc] has complex
gain αrc , relative time-delay τrc , relative arrival angle shift
ϑrc , and relative departure angle shift ϕrc . The array response

vectors are aRSU(φ) at the RSU and aV(θ) at the ego-
vehicle. The uniform spacing between array elements is ∆,
normalized to units of wavelength. The RSU response vector
and ego-vehicle response vectors are defined as

aRSU(θ) = [1, ej2π∆ sin(θ), · · · , ej(NRSU−1)2π∆ sin(θ)]T. (2)

aV(φ) = [1, ej2π∆ sin(φ), · · · , ej(NV−1)2π∆ sin(φ)]T. (3)

We will remove the notation (a) in the channel H for the
following equations. We will define the analog filtering and
pulse shaping effect at delay τ as p(τ). Tc will denote the
signaling interval. The delay-d multiple-input multiple-output
(MIMO) channel matrix H[d] is [6]

H[d] =

C∑
c=1

Rc∑
rc=1

αrcp(dTc − τc − τrc)×

aV(φc + ϕrc)a∗RSU(θc + ϑrc). (4)

If there are D delay-taps in the channel, the channel at
subcarrier k, H[k] is [6]

H[k] =

D−1∑
d=0

H[d]e−j
2πk
K d. (5)

C. Covariance model

We define the spatial covariance at the RSU on sub-
carrier k as RRSU[k] = 1

NV
E[H∗[k]H[k]]. By assuming

that the covariance does not change across subcarriers, we
can create an estimate by averaging over all subcarriers
R̂RSU = 1

K

∑K
k=1 R̂RSU[k]. Since we will only use covari-

ance estimates to design the analog precoder and combiner,
this is an appropriate assumption, as the baseband precoder
and combiner will be designed independently and account
for subcarrier-dependent covariance variations [6].

D. Radar system model

Each of the radars on the ego-vehicle transmit an arbitrary
baseband signal sr(t) modulated to a carrier frequency of fr.
This transmission is scaled to achieve a transmit power Pr,
denoted as

s(t) =
√
Prsr(t). (6)

The received signal on the Nr element antenna array on the
RSU will be denoted as a vector x(t) ∈ CNr . Experiencing
an attenuation of α and a time delay of τn during propagation
to the nth antenna, the received signal at antenna n is

[x(t)]n = αs(t− τn). (7)

We can model the propagation delay as the sum of two
components: one accounting for common distance τ and an-
other accounting for the difference among antenna elements
at the ULA τ ′n. This delay at antenna n is described as
τn = τ + τ ′n [10]. We assume our ULA has half-wavelength
spacing, so τ ′n = sin θ(n−1)

2fr
.

Then, we collect the I samples of the signal into a
matrix Y ∈ CNr×I . Let i ∈ {1, 2, · · · , I} denote the



sample index, and Tr denote the sampling time. With this
notation, the ith sample on the nth antenna can be written as
[Y]n,i = [x(iTr)]n, and the spatial covariance of the received
radar signal is estimated as

R =
1

I
YY∗. (8)

To simulate ideal covariance estimation, we let sr(t) = 1,
creating a pure sinusoid at our carrier frequency. Other
waveforms such as FMCW will introduce an angular bias
into the covariance estimate, but this can be corrected [6].

III. RADAR-TO-COMMUNICATION APS AND
COVARIANCE PREDICTION USING DL

A. Background and Motivation

As the radar and communication channels share the same
propagation environment, we aim to configure communica-
tion links based on the radar channel information to reduce
the beam-training overhead. Previous work [6], [7] directly
uses the radar covariance information as an estimate of the
communication covariance, without any attempt to translate it
to the communication channel, or in other words, without any
strategy to reduce the mismatch between the communication
and the radar channel. This inherent mismatch is due to the
different operation frequencies, different antenna geometry
and size for the communication and radar systems, and
different location of the communication and radar antenna
arrays, both at the BS and the vehicle.

Developing an analytical model of the mismatch between
radar and communication covariances is a challenging prob-
lem, especially in NLOS scenarios, due to the large amount
of parameters that impact the mismatch. Under these circum-
stances, we will show that a DNN is an architecture that can
learn the mismatch between radar and communication spatial
covariances from the data stored in an appropriate dataset,
without need of exploiting any complex mathematical model.

We propose and describe two DNNs, the first one for
R2C APS prediction, and the second one for R2C covariance
prediction. We design the DNNs separately because the
APS and the spatial covariance matrix contain a different
representation of the channel information, and it is important
to capture the local features like sharp peaks of the APS for
APS prediction, while there are barely obvious local spacial
coherence for the covariance matrix.

B. R2C APS Prediction

The APS gives the distribution of power as a function of
the azimuth angle. The beam search space can be reduced by
referring to the angles corresponding to the peaks in the com-
munication APS. In this work, we first acquire both the radar
and communication spatial covariance matrices and then
extract the APS from the covariance matrix [6]. Specifically,
we first construct a DFT matrix F = [f(θ1), ..., f(θN )], where
f(θi) = [e−j·0·2π∆ sin(θi), ..., e−j·(NRSU−1)·2π∆ sin(θi)]T and
θi is uniformly spaced from −π2 to π

2 . Then, the APS can
be obtained by extracting the diagonal elements of F∗RF,

i.e., d = diag(F∗RF). A DNN is designed to predict the
communication APS d̂c based on the radar APS dr to assist
beam search. As the APS has obvious local features and we
can observe a “shape” of the power distribution, the DNN
for APS prediction is mainly based on 1-D convolutional
layers for feature extraction. In this work, we use N = NRSU,
which satisfies the Nyquist sampling of the array response,
and accordingly dr(dc) ∈ R1×NRSU .

We design a DNN, denoted as NAPS(·), for R2C APS pre-
diction, which aims to approximate the true communication
APS with the known radar APS, i.e.,

d̂c = NAPS(dr;w), (9)

where dr and d̂c are the given radar APS and predicted com-
munication APS, and w represents the network parameters
of NAPS(·) to be trained.

As the APS is the power distribution over all the directions
of arrival, we can observe peaks on the direction where
the energy is highly concentrated. This is a kind of local
feature that we want to capture when linking the radar
and communication APS through NAPS(·), based on the
fact that radar and communication channels share the same
propagation environment. We apply 1-D convolutional layers
in the network, since convolutional layers are well suited for
capturing local features. In addition, as the components in the
APS are real and non-negative values, we use LeakyReLU
[11] as the activation function in the network, which helps
to avoid both dying ReLU and vanishing gradient problems
during the training process. The detailed architecture of the
network is shown in Fig. 1. It is like an Encoder-Decoder
network [12] where the MaxPooling layers reduce the input
dimension and extract the local features of the radar APS
efficiently, while the UpPooling layers are used to reconstruct
the communication APS based on the extracted features.
As the target for the prediction is to approximate the true
communication APS for beam training, the mean squared
error (MSE) between the predicted communication APS and
the true one is considered as the loss function. The loss on
the validation dataset is monitored during the training process
for the purpose of early stopping against overfitting.

C. R2C Covariance Column Prediction

The spatial covariance matrix contains redundant infor-
mation and it can be characterized by a featured column
after Toeplitz completion [6]. The idea is to project the
measured covariance matrix to a Toeplitz, Hermitian and
positive semi-definite cone. Thus, the projected matrix R̃ can
be fully described by its first column r ∈ CNRSU×1. The DNN
designed for covariance prediction outputs the estimation for
the column of the communication channel r̂c when the input
is the column of the radar covariance rr. Considering that the
column is structure agnostic (no special assumption needs to
be made about the input), we choose fully connected (FC)
layers as the basis for the network. The real and imaginary
parts of the column are treated as a 2-channel input for the



Fig. 1: An illustration of the architecture of NAPS. It is only convolutional without fully connected layers.

Fig. 2: An illustration of the architecture of Ncol.

network, and the output is also 2-channel containing the real
and imaginary parts of the predicted communication column.

A DNN denoted as Ncol(·) is designed for R2C covariance
column prediction. Thus, our proposed covariance column
prediction can be described as

r̂c = Ncol(rr;u), (10)

where u contains the network parameters to be trained.
The structure of Ncol(·) is different from NAPS(·). First, the
covariance column contains both real and imaginary parts,
thus we treat the two parts of rr as a 2-channel input for
the network. Second, as the covariance column is not like
the APS, which has obvious local spatial coherence, the
network is mainly built with FC layers, which offer learning
features from all the combinations of the features embedded
in the input. There are three hidden FC layers in the network,
which are sufficient considering the complexity of our pre-
diction problem while making the DL process computational-
friendly. Tanh is selected as the activation function, which
constrains the values to [−1, 1], since the input can be either
positive or non-positive values. The network architecture is
shown in Fig. 2, where the 2-channel output contains the real
and imaginary parts of r̂c.

The loss function L(u) is computed by transforming the
column back to the Toeplitz matrix R̃(r), calculating the
APS, and evaluating the MSE between the predicted and true
APS, i.e.,

L(u) = E{||F∗R̃(r̂c)F− dc||2}. (11)

The training process minimizes the loss on the training

dataset, and we monitor the loss on the validation dataset
for early stopping.

IV. RESULTS

In this section, we introduce the experimental setting and
present the numerical results on the performance of our radar-
aided communication link configuration using two different
DNNs. First, the DL prediction accuracy is evaluated in
Section IV-C using the similarity metric for the APS defined
in [6]. Then, the rate results are provided in Section IV-D to
verify that our methods reduce the beam training overhead
and achieve a rate increase when compared to the radar-
aided beamtraining method defined in previous work [6],
that ignores the mismatch between radar and communication
channels.

A. Dataset Generation

We use Wireless Insite to conduct ray-tracing simulations
to create the training and testing dataset. In the simulations,
the RSU has NRSU = 64 antennas in the communication
array, 64 antennas in the radar array, and the radar and
communication arrays are horizontally aligned and are verti-
cally separated by 10 cm. There are Nv = 16 antennas per
communication array on the vehicles. The ULAs used in both
the communication and radar systems have half-wavelength
inter-element spacing. The RSU arrays are down-tilted and
communicate with vehicles in a 60 m length section of the
roadway. The communication system operates in the 73 GHz
band with a bandwidth Bc = 1 GHz. We choose the number
of subcarriers K = 2048 and the transmit power Pc = 24
dBm. The raised-cosine filter with a roll-off factor 0.4 is
used for pulse shaping. Accordingly, the number of time-
domain taps required can be calculated to be 512. The radar
system operates in the 76 GHz band. The transmit power Pr
is 30 dBm and the bandwidth Br is 1 GHz. Other parameters
regarding the vehicles and the urban environment follow the
deployment in [6].

Each ray-tracing simulation outputs a communication
channel, a communication covariance matrix measured at
the RSU, and a radar covariance matrix also measured at
the RSU. The dataset was created from 16000 of these
simulations. These were randomly divided into a training set
of 9600 entries, a validation set of 2400 entries, and a test
set of 4000 entries.



(a) Good APS prediction (b) Bad APS prediction

Fig. 3: Good and bad R2C APS (dB scale) prediction
examples with the similarity value of (a) 0.9958 and (b)
0.7290 between the predicted and true communication APS.

B. DL Simulation Settings

The APS is usually sparse, so we transform the APS to
a logarithmic scale. This way, the neurons in the DNN for
APS prediction could be effectively activated for accurate
approximations. For the covariance column prediction, we
simply normalize the dataset to [-1,1]. For each one of the
two methods, the training batch size is set to 64, and Adam
[13] is used as the optimizer with the learning rate set to
0.001. The training process for each method takes 1000
iterations with early stopping.

C. Similarity Performance of the DNN Predictions

The similarity metric [6] compares two APS’s d1 and
d2 within a given window L, i.e., S1→2(L) =

∑
i∈I1

d2[i]∑
i∈I2

d2[i] ,
where I1 (I2) contains indices of L largest components
of d1 (d2). This similarity metric rather than the MSE is
used to evaluate the prediction accuracy, because the angles
corresponding to the largest components of the APS are of
particular interest for the beam search process. We evaluate
the similarity between the estimated communication APS
from the two prediction methods and the true communication
APS. As an example shown in Fig. 3 with L set to 5,
higher similarity (Fig. 3a) indicates that the predicted APS
and the true APS align better. While the APS prediction
method cannot always capture the mismatching in the angle
shift between the radar and communication APS (Fig. 3b),
covariance column predictions capture the mismatching and
result in accurate communication APS estimations that align
with the true APS, as shown in Fig. 4, where all the samples
are randomly selected from the test dataset.

Fig. 5 shows the cumulative distribution function (CDF) of
similarity values (L = 5) on the test dataset for the two pro-
posed methods, with the similarity between the original radar
APS and the true communication APS as the benchmark. The
benchmark shows that the radar and the communication APS
do not necessarily have high similarity, while our proposed
APS prediction improves the similarity performance where
the values are generally ≥ 0.6. The covariance column
prediction method outperforms the APS prediction method as
high similarity occurs with higher frequency, specifically, the
10th-percentile similarity value achieves 0.9. The results are

reasonable since for APS predictions, the DNN mainly cap-
tures the magnitude properties for the prediction, while the
covariance column contains more completed inner features of
the covariance matrix including the phase shift information.

D. Rate Results

We conduct an experiment to study how the R2C predic-
tions assist establishing an mmWave communication link. In
this experiment, we consider a single stream transmission
(Ns = 1) with the transmit power of 24 dBm using 2048
subcarriers. The bandwidth for the transmission is 491.52
MHz. We adopt the codebook design based on 2-bit phase-
shifters [1], while the region of the interest is a 180◦ sector
spanning the angles [−π2 ,

π
2 ). Thus, the nth codeword in the

TX is 1√
Nv

av(arcsin( 2n−Nv−1
Nv

)) and the codeword in the
RX is defined similarly. We use the rate metric [6] for rate
calculation considering a highly dynamic channel with the
coherence time of 4NRSUTsymNv (s), where Tsym = 4.7667
(µs) is the symbol period.

Exhaustive search and radar-only search are treated as the
benchmarks to compare with the two methods exploiting DL.
For exhaustive search, the training overhead is NRSU ×Nv
OFDM blocks, and the optimal beam-pair is determined by
which brings the largest absolute value of the received signals
over all the sub-carriers. Radar-only search reduces the beam
search size at RX from 64 to 12, which finds the best
combiner from the top 12 beams whose angles are close to
the reference angle corresponding to the largest entry of the
radar APS. The beam search size of 12 is found heuristically
to maximize the rate by minimizing the likelihood of missing
the optimal beam and minimizing the overhead. Similarly, we
use a search size of 12 for the APS prediction method, the
only difference is the reference angle which corresponds to
the largest component of the predicted communication APS
instead of the original radar APS. As the covariance column
prediction has the best similarity performance, the search
size could be further reduced to 2 according to the estimated
communication APS from the prediction.

The rate results are fully based on the test dataset. The
average rate of the samples in the test dataset is used for
performance comparison for each method. As shown in Fig.
6, exhaustive search achieves the lowest rate comparing with
the other three methods, as it needs to allocate more resources
to training blocks. The beam search based on R2C APS pre-
diction requires similar training overhead as radar-only search
due to the same beam search size, but later it achieves a rate
of 1.450 Gbps, which is 200 Mbps (13.3%) higher than the
rate achieved by radar-only search. The covariance column
prediction method outperforms all other three methods by
achieving the final rate of 1.63 Gbps (21.9% higher than
radar-only search) with the lowest training overhead.

Linking the rate results to the similarity performance,
higher similarity in the APS from the DNN predictions
implies more accurate R2C translation, which directly con-
tributes to the efficient beam search.



Fig. 4: Examples of resulted communication APS from R2C covariance column prediction where the samples are randomly
chosen from the test dataset. Column prediction captures the angle shift information and the resulted communication APS have
high similarity with the true ones (shown on each subplot).
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Fig. 5: CDF of the similarity between the predicted commu-
nication APS and the true APS for the test dataset.
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Fig. 6: Rate results as a function of the coherence time. The
beam search size is 12 for radar-only and APS prediction-
based beam training and 2 for covariance prediction-based
beamtraining.

V. CONCLUSIONS

In this paper, we proposed two DNNs, one for R2C APS
translation and another one for R2C covariance mapping. The
predicted communication APS and covariance were used as
prior information when establishing mmWave in a vehicular
setting. The 10th-percentile value of the similarity between
the estimated and the true communication APS achieves 0.8
and 0.9 for the APS prediction strategy and the covariance

prediction method, respectively. Based on the high similarity,
the beam training overhead has been significantly reduced,
and the rate is increased by 13.3% and 21.9% using the APS
and the covariance translation method when comparing with
the rate results based on directly exploiting the radar APS
without any mapping between the radar and communication
channels.
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