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Oliver Brüggemann†, Robert Schober*, and Werner Haselmayr†

*Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
†Johannes Kepler University Linz (JKU), Linz, Austria

Abstract—Molecular communications is a promising frame-
work for the design of controlled-release drug delivery systems.
In this framework, drug carriers are modeled as transmitters, the
diseased cells as absorbing receivers, and the channel between
transmitter and receiver as diffusive channel. However, existing
works on drug delivery systems consider only simple drug carrier
models, which limits their practical applicability. In this paper, we
investigate diffusion-based spherical matrix-type drug carriers,
which are employed in practice. In a matrix carrier, the drug
molecules are dispersed in the matrix and diffuse from the
inner to the outer layers of the carrier once immersed in a
dissolution medium. We derive the channel response of the matrix
carrier transmitter for an absorbing receiver and validate the
results through particle-based simulations. Moreover, we show
that a transparent spherical transmitter, with the drug molecules
uniformly distributed over the entire volume, is as special case
of the considered matrix system. For this case, we provide
an analytical expression for the channel response. Finally, we
compare the channel response of the matrix transmitter with
those of point and transparent spherical transmitters to reveal
the necessity of considering practical models.

I. INTRODUCTION

Molecular communications (MC) considers the transmis-
sion of information using biochemical signals over multiple
scales [1]. Over the past few years, the MC paradigm was
exploited to gain more insight into the operation of biological
systems, to control the behavior of such systems, and for the
design and implementation of synthetic MC systems in the
macro- and micro-/nanoscale [2]. Human-made MC systems
are expected to have applications in biomedical, environmen-
tal, and industrial engineering [1], [2].

The MC framework is a promising approach to design
drug delivery systems, where nanoparticle carriers deliver
drug molecules to diseased cell sites and release them at
the right time and rate [3]–[6]. This reduces potential side
effects on non-target sites and helps mitigate toxicity and
drug wastage, compared to conventional treatment. Based on
the MC paradigm, drug carriers are modeled as transmitters
(TXs), diseased cells are modeled as receivers (RXs), and
the drug propagation between TX and RX is modeled as a
random channel [3], [4]. The MC related research on drug
delivery systems can be categorized into three areas: i) target
detection aims to develop methods for localization of diseased
cells and moving the drug carriers towards them [7]; ii) drug
propagation in the circulatory system aims to develop models
for the distribution of drug molecules or carriers over time
for the optimization of drug injection [8]; iii) controlled local
drug release aims to design an optimum controlled-release
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profile, assuming that the drug carriers are already near the
diseased cells [9]–[13]. In this work, we focus on controlled
local drug release. Although the existing works on controlled-
release drug delivery systems consider various effects, such as
mobility [12] and limited reservoir capacity [10], [11], only
simple models for the drug carriers have been considered,
such as point and simple spherical TXs [14]. Hence, the
objective of this work is to introduce and assess models for
practical drug carriers. In particular, we consider a diffusion-
based spherical matrix-type drug carrier [15]. In such matrix
systems, the drug molecules are dispersed in a matrix, usually
a polymer1. The matrix can be either homogeneous or porous
and the release of the drug molecules is mainly influenced by
the diffusion in the matrix. The drug molecules are dissolved
from the matrix and diffuse from the inner to the outer layers
of the carrier before propagating further into the surrounding
medium. Since the diffusion distance increases for the drug
molecules located further inside the carrier, the release rate
is not constant and decreases over time. There are various
models for the drug molecule release from homogeneous and
porous matrix systems, see [16] for a comprehensive overview.
However, these models do not consider the propagation of the
released molecules into the surrounding environment towards
a RX, which is crucial for the investigation of drug delivery
systems based on the MC paradigm.

In this paper, we investigate a diffusive MC system
with a homogeneous matrix system as TX and an absorb-
ing RX (e.g., diseased cell). Our results provide the basis for
the design of practical controlled-release drug delivery sys-
tems. Our main contributions can be summarized as follows:

• We discuss and analyze existing models for the release of
molecules from spherical homogeneous matrix systems.

• We derive an expression for the channel response (CR)
for a matrix TX and an absorbing RX in a three-
dimensional (3D) unbounded environment.

• For the special case where molecules are instantaneously
released from the matrix TX, we provide an analytical
expression for the CR. This result corresponds to the
CR of a transparent spherical TX, which was discussed
in [14], but a solution could only be obtained by numer-
ical integration.

• We develop a particle-based simulation (PBS) for the
matrix TX to verify our theoretical results and compare
the CR and the absorption rate of the matrix TX with
those of point and transparent spherical TXs.

1Polymers are mostly used as material due to their versatile properties [15].
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Fig. 1: Schematic release of a dispersed drug from a spherical non-
erodible homogeneous matrix system (shown in 2D).

II. SPHERICAL HOMOGENEOUS MATRIX SYSTEM

In this section, we present different models for the release
of molecules from spherical homogeneous matrix systems,
which serve as realistic TX models for the gradual release
of molecules. First, we provide a mathematical formulation
of the molecule dissolution process from the matrix. Then,
we present two promising solutions from the literature on
controlled drug release [17], [18], which are utilized as TX
models in Section III. Finally, we propose a PBS model for
the gradual molecule release from matrix systems, which is
used in Section IV for the validation of the theoretical results.

A. System Description and Preliminaries
In the following, we discuss models for the release process

of molecules from a spherical homogeneous non-erodible
matrix system. Fig. 1 shows a two-dimensional schematic of
this process. The matrix of radius a in Fig. 1 is initially loaded
with undissolved molecules (dark blue). The release process
in a solution is modeled by a diffusing front R(t) that defines
the time dependent dissolution of molecules in the matrix [19].
Dissolved molecules diffuse inside the matrix until they enter
the surrounding medium at x = a. For the modeling of the
release process, we make the following assumptions:
A1) Due to the homogeneous release from the spherical

matrix into an unbounded environment, the 3D system
can be reduced to a one-dimensional system as both
angular components can be neglected [17].

A2) Since the molecule carrying matrix is non-erodible,
the impact of an additional inward moving eroding
front (see [17, Fig. 1]) is negligible.

A3) The moving boundary R(t) (dashed line in Fig. 1) sep-
arates undissolved dispersed molecules (dark blue) and
dissolved molecules (light blue).

The molecule release rate from the matrix mainly depends
on the ratio A/Cs, with initial loading per unit volume A and
solubility in the surrounding medium Cs [19]. Assuming a
given initial loading A, molecules dissolve slowly for small
values of solubility Cs (high A/Cs) and fast for large values
of Cs (small A/Cs). A special case is A = Cs, i.e., A/Cs = 1,
where all molecules are dissolved and released instantaneously
when the carrier is placed into the medium. This case is
equivalent to the instantaneous release of molecules from a
transparent sphere, which has been discussed in [14].

B. Gradual Release Process
In the following, we investigate models for the gradual

and instantaneous release of molecules, i.e., A/Cs ≥ 1. After

providing a mathematical description of the problem, we
review two models from the literature on controlled drug
release that are promising for their application as TX models
in the MC context.

Based on assumptions A1) – A3), the release process in
Fig. 1 can be described by a moving boundary problem [19].
In particular, for a spherical homogeneous non-erodible matrix
system with initial loading A and solubility Cs, the concentra-
tion C(x, t) in the matrix can be described by the following
partial differential equation [17, Eq. (1)]

∂C

∂t
= x−2

∂

∂x

(
x2D

∂C

∂x

)
, (1)

where D is the diffusion coefficient of the surrounding disso-
lution medium. As shown in Fig. 1, x is the radial coordinate,
the center of the sphere is at x = 0 and the surface at x = a.
Assuming equilibrium between the moving diffusion front and
the environment, the boundary conditions are given by [17]

C
∣∣
x=a

= 0, C
∣∣
x=R(t)

= Cs, (2)

D
∂C

∂x

∣∣
x=R(t)

= (A− Cs)
∂R

∂t
, (3)

where R(t) is the time-dependent position of the diffusion
front, with initial position R(0) = a. Moreover, the first
condition in (2) describes the perfect sink condition.

An analytical solution of the moving boundary prob-
lem (1)–(3) has not yet been reported. However, a numerical
solution has been presented in [20] where the finite difference
method (FDM) is used to solve the moving boundary problem,
which provides very accurate results. Therefore, the solution
from [20] is used as ground truth for the numerical evaluation
in Section IV. However, the FDM requires high computational
effort and, thus, different approximate analytical solutions have
been presented in [17]–[20]. All solutions have in common
that their accuracy is rather poor for small A/Cs values,
corresponding to a fast release process. But for larger A/Cs

values, which are typically of interest in practice, the accuracy
of the approximate solutions improves [16] .

A promising solution is presented in [17], as it is valid for
the widest range of A/Cs ratios. It is obtained by normalization
of (1)–(3), and the application of a double-integration heat
balance integral2 approach [21]. This results in an analytical
expression for the amount of molecules M that are adsorbed
at the surface of the matrix (perfect sink), which is identical to
the amount of molecules released into the surrounding medium
at x = a. The fraction of released molecules can be expressed
as a function of the normalized diffusion front position δ =
1− R/a and is given by [17, Eq. (28)]

M(δ)

M∞

∣∣∣∣
A
Cs
≥1

=
[
1− (1− δ)3

](
1− Cs

A

)
+

3δ
Cs

A

[(
a1 +

a2
2

+
a3
3

)
−
(a1

2
+
a2
3

+
a3
4

)
δ
]
, (4)

2The individual steps of the solution are not shown here for brevity, but
are given in [17].



where M∞ = A 4
3πa

3 is the total amount of available
molecules and coefficients a1, a2, and a3 are given by [17,
Eqs. (19), (19a)]

a1 = 1, a2 = −a3 − 1, (5)

a3 = λ−
√
λ2 − 1, λ = 1−

(
1− A

Cs

)
(1− δ). (6)

We note that the result in (4) takes into account that dissolved
molecules are reflected at the undissolved core of the ma-
trix. Moreover, when the diffusion front reaches x = 0 all
molecules are dissolved and (4) should yield one for δ = 1,
but it gives M(1)/M∞ = 1 − Cs/(4A). This confirms the
previously mentioned approximate character of (4) [17], where
the accuracy increases with increasing A/Cs. Complementary
to (4), the normalized position of the diffusion front δ can be
expressed as a function of the time as follows [17, Eq. (25)]

Dt

a2
=

1

12

[
6
A

Cs
− 4− a3

]
δ2 − 1

3

(
A

Cs
− 1

)
δ3. (7)

Setting δ = 1 in (7) yields the time duration trel needed for
all molecules to be released from the matrix

trel =
a2

D

(
1

6

A

Cs
− 1

12

)
. (8)

To describe the amount of molecules released over time, (4)
and (7) have to be evaluated simultaneously. Exploiting that
the diffusion front δ ranges from 0 to 1, i.e., R(0) = a
and R(trel) = 0, allows to calculate the number of released
molecules M at time t based on (4) and (7). We note that (4)
and (7) are only valid for t ∈ [0, trel], because t > trel would
correspond to a negative position of the diffusion front R(t),
which is physically not possible.

For the design of MC systems using the matrix system as
practical TX model, it is desirable to describe the normalized
number of released molecules M/M∞ in (4) as an explicit
function of time. In [18], an approximate function for the
release over time has been proposed for large values of A/Cs.
Assuming A/Cs � 1 allows to simplify (7) such that it can be
solved for the non-normalized diffusion front position R(t) in
terms of a cubic root [18, Sec. 2.3]

R

a
=

1

2

(
1− 1

3

Cs

A

)
+

(
1+

1

3

Cs

A

)
cos

(
arccos

(
12CsD

Aa2 t− 1
)

+ 4π

3

)
, (9)

t ∈ [0, trel]. Applying the same assumption, the normalized
number of released molecules (4) can be simplified as [18]

M(t)

M∞

∣∣∣∣
A
Cs
�1

= 1−
(
R

a

)3

+
1

2

Cs

A

[
2

(
R

a

)3

−
(
R

a

)2

−R
a

]
, (10)

t ∈ [0, trel]. An explicit closed-form expression for the
normalized number of released molecules as a function of time
t can be obtained by inserting (9) into (10). The validity of the
simplified model (9), (10) is further discussed in Section IV.

Algorithm 1: PBS to determine the number of
molecules released from matrix systems

1 Distribute molecules uniformly in the spherical TX
2 Determine diffusion front R(t) using FDM [20]
3 for k ← 1 to K do
4 for m← 1 to M∞ do
5 if molecule is not marked as released then
6 if dm(tk) ≥ R(tk) then
7 rm(tk+1) = rm(tk) +N (0, 2D∆tI)
8 if dm(tk) < R(tk) then
9 rm(tk+1) = rm(tk) // reflection

10 end
11 end
12 end
13 if dm(tk) ≥ a then
14 M(tk) = M(tk) + 1
15 Mark molecule as released
16 end
17 end
18 end

C. Instantaneous Release Process
Next, we consider the special case A/Cs = 1, where the

molecule solubility Cs is equal to the initial loading A. This
means the diffusion front immediately reaches the center of
the matrix. This is equivalent to the case, where molecules are
distributed uniformly over the entire volume of a transparent
sphere and are then instantaneously released. Therefore, the
release process is no longer a moving boundary problem, and
simpler mathematical descriptions can be used instead.

The number of molecules released from a sphere, uniformly
filled with molecules, into a bounded release medium is
given in [22, Eq. (6.30)]. This solution can be extended
to an unbounded release medium, which corresponds to the
normalized number of released molecules of a matrix for the
special case A/Cs = 1 [18]

M(t)

M∞

∣∣∣∣
A
Cs

=1

= 1− 6

π2

∞∑
n=1

1

n2
exp (γnt) , (11)

where γn = −Dn2 π
2

a2 .

D. Particle-Based Simulation
To validate the expressions for the number of molecules re-

leased from matrix systems presented in (4), (10), and (11), we
have developed a PBS model. The simulator was implemented
in the programming language Python and time-consuming
parts were realized using Cython. The individual simulation
steps are summarized in Algorithm 1. The simulation accounts
for reflections at the undissolved matrix core, assuming that
the molecule bounces back to its previous position [23]. This
was also taken into account for the derivation of the theoretical
results presented above. After the simulation, the results from
multiple simulation runs are accumulated and averaged.

To keep the presentation of Algorithm 1 concise we use the
following definitions: The time step is denoted by ∆t and the
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Fig. 2: System model for the molecule release from a spherical
matrix in a 3D unbounded environment with an absorbing RX.

discrete time instances are defined by tk = k∆t. Moreover,
the maximum number of time steps is given by K. The
position of the mth molecule at time tk is defined by rm(tk)
and its Euclidean distance to the origin of the sphere rs
is calculated as dm(tk) = ||rm(tk) − rs||2. The molecule
movement is modeled as random walk, where the molecule
position is updated by N (0, 2D∆tI). Here, N (µµµ,ΣΣΣ) denotes
a multivariate Gaussian distribution with mean vector µµµ and
covariance matrix ΣΣΣ, and 0 and I denote the all-zero vector
and the identity matrix, respectively.

III. CHANNEL RESPONSE FOR SPHERICAL MATRIX

In Section II, the gradual and instantaneous release of
molecules from a spherical matrix have been analyized, assum-
ing a perfect sink condition at the matrix boundary (see (2)).
In the following, we extend this study and derive the CR of a
spherical matrix TX and an absorbing RX in an unbounded 3D
environment, which is illustrated in Fig. 2.

The models presented in Sections II-B and II-C characterize
the normalized number of released molecules from the matrix
surface at x = a. Therefore, the CR of the matrix TX
can be derived by combining the molecule release of the
matrix system and the CR for the instantaneous release of
molecules from the surface of a transparent spherical TX. For
the following analysis, we assume that, once molecules are
released into the surrounding medium, the matrix does not
impede the diffusion of the molecules, i.e., reflections at the
TX are not considered3.

A. Channel Impulse Response - Surface Transmitter

Assuming instantaneous release of the molecules from the
surface of a sphere at t = 0, the hitting probability of the
molecules at an absorbing RX of radius rRX is given by [24,
Eq. (9)]

ps(t) =
2ρarRX

d

√
πD

t

[
exp

(
−β1
t

)
−exp

(
−β2
t

)]
, (12)

where β1 = (a+rRX)(a+rRX−2d)+d2
4D and β2 =

(a−rRX)(a−rRX+2d)+d2

4D . Here, the distance between TX
and RX is denoted by d (see Fig. 2), and ρ =

(
4πa2

)−1
. A

proof for (12) is given in [24, Appendix B].

3Even if a reflective TX model would be more realistic, a transparent TX
surface is an appropriate approximation, see [14].

B. Gradual Release Process
To obtain the CR for the gradual release, i.e., A/Cs > 1,

of molecules from a matrix system, we have to extend the
approximate solution in (10) to the interval t ∈ [0,∞).
Exploiting that the normalized number of released molecules
M/M∞ should remain 1 when t ≥ trel, we can express the
amount of molecules released from the matrix surface as

M̄(t)
∣∣

A
Cs
�1

=M(t)
∣∣

A
Cs
�1

(ε(t)− ε(t− trel)) +M∞ε(t− trel),
(13)

where ε(t) denotes the unit step function. To obtain the number
of molecules absorbed at the RX, (13) has to be convolved
with the hitting probability (12), i.e.,

N(t)
∣∣

A
Cs
�1

=

∫ t

0

ps(t− ξ)M̄(ξ)
∣∣

A
Cs
�1

dξ. (14)

Due to the complex structure of M(t) in (10), it is not possible
to find a closed-form solution for (14). Hence, to study the
influence of a gradual release of molecules from the matrix
system on the CR, (14) is evaluated numerically in Section IV.

C. Instantaneous Release Process
To obtain the CR for an instantaneous release from the

matrix TX (A/Cs = 1), (11) has to be convolved with the
hitting probability in (12), i.e.,

N(t)
∣∣

A
Cs

=1
=

∫ t

0

ps(t− ξ)M(ξ)
∣∣

A
Cs

=1
dξ. (15)

The evaluation of the integral leads to an analytical expression
for N(t) that is given in (16) where erf(x) and erfc(x) denote
the error function and complementary error function, respec-
tively. Eq. (16), shown at the top of the next page, specifies the
number of absorbed molecules in response to an instantaneous
release from a spherical matrix with A/Cs = 1. We note that
(15) corresponds to the CR for an instantaneous release from
a transparent spherical TX that has been discussed in [14],
based on a point TX model. However, in [14], a solution for
N(t) could only be obtained by numerical integration.

IV. NUMERICAL RESULTS

In the following, we numerically investigate the influence of
the considered practical matrix TX model on the CR of a diffu-
sive MC system with an absorbing RX (see Fig. 2). Moreover,
we compare the CR of the matrix TX with those of a point
TX and a transparent spherical TX [14]. For the validation
of the CR expressions for the matrix TX, we embedded the
proposed PBS model of the matrix system (see Section II-D)
in the PBS model of a diffusive MC system with an absorbing
RX [14]. All results from PBS are obtained with a time step
of ∆t = 1 · 10−6s and averaged over 100 realizations.

For the evaluation, we adopt the parameters used in [14]:
We consider TX and RX with radii a = rRX = 1µm and
distances d = {2, 5}µm. The diffusion coefficient of the
released molecules is D = 10−9m2 s−1. Initially the different
TX types are loaded with N = 104 molecules, i.e., the
molecules are uniformly distributed over the entire volume
or are concentrated in a point. At t = 0, the molecules are
instantaneously released from the point TX and the spherical



N(t)
∣∣

A
Cs

=1
=
M∞rRX

πad

√
πD

[√
t

(
exp

(
− β1
t

)
−exp

(
− β2
t

))
+
√
π

(√
β1erf

(√
β1
t

)
−
√
β2erf

(√
β2
t

)
+
√
β2−

√
β1

)]
+

∞∑
n=1

3M∞rRX

√
D

2dan2π2√γn

{
exp

(
γnt−2

√
γnβ1

)[
exp

(
4
√
γnβ1

)
· erfc

(√
γnt+

√
β1
t

)
+ erfc

(√
β1
t
−
√
γnt

)]
− exp

(
γnt−2

√
γnβ2

)[
exp

(
4
√
γnβ2

)
· erfc

(√
γnt+

√
β2
t

)
+ erfc

(√
β2
t
−
√
γnt

)]}
(16)
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Fig. 3: (a) Normalized release M(t)/M∞ over normalized time Dt/a2, and (b) corresponding time dependent position of diffusion front δ.
The FDM solution according to [20], the results from PBS according to Section II-D, the approximate solutions in (4), (7) and (9), (10),
and the solution for A/Cs = 1 in (11) are considered.

TX and gradually released from the matrix TX. Moreover,
we consider the following ratios of initial loading and drug
solubility A/Cs = {1, 25, 100, 400}.

A. Molecule Release Process

First, we compare the models for the release of molecules
from the matrix as described in Section II. In Fig. 3a, the
normalized number of released molecules M/M∞ is plotted
over normalized time Dt/a2 for different A/Cs values. We ob-
serve that the amount of molecules released until a certain time
decreases with increasing A/Cs, i.e., the release rate reduces
with increasing A/Cs. Fig. 3b shows the corresponding time
dependent position of the diffusion front δ derived from (7)
and (9), respectively, and reveals that the speed of the diffusion
front decreases with increasing A/Cs. From both plots in Fig. 3,
we observe that the exact FDM solution from [20] (diamond
markers), the results from the proposed PBS according to
Section II-D (circle markers), and the approximate solutions
(4), (7) (red curves) and (10), (9) (triangle markers) are in
excellent agreement for all A/Cs > 1.

However, for A/Cs = 1, we observe that the approximate
solution (4) is not applicable as can be seen from the zoomed
area in Fig. 3a. In this case, the approximate solution does not
reach 1, i.e., M(1)

M∞
= 1− Cs

4A = 0.75, and is not able to capture
the complete dynamics of the release process. Nevertheless,
as A/Cs = 1 corresponds to an instantaneous release from a
transparent sphere, (11) can be applied instead of (4) and is
in excellent agreement with the numerical results, as shown
in Fig. 3a (dashed blue).

B. Channel Response

In Fig. 4, we investigate the CR of a matrix TX for an
absorbing RX as derived in Section III. The figure shows the
number of molecules received by an absorbing RX for d =

10−4 10−3 10−2 10−1100
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Fig. 4: Channel responses for an absorbing RX due to a point
release (dash dotted), a spherical release (triangle markers), and
matrix releases for different A/Cs-values (blue and black lines) for
d ∈ {2, 5}µm. Results from PBS are shown as circle markers.

{2, 5}µm and different types of TXs, i.e., a point TX (dash
dotted curves), a transparent sphere TX (triangle markers) [14],
and a matrix TX with A/Cs = 1 (Eq. (16), dashed blue) and
A/Cs � 1 (Eq. (14), black curves). The results from PBS are
shown by circle markers for validation.

First, we observe that the results for the point, transparent,
and matrix TX are in excellent agreement with the results from
PBS for all considered scenarios. Furthermore, the differences
between the considered TX types are more pronounced when
the distance between TX and RX is smaller. The behavior of
all TX types becomes similar as time increases. For A/Cs = 1,
we observe that the CR (16) is equivalent to the release from
a transparent sphere. This confirms that (16) is an analytical
description for the spherical TX model proposed in [14].

Moreover, we observe that for the point TX, it takes longer
for the first molecules to arrive at the RX compared to the
spherical and matrix TXs. This is because all molecules are
initially located at the center of the TX and not in the outer
layers of the sphere.
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Fig. 5: Absorption rate at the RX due to a point release (dash
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for different A/Cs (blue and black lines) for d = 5µm.

For the matrix TX, we also observe that the absorption of
molecules at the RX slows down for increasing A/Cs values.
The reason for this behavior is that for higher A/Cs-values, the
molecules dissolve more slowly from the matrix (see Fig. 3a).
Moreover, for increasing A/Cs, we observe that the delivery
of molecules by the matrix TX is more spread over time
compared to the point and spherical TX. This behavior is
desirable for drug delivery systems where the amount of drugs
absorbed by the RX (e.g., the diseased cell) should stay in a
desired range during the delivery process [5, Fig. 1].

We investigate this behavior more in detail in Fig. 5, which
shows the absorption rate4 of the RX for different TX types
and d = 5µm. We observe that the absorption rates for the
point, transparent, and matrix TX (A/Cs = 1) are nearly
identical. In particular, the absorption rate is high for small
t, but decreases very fast as the molecule release at the TX
was instantaneous. For the gradual release of molecules by
the matrix TX (A/Cs > 1), we observe that the absorption
rate is spread over time, because the release time (8) of the
matrix TX scales with A/Cs. This reveals the importance of
parameter A/Cs for the design of drug delivery systems with
practical carriers. In particular, the amount of delivered drugs
over time can be controlled by A/Cs, i.e., by loading A and
drug solubility Cs.

V. CONCLUSIONS

In this paper, we have modeled a practical polymer-based
drug carrier by a spherical homogeneous matrix system. We
discussed the gradual molecule release from the matrix, which
is based on a moving boundary separating dissolved and
undissolved molecules. We derived expressions for the channel
response of a matrix TX for an absorbing RX in an unbounded
diffusive environment. Moreover, we derived an analytical
expression for the channel response for the special case of
an instantaneous release from the matrix, which is equivalent
to the channel response of the well-known transparent spher-
ical TX. Our numerical evaluations showed that the channel
response of the matrix TX is significantly different from that
of the point TX and the transparent spherical TX. In particular,
matrix TXs spread the release and therefore also the absorption
of molecules over time. This reveals the necessity to take
practical drug carrier models into account for the design of
controlled-release delivery systems. All presented results have

4The absorption rate is defined as the time derivative of the number of
received molecules, i.e., N̄ = ∂/∂tN .

been validated by particle-based simulations. Interesting topics
for future work include considering a reflective matrix TX
surface and mobility of the TX.
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