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Abstract—Non-terrestrial networks (NTN), encompassing space
and air platforms, are a key component of the upcoming sixth-
generation (6G) cellular network. Meanwhile, maritime net-
work traffic has grown significantly in recent years due to sea
transportation used for national defense, research, recreational
activities, domestic and international trade. In this paper, the
seamless and reliable demand for communication and computation
in maritime wireless networks is investigated. Two types of
marine user equipment (UEs), i.e., low-antenna gain and high-
antenna gain UEs, are considered. A joint task computation and
time allocation problem for weighted sum-rate maximization is
formulated as mixed-integer linear programming (MILP). The
goal is to design an algorithm that enables the network to
efficiently provide backhaul resources to an unmanned aerial
vehicle (UAV) and offload HUEs tasks to LEO satellite for blue
data (i.e., marine user’s data). To solve this MILP, a solution
based on the Bender and primal decomposition is proposed. The
Bender decomposes MILP into the master problem for binary task
decision and subproblem for continuous-time resource allocation.
Moreover, primal decomposition deals with a coupling constraint
in the subproblem. Finally, numerical results demonstrate that the
proposed algorithm provides the maritime UEs coverage demand
in polynomial time computational complexity and achieves a near-
optimal solution.

Index Terms—Sixth-generation networking, non-terrestrial net-
works, satellite access networks, maritime data computation,
maritime Internet-of-Things, Bender decomposition.

I. INTRODUCTION

Non-terrestrial networks (NTN), composed of space and
airborne platforms, will be a key component of the upcoming
sixth-generation (6G) wireless cellular systems as a means to
provide the ubiquitous and ultra-high capacity wireless connec-
tivity [1]. As a supplement to terrestrial infrastructure, space,
and airborne stations have enormous potential for promoting
flexible global connectivity in densely populated areas, cost-
effective network coverage in public safety situations, last-mile
service delivery, and backhaul in remote, rural, and difficult-to-
access zones [2].

Meanwhile, maritime transportation is rapidly emerging as
a significant component of our transportation infrastructure
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for domestic and international trade, national security, scien-
tific research, aquaculture (fastest-growing food sector), and
recreational activities [3]. The maritime world faces many
challenges [4]. Therefore, the United Nations coined the term
blue economy to improve human well-being and social equity
while significantly reducing environmental risks and ecological
scarcities related to oceans. Growing global trade requires more
and more ships, many of which have to safely and produc-
tively sail international waters and harbors. Reliable maritime
transportation depends on seamless connectivity with terrestrial
networks to ensure accurate and intelligent navigational com-
munications. Similarly, the maritime internet-of-things (M-IoT)
applications are rapidly increasing [5]. Therefore, NTN is a
suitable candidate for reliable and seamless maritime network
connectivity.

Based on the preceding discussion, we propose to use jointly
the low earth orbit (LEO) satellite and unmanned aerial vehicle
(UAV) empowered with multi-access edge computing (MEC)
for maritime users [6], [7]. Due to a scarcity of optical fibers
and base stations, maritime communications must operate in
a highly complex and heterogeneous setting, thus posing sig-
nificant challenges to reliable transmission and traffic steering
performance for service-oriented maritime communication net-
works. Existing work more focused on marine users association
and communication [8], [9].

The main contribution of this paper is to fill the knowledge
gap of marine user’s task computation mechanism. In particular,
we consider a heterogeneous 6G space-air-sea non-terrestrial
network (SAS-NTN) to meet the increasing maritime network
requirements. In this system, an LEO-MEC satellite and a UAV-
MEC will aid existing offshore base stations, which work in
a coordinated fashion for better maritime coverage. LEO-MEC
and UAV-MEC are proposed as a seamless and reliable method
to enhance the computing capability of high (HUE) and low-
antenna gain user equipments (LUE) respectively. LEO-MEC
allows the HUEs to offload their intensive blue data (generated
by maritime users) computations task in a binary offloading
manner. Our key contributions can thus be summarized as
follows:

• We propose an LEO-MEC satellite and UAV-MEC-based
6G SAS-NTN architecture by considering both variants of
maritime users, i.e., high and low antenna gain users.
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• We propose a binary task computation policy for HUEs
depending upon their channel condition.

• We develop an iterative algorithm based on the Bender
and primal decomposition to solve the proposed mixed-
integer linear programming (MILP), demonstrating the
effectiveness in the simulation results.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

As shown in Fig. 1, we consider a heterogeneous 6G SAS-
NTN maritime communication network. SAS-NTN consists of
MEC empowered LEO satellite1, and a flying UAV-MEC serves
as an aerial base station. We define a set C of coastal base
stations (CBS), having a limited coverage radius that cannot
satisfy the deep-sea maritime users’ demand. Consequently,
the LEO-MEC, a suitable candidate for service provisioning
to these UEs, is considered. The LEO-MEC has considered a
single high-gain antenna that can service HUEs task computa-
tion and UAV-MEC backhauling. Moreover, maritime UEs can
be of two types: a set Mh of Mh HUEs and a set Ml of
Ml LUEs. HUE and LUE can be differentiated based on the
power of their antenna gain. Specifically, we consider network
resource management for HUEs and UAV-MEC backhauling.
Additionally, we assume HUEs are deployed on their specific
pre-defined shipping routes.

B. Channel Model

We assume that the HUEs and the UAV-MEC need to send
their data to LEO-MEC in the studied time of duration T .
Moreover, each timeslot of T can be allocated to each HUE
depending upon their channel condition and UAV-MEC. The
LEO-MEC communicates with HUEs and the UAV-MEC in a
time division multiple access (TDMA) fashion to avoid network
interference. Both communications links in the scenario operate
on the Ka-band (30 GHz), which is a well-known millimeter
wave (mmW) carrier frequency for satellite communication
as discussed in [10]. The TDMA scheme is used to enable
directional transmissions in the considerably high path loss
mmW band while maintaining low complex designs for the
very-small-aperture terminal (VSAT). We consider the HUEs
to be equipped with a single antenna. Therefore, the compos-
ite channel capture line-of-sight (LoS) and non-line-of-sight
(NLoS) gain between LEO-MEC and its associated HUE i can
be defined as:

gi = α10
−βi
10 GsGi, ∀i ∈Mh, (1)

where α denotes the Rician fading channel coefficient, Gs
and Gi denote the antenna gain of LEO-MEC and HUE
respectively, and βi = γ̃+10γ log10( did0 )+φ captures the large-
scale fading on mmWave between LEO-MEC and HUE i. Here,
γ̃ represents the intercept parameter (path loss at reference
distance d0), γ is the slope of the fit (path loss exponent),
di reflects this distance between LEO-MEC and HUE i, and

1Hereinafter, the LEO-MEC is considered as an LEO-MEC satellite unless
otherwise stated.

Fig. 1: Illustration of LEO-MEC empowered 6G SAS-NTN.

φ is the model deviation in fitting represented by a zero-
mean Gaussian random variable with standard deviation ω [10].
Similarly, the channel gain between LEO-MEC and UAV can
be defined as:

gu = α10
−βu
10 GsGu, (2)

where Gu is the UAV antenna gain and βu is large-scale
channel fading between LEO-MEC and UAV-MEC.

C. Local Computation Model

The HUEs utilize store energy in local task computational
mode. Each HUE i has a process computing speed fi (Hertz)
and and a computation time τi. Therefore, each HUE can
process fiτi/χ bits, where χ is the required number of cycles to
process one bit of computational task data. Additionally, each
HUE has an energy budget constrained by νif3

i τi ≤ Eth, where
νi represents the energy efficiency coefficient of processor
chip [11]. The HUEs local computation can be maximized
under the studied time and energy budget. Each HUE can
compute the task throughout the time, i.e., τ∗i = T and process
computing speed will be f∗i =

(
Eth

νiT

) 1
3 . Hence, the HUEs local

computational rate (bits/s) will be:

RLocal
i (τi) =

f∗i τ
∗
i

χT
, ∀i ∈Mh. (3)

D. UAV-MEC Backhaul and LEO-MEC Computation Model

It is assumed that UAV-MEC and HUEs cannot transmit
simultaneously. Therefore, firstly the UAV-MEC can use back-
haul resource for the duration of τu ∈ [0, 1] and secondly, asso-
ciated HUEs will offload their task according to their received
time duration, i.e., τi ∈ [0, 1] in each timeslot as illustrated in
Fig. 2. We assume that the LEO-MEC has significant energy
resources and computational power. Therefore, the time of task
computation at LEO-MEC and feedback of computation results
to UAV and HUEs can be neglected [12]. Hence, the studied
time can be divided into UAV-MEC backhaul resources and
HUEs task offloading as:

τUAV
u +

Mh∑
i=1

τHUE
i = T. (4)



Fig. 2: Example of LEO-MEC time resource allocation.

The UAV-MEC backhaul throughput in each timeslot can be
define as:

RUAV(τu) = τu
B

µu
log2

(
1 +

guPu
σ2

)
, (5)

where τu is the time duration for UAV backhauling, B is the
network bandwidth, µi is the communication overhead for task
offloading, e.g., packet header and encryption [13], Pu is the
UAV transmit power, and σ2 is the LEO-MEC received noise
power. Additionally, each HUE i transmit a power, i.e., Pi =
Eth

τi
to offload the task. Thus, the computational rate which is

equal to the throughput capacity of HUE i can be defined as:

RLEO
i (τi) = τi

B

µi
log2

(
1 +

giPi
σ2

)
, ∀i ∈Mh,

= (T − τu)
B

µi
log2

(
1 +

giPi
σ2

)
, ∀i ∈Mh,

(6)

where τi is the time duration allocates to HUE i and Pi is the
transmit power of each HUE i. Both (5) and (6) are increasing
function of time.

E. Problem Formulation
The channel gain g = {gu, gi|i ∈ Mh} is a time-varying

parameter in the studied period, while the remaining parameters
are constant. Thus, the association of HUE i depends upon the
channel gain g in the studied time. The weighted computational
and communication sum-rate of the LEO-MEC for maritime
network in the studied time can be given by:

R(g,y, τ i, τu) ,
Mh∑
i=1

zi

(
(1− yi)RLocal

i + yiR
LEO
i

)
+RUAV,

(7)
where zi is unique weight for each HUE which depends upon
their contribution in computation, y = {yi|i ∈ Mh} is the
HUEs offloading decision variable, and τ = {τi|i ∈ Mh} is
the duration of allocated time to each HUE i. Here, yi ∈ {0, 1},
where yi = 1 indicates that HUE i will transmit its computation
task to the LEO-MEC and yi = 0 implies a local task
computation. Our objective is to maximize the weighted sum
of computational and communication rate in studied time with
channel realization g. Therefore, we can define the optimization
problem as:

R∗(g) = max
y,τu,τ i

R(g,y, τ i, τu), (8a)

s.t. τu +

Mh∑
i=1

τi ≤ T, (8b)

τu > 0, τi ≥ 0, ∀i ∈Mh, (8c)
yi ∈ {0, 1}, ∀i ∈Mh. (8d)

The proposed problem (8) is an MILP, which is a non-
deterministic polynomial-time (NP-hard) problem. Although, if
y is given, this problem can be modified as linear programming
which is describe in Section III.

III. PROPOSED ALGORITHM

In this section, we propose the joint Bender and primal
decomposition to deal with the problem (8). The major chal-
lenge of solving (8) lies in the task computation decision
problem. Hence, we provide Bender decomposition (BD) to
decompose the main problem (8) into two subproblems, i.e.,
task computation decision and time resource allocation prob-
lem. Furthermore, the time resource allocation problem will be
handled by primal decomposition.

A. Bender Decomposition

BD is a well-known solution technique to solve MILP
problem [14]. This algorithm decomposes the MILP into bi-
nary variables integer programming as a master problem and
continuous variables linear programming as a subproblem [9].
The main goal of the master problem is to solve an integer
linear programming problem, while the subproblem is used to
solve a continuous linear programming problem. This algorithm
uses an iterative method that can reach a point of convergence
when the pre-defined criterion on upper and lower bounds is
met.

The initialization process happens first with a particular
scenario. By fixing integer variables, the subproblem is
solved by using only continuous variables. The subproblem
will provide the optimal value of continuous variables (time
allocation). After getting this solution, we produce the Bender
cut for feasibility and optimality conditions by getting dual
variables associated with fixed value integer variables, which
allows us to solve the master problem. As a result, the disparity
between the upper and lower bounds serves as the stopping
condition for this algorithm. The joint MUEs task decision and
time resource allocation problem-solution method will follow
the steps described next.

1) Initialization: We consider that the master problem
can generate trivial solutions, and therefore, arbitrary task
decisions are initially generated. Subsequently, the loop counter
is initialized, i.e., j = 1. The task offloading decision variable
is a binary indicator and, thus, their upper and lower bound can
be initialized as yUB = 1 and yLB = 0, respectively. Moreover,
we use an auxiliary variable in the form of a function Ψ,
representing the objective function value of subproblem in
each iteration j into the master problem objective function.
In first iteration j = 1, the function Ψj can be initialized as
Ψdown, to restrict the subproblem from infeasible solution.

2) Subproblem: We assume that the channel realization g in
each iteration j is obtained as gj . Thus, the optimal solution
of time resource allocation from linear programming, i.e.,
{τ∗u , τ ∗i } can be found by a low-complexity algorithm that is



suitable for dynamic SAS-NTN environment. The subproblem
can be defined as:

max
y,τu,τ i

R(y∗j , τu, τ i), (9a)

s.t. τu +

Mh∑
i=1

τi ≤ T, (9b)

τu > 0, τi ≥ 0, ∀i ∈Mh, (9c)

yi = y∗ji : κji , ∀i ∈Mh, (9d)

where y∗j is the optimal task decision in iteration j = 1 and
κji represents the dual variable value associate with constraint
(9d) of fixed task decision variable y∗ji in each iteration j.

3) Bounds Calculation & Convergence Analysis: The con-
vergence of the BD can be analyzed by taking the difference
between upper and lower bounds. The lower bound is given
by computing the optimal value of an objective function in
problem (13) for each iteration j, which can be defined as:

RjLB = Ψj , (10)

where RjLB progressively less and less relaxed as iteration
increase, therefore, lower bound is monotonously increasing
with the iterations [14]. Subsequently, the upper bound is
given by computing the optimal value of objective function
in problem (8) for each iteration j as:

RjUB = R(ỹj , τ ju, τ
j
i ). (11)

After acquiring both bounds, the difference between them will
decide the convergence and stopping criterion which can be
defined as, {

RjUB −R
j
LB ≤ ε, stop,

otherwise, continue,
(12)

and the tolerance parameter ε is pre-defined. Following
convergence, the optimal value of {τ∗u , τ ∗i }, and y∗ can be
achieved.

4) Master Problem: The master problem deals with binary
task decisions in each iteration j. After the increment in loop
counter, i.e., j = j + 1, the master problem solves which can
be define as:

max
y,Ψ

Ψ, (13a)

s.t. Ψ ≤
Mh∑
i=1

κki (yi − y∗ki ) +R(y∗ki , τ
∗k
u , τ ∗ki ),

k = 1, ..., j − 1, (13b)

Ψ ≥ Ψdown, (13c)∑
i∈Mh

yi ≤ 1, (13d)

yi ∈ {0, 1}, ∀i ∈Mh, (13e)

where the inequality constraints in (13b) and (13c) indicate
the Bender optimality and feasibility cuts, respectively. In each

Algorithm 1 Data Computation Maximization and Task Deci-
sions by Bender Decomposition

1: Initialize: loop counter j = 1, Ψdown, ε,
2: while RjUB −R

j
LB > ε do

3: Subproblem
4: Compute optimal τ∗ju , τ∗j

i , and κji by Algorithm 2
5: Convergence Analysis
6: Compute the lower (RjLB) and upper (RjUB) bounds

by (10) and (11)
7: Master Problem
8: Step 1: Update the loop counter j = j + 1
9: Step 2: Add new cut to the Master problem (13)

10: Step 3: Solve the updated master problem
11: Step 4: Compute the optimal value of y∗j

i and Ψj

12: end while

iteration, a new Bender cut is added to the master problem. The
Bender cuts approximate the objective function of the subprob-
lem (9) from below, which compose of j− 1 hyperplanes. The
details of the BD are given in Algorithm 1.

B. Primal Decomposition
To deal with the time resource coupling constraint in (9b),

we apply the primal decomposition. We use transformation on
this constraint, and convert it into coupling variable . Thus, an
auxiliary variable θ is introduced and can be given as [15]:

τu ≤ θ, (14)
Mh∑
i=1

τi ≤ T − θ. (15)

At this point, our subproblem can be modified as:

max
y,τu,τ i

R(y∗j , τu, τ i), (16a)

s.t. τu ≤ θ, (16b)
Mh∑
i=1

τi ≤ T − θ, (16c)

τu > 0, τi ≥ 0, ∀i ∈Mh, (16d)

yi = y∗ji : κji , ∀i ∈Mh. (16e)

By fixing the value of θ, we can divide the modified subproblem
(16) into two primal subproblems. The first primal subproblem
can be defined as follows:

max
y,τ i

R(y∗j , τ i), (17a)

s.t. R(y∗j , τ i) =

Mh∑
i=1

zi

(
(1− yi)RLocal

i + yiR
LEO
i

)
,

(17b)
Mh∑
i=1

τi ≤ T − θ : λ1, (17c)

τi ≥ 0, ∀i ∈Mh, (17d)

yi = y∗ji : κji , ∀i ∈Mh, (17e)



Algorithm 2 Optimal-Time Resource Allocation by Primal
Decomposition

1: Initialize: θ
2: repeat
3: Solve the primal-subproblems in parallel
4: Solve problem (17) and acquire the optimal time-

resource allocation τ ∗i for associated HUEs and
dual variable associated with constraint (17c).

5: Solve problem (18) and acquire the optimal time-
resource allocation τ∗u for UAV-MEC and dual
variable associated with constraint (18c).

6: Update the time resource allocation auxiliary variable:
θ = θ − ζ(λ2 − λ1).

7: until convergence

where y∗j represents the fix value of task computation deci-
sions from master problem and λ1 represents the dual variable
associated with constraint (17c) in iteration j. The second
primal-subproblem will be:

max
τu

R(τu), (18a)

s.t. R(τu) = RUAV, (18b)
τu ≤ θ : λ2, (18c)
τu > 0, (18d)

where λ2 represents the dual variable associated with constraint
(18c). After getting the optimal solution from both primal-
subproblems, we need to update the fixed auxiliary variable
value by the following equation:

θ = θ − ζ(λ2 − λ1), (19)

where ζ is a step size. Both primal-subproblems, i.e., (17)
and (18) can satisfy the conditions of linear programming.
Therefore, we can use a standard optimization solver, e.g.,
Gurobi [16], to find an optimal solution. The details of the
primal decomposition are summarized in the Algorithm 2.

IV. SIMULATION RESULTS AND DISCUSSION

For our simulations, we consider the HUEs in SAS-NTN to
be uniformly distributed in 500 nautical mile square area (NM2)
as shown in Fig. 3. In this system, we deploy Mh = 100 HUEs
within the coverage region of an LEO-MEC and CBS. Each
HUE transmits power is considered as P = 33 dBm because
each HUE is assumed to be an energy-efficient device. The
initial value of the lower bound to avoid infeasibility is set to
Ψdown=−25. We use the python environment and the Gurobi
optimization solver for implementing the proposed algorithm.
Statistical results are averaged over 100 independent runs of
random locations of HUEs. Our main simulation parameters
are given in Table I.

In Fig. 4, we present the convergence of the BD algorithm.
The difference between the upper bound RUB and lower bound
RLB value is decreasing and then finally converges. Fig. 4
shows that the BD algorithm converges to the optimal solution

TABLE I: Simulation Parameters

Parameters Values
Transmit Power P = 33 dBm

Noise Power σ2 = − 104 dB
Carrier Frequency f = 30 GHz
System Bandwidth B = 20 MHz

Communication Packet Overhead µ = 1.1

Processor Cycles for one bit χ = 100

HUE Antenna Gain Gi = 25 dBi
UAV Antenna Gain Gu = 25 dBi

Satellite Antenna Gain Gs = 30 dBi
Standard deviation ω = 0.1

reference distance pathloss γ̃ = 46.4

pathloss exponent γ = 2

Rician fading parameter α = 1.59

Fig. 3: Network topology consisting of LEO, UAV, HUEs and
LUEs.

just after eight iterations, which is a very efficient convergence
time.

In Fig. 5, the total weighted sum of the computation and
communication rates versus the number of HUEs is presented.
Fig. 5 also demonstrates the comparison of the proposed
algorithm with two schemes. Scheme 1 is considered as optimal
results, which are computed by use of a standard optimization
solver. Scheme 2 is regarded as a random task decision and
time allocation to each HUE. Compared with scheme 2, our
proposed algorithm performs better, which is close to optimal
in the case of fewer HUEs. These patterns can be analyzed
with both network bandwidth cases, i.e., B = 10 MHz and
B = 20 MHz.

In Fig. 6, we present the total weighted sum of the commu-
nication, computation, and UAV-MEC backhaul rates. In this
configuration, the system bandwidth is set to B = 20 MHz.
We can observe that, in each scenario, the network allocates
time for HUEs computation and UAV-MEC backhauling. As the
number of HUEs increases, the network performance improves
because more HUE needs to execute their task at the LEO-MEC
satellite. This LEO-MEC enabled the SAS-NTN network to



Fig. 4: Convergence of Bender decomposition algorithm.

Fig. 5: Comparison of proposed algorithm with other schemes.

perform well for both HUEs and UAV-MEC backhaul demands.

V. CONCLUSION

In this paper, we devised task decisions and time resource
allocation for the blue data computation maximization in
space-air-sea non-terrestrial networks. The proposed problem
is designed to be mixed-integer linear programming. To solve
this problem, we have proposed a joint Bender and primal
decomposition algorithm. Bender decomposition is an outer
structure algorithm that divides the initial problem into master
and subproblem and then solves iteratively. To deal with the
coupling constraint in the subproblem, we proposed a primal
decomposition algorithm to solve the subproblem iteratively.
Simulation results have shown that the proposed algorithm can
yield better results with efficient convergence time. In our future
work, we will consider the user’s mobility in the network.
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