
ar
X

iv
:2

11
2.

03
68

3v
1

 [
cs

.N
I]

 7
 D

ec
 2

02
1

In-Network Processing for Low-Latency Industrial

Anomaly Detection in Softwarized Networks

Huanzhuo Wu∗, Jia He∗, Máté Tömösközi∗†, Zuo Xiang∗ and Frank H.P. Fitzek∗†

∗Deutsche Telekom Chair of Communication Networks - Technische Universität Dresden, Germany
†Centre for Tactile Internet with Human-in-the-Loop (CeTI)

Email:{huanzhuo.wu|mate.tomoskozi|zuo.xiang|frank.fitzek}@tu-dresden.de, jia.he@mailbox.tu-dresden.de

Abstract—Modern manufacturers are currently undertaking
the integration of novel digital technologies – such as 5G-
based wireless networks, the Internet of Things (IoT), and cloud
computing – to elevate their production process to a brand
new level, the level of smart factories. In the setting of a
modern smart factory, time-critical applications are increasingly
important to facilitate efficient and safe production. However,
these applications suffer from delays in data transmission and
processing due to the high density of wireless sensors and the
large volumes of data that they generate. As the advent of next-
generation networks has made network nodes intelligent and
capable of handling multiple network functions, the increased
computational power of the nodes makes it possible to offload
some of the computational overhead. In this paper, we show
for the first time our IA-Net-Lite industrial anomaly detection
system with the novel capability of in-network data processing.
IA-Net-Lite utilizes intelligent network devices to combine data
transmission and processing, as well as to progressively filter
redundant data in order to optimize service latency. By testing
in a practical network emulator, we showed that the proposed
approach can reduce the service latency by up to 40%. Moreover,
the benefits of our approach could potentially be exploited in
other large-volume and artificial intelligence applications.

Index Terms—anomaly detection, in-network computing, net-
work softwarization, internet of things

I. INTRODUCTION

Presently, the general industrial community is facing the

challenge of integrating Industry 4.0 technologies into their

manufacturing processes, which will eventually lead towards

full digitization and intelligence empowered by such emerging

technologies as Internet of Things (IoT), artificial intelligence

(AI), and cloud computing [2]. Among these, IoT devices are

expected to act as both data collectors and the actuators of

remote intelligent computing agents, thereby closing the full

control loop in order to realize a fully autonomous factory

operation. In future smart factories, IoT devices would be

tasked with the monitoring of processes and machines, etc. The

data produced by such IoT devices can be, in turn, employed

to detect potential disturbances in the production process

before an error happens (predictive maintenance), which can

decrease production downtime and maintenance costs of smart

factories [3].

In particular, time-critical acoustic anomaly detection in

industrial environments carries great potential, since acoustic

This is a preprint of the work [1], that has been accepted for publication
in the proceedings of the 2021 IEEE Global Communications Conference.

data is able to foreshadow potential failures in the early-

stage and offers significant gains to accurately predict when

maintenance work is crucial [4]. Unlike traditional industrial

signals – e.g., temperature and humidity – acoustic signals

are generally distorted before an abnormal event occurs. Also,

such audio-based detection methods can avoid blocking and

angular distortion problems compared to the alternative image

analysis techniques, as well.

IoT-enabled acoustic sensors deployed in factory halls

normally collect and transmit the raw sensor readings for

further analysis to separate dedicated devices. In a generic

setup, several devices are deployed at the production site,

which creates a multi-object acoustic anomaly detection en-

vironment. Particularly, the observed raw sensory acoustic

signal is inevitably altered (mixed) due to the presence and

operation of multiple objects. Depending on the complexity

of the deployed sensors and observation systems, the overall

amount of data generated can easily reach several Gbps

ranges, which can be understood as a big data problem

with data-rich, information-poor characteristics [5]. In [6],

a data process based on a Deep Neural Network (DNN)

and Information Abstraction Neural Network (IA-Net) is pro-

posed to address the challenge of data-rich, information-

poor environments, which empowers detection techniques with

high-information density (the acoustic deviation). After IA-Net

solved the issue of processing large amounts of IoT data for

anomaly detection, we are now facing the question of where

should IA-Net do the processing?

The most straightforward solution is to employ a centralized

service that manages the handling of the data stemming from

the growing volume of sensors. This effectiveness relies on

the local Internet access, which is often limited to a few

hundred Mbps. While large companies can simply upgrade

their infrastructure, most small and mid-sized industrial man-

ufacturers rely on traditional ISPs for their networking needs,

and higher access speeds are tied to higher costs [7]. A

different approach would be to deploy IA-Net on an edge

cloud physically close to the targeted machines. Compared

with the centralized approach, the edge cloud has an advantage

in data transmission time, however, its resource-constrained

characteristics will lead to more delay in data processing

and, ultimately, would prevent the fulfillment of time-critical

services.

With the aid of network softwarization, it is possible

http://arxiv.org/abs/2112.03683v1

to deploy flexible services and applications by combining

local, edge, and remote computing resources within the

same logical network [8]. Typically, the deployment

of softwarized networks includes a combination of

technologies: Software Defined Networking (SDN) [9],

Network Functions Virtualization (NFV) [10], and

Service Function Chain (SFC) [11]. Utilizing available

computational resources within the network for in-network

processing concepts, computation steps can be deployed

in the on-premise network to reduce the overall data

volume and, potentially, speed up processing times [12].

Therefore, a major challenge is to filter out redundant data

by applying the processing logic of information abstraction

on resource-constrained network nodes.

In this paper, based on the idea of information

abstraction proposed in [6], we show the novel

design of a lightweight DNN model called

Information Abstraction Neural Network Lite (IA-Net-Lite),

and propose its deployment for the first time in softwarized

networks, which, contrary to present norms, enables in-

network data processing to achieve low-latency industrial

anomaly detection. Extensive evaluations of practical

implementations show that IA-Net-Lite reduces the

computation load by up to a quarter of the original and

decreases the data transfer delays by about 34.38%, thus

achieving an overall latency reduction of up to 38.89%.

The rest of the paper is structured as follows. First, Sec-

tion II introduces the idea of information abstraction and

describes the problem, after which the proposed method is

described in Section III. In Section IV, we introduce the

experimental setup and its metrics. Section V covers the

numerical evaluation and a discussion about our measurement

results. Finally, Section VI concludes our contribution and

points out future research aspects.

II. BACKGROUND

In this section, we first describe our system for acoustic

anomaly detection and the methods used to filter out redundant

information. Following that, we discuss the importance of

this redundant information filtering approach for low-latency

services and the challenges when exploiting it in networks.

A. Information Abstraction

In multi-machine environments, such as factories, a number

of source machines (n) are expected to be detected as source

objects, see Fig. 1. The source of acoustic data is generated in

m time slots and is denoted as {s1, s2, · · · , sn} = S ∈ R
n×m.

Due to the presence and operation of multiple objects, the

observation X ∈ R
1×m of IoT sensors is inevitably a mixture

of the n source data. X, in turn, is transmitted to the data

processing system to determine irregularities (or anomalies)

related to the n objects when only X is known.

Such an anomaly is defined by the anomaly score and is

denoted as A. A represents the difference between the actual

data and a reference S
r. When A exceeds a threshold value,

the corresponding object is declared to be an anomaly, as

Fig. 1: The schematics of information abstraction for industrial anomaly
detection.

shown in Fig. 1. In order to get A, more attention needs

to be paid to the deviation between the detected and the

reference objects than to the detected object itself. Therefore,

redundant information not related to exceptions should be

eliminated and only exception-related information needs to be

extracted. Based on this intuition, we proposed in [6] the idea

of information abstraction to abstract separated anomalous

information from raw sensory data for multi-object acoustic

anomaly detection, which is a particularly advantageous data

processing approach when handling large data volumes.

As shown in Fig. 1, the information abstraction consists of

three distinct modules: encoder, abstraction, and separation.

The encoder converts X from the sensor into high-dimensional

representations Y ∈ R
256×

m

16 to provide more detailed infor-

mation. Then abstraction retrieves the features Z ∈ R
2048×

m

256

related to anomalies, and finally the separation pairs Z to each

i-th machine fi ∈ R
1×256. Based on these anomaly features,

the anomaly score can be obtained directly.

B. In-Network (Pre-)Processing

As a DNN model, the processing logic of information

abstraction is often deployed centralized on a dedicated

server/cloud due to the large computational requirements.

However, with the centralized deployment, all raw sensory

data X needs to be transmitted through the network to this

server/cloud, i.e., the entire sequence of the generated audio

of each client. Such a large volume of data will inevitably lead

to network congestion and data transmission delays.

An alternative way is to deploy the processing logic on an

edge cloud near the individual IoT sensors in order to achieve

shorter transmission delays. However, due to the nature of

networks, the computational resources (in this case, processing

and memory) are limited on edge nodes. This limitation

increases the processing delay, which in effect results in

limited or no reduction in the total service latency. As an

example, 9.08 × 109 operations are needed by IA-Net [6] to

complete the processing task.

Fortunately, information abstraction can eliminate redundant

information. With the development of network softwarization,

Fig. 2: Overview of the in-network data processing scenario.

computational resources in the network become feasible for

performing intermediate processing. Therefore, we can con-

sider that the entire processing logic is partitioned into several

Virtual Network Functions (VNFs) that filter redundant data

one by one. When these VNFs consume only a small amount

of computational resources, the resource-constrained network

nodes can perform partial data processing tasks without adding

additional processing latency. At the same time, through these

VNFs, redundant data can be gradually filtered out with-

out causing network congestion and increased transmission

latency. The nodes in the network also collaborate toward

optimizing the overall service latency.

Therefore, following the above idea, this paper takes indus-

trial anomaly detection as a case study to solve the following

two problems:

1) How to design the processing logic for the resource-

constrained network nodes so that it is deployable as a

VNF without extra processing delay?

2) How should such a VNF be deployed in the network to

achieve the purpose of redundant data filtering?

III. OUR SOLUTION: IA-NET-LITE

In this section, we first show the de-

sign of our lightweight DNN model-based

Information Abstraction Neural Network Lite (IA-Net-Lite),

so that it is suitable for deployment on resource-constrained

network nodes in order to abstract information. Secondly, we

discuss how it should be partitioned and deployed to filter

traffic to optimize service latency.

Fig. 2 illustrates the scenario of in-network data processing.

The collected data is constantly sent to a network client, where

the client can be either a WiFi access point or a cellular base

station of a (non-public) network. This client keeps forwarding

the data to the backend “server” over a forwarding path.

This path can be either dynamically determined based on a

routing mechanism or statically configured. The forwarding

path consists of some intermediate network switches, which

support SDN and NFV.

In a traditional communication network, the network nodes

(i.e., clients and switches) are only responsible for forwarding

data to the server, and the entire DNN model is deployed on

the server to process the forwarded data. This approach is

usually called Store-and-Forward (S-F). In the scenario of the

in-network process, the DNN model is split into several sub-

operations, which are deployed as VNFs on the network nodes

along the data path. These network nodes perform more than

just forwarding data: they first process the data using the VNF

Fig. 3: 1D-residual convolution (1D-R-Conv).

and then forward the intermediate results to the next node. This

is commonly known as Compute-and-Forward (C-F).

A. A Lightweight Deep Neural Network Model for Networks

As the resources (computing and storage) of network de-

vices are limited, the overall parameters and operations of

a DNN model should be tightly controlled at an acceptable

scale, which is suitable for such lightweight devices. The

complexity of a DNN model during inference is defined by

the memory and computing power required to process the

input data. This can be mathematically formulated by the

number of the parameters (Param) and the number of the

Multiply-Add Operations (MAdds).

To minimize Param and MAdd, we designed IA-Net-Lite

for in-network processing, inspired by IA-Net in [6]. Under

the guidance of the paradigm from IA-Net, IA-Net-Lite also

consists of three distinct modules: encoder, abstraction, and

separation.

1) Encoder: In the encoder module, the one-dimensional

input data is transformed into a higher dimensional repre-

sentation, in order to provide more detailed information for

subsequent operations. IA-Net-Lite down-samples and maps

the mixed input data X ∈ R
1×m in a high-dimensional STFT-

like feature space Y ∈ RN×
m

4 by using a 1-D convolutional

layer (1D-Conv) with stride four. The 1D-Conv is a set of

filters consisting of N filters with length L. In the encoder

module, only one convolutional layer is used to minimize

computation and storage resources. This module eventually

only contains 0.18× 103 Params, and 3.00× 106 MAdds.

2) Abstraction: The objective of this module is to extract

anomaly information F from the encoded features Y. The

abstract module accounts for most of the parameters, which is

the main part of the model to be compressed. Therefore, we

propose a 1D-residual convolution (1D-R-Conv). As illustrated

in Fig. 3, it follows three strategies: (i) depth-wise residual

block [13] to reduce the computation; (ii) a large down-

sampling rate of four to squeeze the input data; (iii) a dual

path [14] structure to obtain enriched semantic and temporal

domain information and to obtain a balance between accuracy

and size.

Empirically, the commonly used 3 × 1 convolution ker-

nel causes information loss when the down-sampling rate

is four, e.g., ResNet [15]. To avoid information loss during

information abstraction while increasing the receptive field of

TABLE I: The traffic filter of each operations block in IA-Net-Lite.

Operation Block Module Input Output

Encoder 1D-Conv 1×m 32 × m

4

Layer 1 1D-R-Conv×1 32× m

4
16 × m

4

Layer 2 1D-R-Conv×2 16× m

4
24× m

16

Layer 3 1D-R-Conv×3 24× m

16
32× m

64

Layer 4 1D-R-Conv×4 32× m

64
64× m

256

Layer 5 1D-R-Conv×3 64× m

256
96× m

256

Layer 6 1D-R-Conv×3 96× m

256
160 × m

1024

Layer 7 1D-R-Conv×1 160× m

1024
320 × m

1024

Layer 8 1D-Conv 320× m

1024
1280× m

1024

Separation Avg.1D-Conv 1280× m

1024
4× 256

the convolutional layer, we use a large convolutional kernel

7 × 1 and 5 × 1 in the dual path structure. Each convolution

operation is followed by a non-linearity layer (ReLU) and a

layer normalization (Norm). The abstraction module consists

of several stacked 1D-R-Conv blocks. Although the abstraction

module is most resource-intensive, with the lightweight design

it only requires 2.29× 106 Params and 416.00× 106 MAdds.

3) Decoder: In the decoder module we utilize an average

pooling layer (Avg.) to squeeze the temporal information to

1, and replace the fully-connected layer in the original IA-

Net with a 1× 1 convolutional layer (1D-Conv) to assign the

anomalous representations to n objects as abstracted features

F ∈ R
n×256. By reducing the number of parameters, the de-

coder module has 1.31×106 Params and 420.00×106 MAdds,

which is more conducive to deployment in the network.

B. Deployment in the Network

In a network, usually more data is transmitted than is needed

or expected. Therefore, one solution for reducing the amount

of data is to use an information filtering logic as a VNF that

can be deployed on the network nodes to filter out redundant

or unwanted data before the traffic leaves each node.

The limitations on the available resources (processing and

memory) of the network nodes is addressed by the lightweight

designed DNN model IA-Net-Lite in Section III-A. Therefore,

compute resources inside the network are available and in-

termediate processing can be performed in the network and

the operation blocks of IA-Net-Lite can be deployed as VNF

within the network. However, the question of how computing

and networking are integrated, i.e., which operation blocks

the deployed VNFs should be composed of, is intuitively

important. A proper design will reduce the data volume at

each hop, consequently, preventing network congestion, and,

ultimately, improving the overall service latency.

In Table I, the different operation block outputs in relation

to the input data for IA-Net-Lite is listed. To better assess the

ability of traffic filtering of the different operation blocks, we

define filter rate r as follows:

r =
Size of Operation Block Output

Size of System Input
, (1)

Fig. 4: Filter rate r of data flows by each operation block and the splitting of
the VNFs.

which indicates how much data has been filtered out by the

operation block. An r > 1 means that the input data is

augmented, and vice versa.

The trend of traffic filtering efficiency is fitted to the r of all

operation blocks together. To maximize the filtering efficiency

on every link in the network, we select the concave points in

this filtering trend as the bounds for constructing the VNFs.

The concave point of the r-curve is represented by the last

operation of the continuous data reduction. Splitting before

this concave point does not maximize the filtering effect,

however, splitting after this point will cause the filtering effect

to deteriorate.

As shown in Fig. 4, the r of Layer 4 and Layer 6 are two

concave points, which split IA-Net-Lite into three VNFs. By

these three VNFs, the data volume can be reduced to 25%,

16%, and 2% of the original input data, respectively. There-

fore, the overall service latency can be improved when these

three VNFs are deployed on network nodes. In Section V-A

we show the evaluation of the effectiveness of traffic filtering.

IV. EXPERIMENTAL DESIGN

In this section, we describe our experimental design, includ-

ing the emulation setups and measurement metrics.

A. Emulation Setups

In our evaluation, we use the realistic dataset of MIMII [16],

which is a widely used acoustic data set for malfunctioning

industrial machine inspection, containing 26092 normal and

anomalous operating acoustic segments from four types of real

machinery: valves, pumps, fans, and slide rails. Each acoustic

segment is a single-channel 10-second-long acoustic segment

with a sampling rate of 16000 Hz. We randomly select all

n = 4 types of sources from the dataset to construct the source

signals S. We mixed the source signals S following the stan-

dard normal distribution to simulate as many mixing scenarios

as possible. By doing this, our evaluation has covered various

data types and mixing cases.

We conducted the evaluation on the network emulator

Communication Networks Emulator (ComNetsEmu) [17]. As

illustrated in Fig. 2, we set up a multi-hop topology with

switches as intermediate network nodes. Each node can per-

form either one or both operations of forwarding and data

processing. Hence, there are two different modes for the

deployment of the anomaly detection DNN models, which are

Compute-and-Forward (C-F) and Store-and-Forward (S-F).

We assume that the clients connect to the network and send

the observed data using User Datagram Protocol (UDP) to

the server. All topology links have the same homogeneous

bandwidth of 10 Mbps and a fixed propagation delay of

150 ms. In the emulation, we do not consider packet losses

and assume that all packets are received sequentially. These

settings can be considered typical for an edge network. We also

assume that all devices and connections are general-purpose

and available commercially as is. We implement the client

and server functions in Python. For each configuration of a

parameter set, we performed 60 measurements in which the

client sends the observed data to the server, to ensure the

experimental results being statistically significant.

Each packet is forwarded directly to the server by the net-

work node at the fastest possible S-F speed in conventional S-F

mode. When operating in the C-F mode, the SDN controller in-

serts rules into the flow table of each switch to forward the data

traffic through each middlebox to build an SFC. For the overall

experiments, we employ a Commercial off-the-shelf (COTS)

server with a 2.0G Intel i5 CPU with 16GB RAM using

Ubuntu 18.04 LTS.

B. Metrics

For the evaluation of our method we employ the following

metrics:

1) Service Latency: Service latency ts is the

Round Trip Time (RTT) between the request sent by

the client and the response delivered by the server. It includes

all transmission and computation delays introduced by end

nodes (client and server) and network nodes. ts greatly affects

the QoS of network services. We compare ts of IA-Net-Lite

in C-F and S-F modes, and IA-Net in S-F mode.

2) Computation Load: To measure the computation load

of an VNF, we introduce the metric of processing latency

tp, which is the computation time required by a device to

complete the VNF deployed on it. With the same computa-

tional power, a smaller tp means that the VNF on the device is

completed faster. As a result, the computation load of this VNF

is small. Conversely, a larger tp implies a large computational

load for this task.

3) Transmission Latency: Transmission latency tt is the

time taken by the network to transmit the packets over the

links, including propagation delay, queuing delay, and trans-

mission delay. For the same network setup – e.g., bandwidth,

mac access, and so on – tt is closely related to the size of

data transmitted on the links.

Overall, in our experimental setups one can assume that

ts = tp + tt.

Fig. 5: Likelihood of end-to-end service latency in C-F and S-F modes.

V. RESULTS AND DISCUSSIONS

Based on practical experimental results from emulation, we

evaluate and discuss the performance of the in-network pro-

cessing method for low-latency industrial anomaly detection.

A. Service Latency

Fig. 5 shows the service latency of IA-Net-Lite in C-F

and S-F modes, and IA-Net in S-F mode, respectively. We

observed that in S-F mode, the median service latency is

reduced from 3.6s in IA-Net to 3.3s in IA-Net-Lite, which

is a 8.33% reduction. This decrease is due to the fact that

our lightweight design makes IA-Net-Lite consume much less

computational resources, resulting in less processing latency

on the server. Section V-B discusses the lightweight DNN in

detail.

More importantly, comparing the median service latency of

IA-Net-Lite in C-F and S-F mode, this latency is significantly

reduced from 3.3s to 2.2s. This is due to the collaboration

of network nodes when filtering out redundant information

and thus reducing the transmission latency. In other words,

the service latency is reduced by 33.33% in the in-network

processing scheme. Compared to the baseline system IA-Net,

this latency is significantly reduced by 38.89%. We discuss

traffic filtering in the network in more detail in Section V-C.

To summarize, we propose IA-Net-Lite in this paper for in-

network processing, which can significantly decrease the ser-

vice latency as it is capable of reducing both the transmission

and processing latency with the help of network nodes.

B. Processing Latency and Lightweight Design

Fig. 6 shows the processing latency of the proposed

IA-Net-Lite and the baseline system IA-Net, to verify the

lightweight design of IA-Net-Lite. In S-F mode, we first

observe that the processing latency of IA-Net-Lite is about

0.1s, which is a mere quarter of IA-Net’s. On the one hand,

the reduction of the overall processing latency explains the gap

between IA-Net-Lite and IA-Net with the S-F mode in Fig. 5.

Moreover, while the server remains the same, reducing the

processing latency by quarter means that the computation

Fig. 6: Overall processing latency in C-F and S-F modes.

TABLE II: Data throughput and filter rate r on each link, and the total
transmission latency tt of IA-Net-Lite in C-F and S-F modes.

Mode client→s1 s1→s2 s2→server tt

C-F
64397 byte 40715 byte 17626 byte

2.1s
25.12% 15.88% 6.87%

S-F
256406 byte 256406 byte 256406 byte

3.2s
100% 100% 100%

load required by IA-Net-Lite is reduced to a quarter. Thus,

IA-Net-Lite with the lightweight design is more suitable for

deployment on resource-constrained network nodes.

Moreover, we observe that IA-Net-Lite’s processing latency

in S-F and C-F are different. In C-F, it is slight about 0.005s

(5%) more than that in S-F. Since IA-Net-Lite uses exactly the

same processing logic in both S-F and C-F modes, one of the

reasons why this happens could be due to the I/O processing

delay between the switch and VNF in C-F. However, we

consider the instability of the processing time to be within the

acceptable range compared to the benefit of reduced service

latency.

C. Transmission Latency and Traffic Filter

To demonstrate the effectiveness of the traffic filter in terms

of transmission latency, we listed the data throughput and the

filter rate on each network connection in Table II, and gave

the results in S-F mode for comparison. Since all bandwidths

between network nodes in our emulator setup are 10 Mbps

with 150 ms delay, reducing data throughput effectively leads

to a decrease in transmission latency.

Table II shows that after the filtering of VNFs on the

client and the switch 1 (s1), the bandwidth between them

is consuming only 25.12% and 15.88% of the original data,

respectively, while the high-density information reaching the

server is compressed down to 6.87% of the original data

after the last VNF on the switch 2 (s2). Therefore, the total

transmission latency tt in C-F mode is reduced to about 2.1s.

This reduction, expressed in the overall service latency, is the

gap between IA-Net-Lite with the S-F and C-F mode in Fig. 5.

In contrast, the bandwidth consumption of the traditional

S-F remains the same as the original data, and thus the

transmission latency cannot be reduced. tt stays about 3.2s

with S-F mode. Comparing the C-F and S-F modes, although

they hold exactly the same processing latency, the redundant

data is filtered by the VNFs on the network nodes with the

help of the in-network processing scheme, thus reducing the

transmission latency and finally obtaining a smaller service

latency.

VI. CONCLUSION

Time-critical applications are becoming more and more

important in modern smart factories, however, these ap-

plications have delayed data transmission and processing

due to high-density sensors and large data volumes. In

this paper, we show our brand new design for an in-

network data processing with the help of network soft-

warization for industrial anomaly detection, which we call

Information Abstraction Neural Network Lite (IA-Net-Lite).

This approach leverages for the first time the resources of

increasingly intelligent network devices to combine data trans-

mission and processing with filters that reduce redundancy,

and, ultimately, optimize service latency. In this paper, we

showed via the employment of a practical network emulator

that our proposed approach can reduce the service latency by

up to 38.89%. The design idea of this method is also applicable

to other large-volume and AI applications.

However, comparing with the theoretical filter rate r in Sec-

tion III-B, the measured r (see Table II) in our emulations is

slightly larger. This is due to that the C-F can only filter the

payloads of the network packets, while the headers remain

unchanged. Header compression techniques [18] can be used

to reduce the packet headers, thereby maximizing the filtering

effect. This is in our future research agenda.

ACKNOWLEDGMENT

This work was funded by the Federal Ministry of Ed-

ucation and Research of Germany (Software Campus Net-

BliSS 01IS17044), and by the German Research Founda-

tion (Deutsche Forschungsgemeinschaft) as part of Germany’s

Excellence Strategy (EXC 2050/1 – Project ID 390696704)

Cluster of Excellence “Centre for Tactile Internet with Human-

in-the-Loop” (CeTI) of Technische Universität Dresden.

REFERENCES

[1] H. Wu, J. He, M. Tömösközi, Z. Xiang, and F. H. P. Fitzek, “In-network
processing for low-latency industrial anomaly detection in softwarized
networks,” in 2021 IEEE Global Communications Conference: Next-

Generation Networking and Internet (Globecom2021 NGNI), Madrid,
Spain, 2021.

[2] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1,
pp. 17–27, 2017.

[3] F. Civerchia, S. Bocchino, C. Salvadori, E. Rossi, L. Maggiani, and
M. Petracca, “Industrial internet of things monitoring solution for
advanced predictive maintenance applications,” Journal of Industrial

Information Integration, vol. 7, pp. 4–12, 2017.

[4] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, Jul. 2009. [Online].
Available: https://doi.org/10.1145/1541880.1541882

[5] M. H. u. Rehman, E. Ahmed, I. Yaqoob, I. A. T. Hashem, M. Imran,
and S. Ahmad, “Big data analytics in industrial iot using a concentric
computing model,” IEEE Communications Magazine, vol. 56, no. 2, pp.
37–43, 2018.

[6] H. Wu, J. He, M. Tömösközi, and F. H. Fitzek, “Abstraction-based multi-
object acoustic anomaly detection for low-complexity big data analysis,”
in WS17 IEEE ICC 2021 Workshop on Communication, Computing, and

Networking in Cyber-Physical Systems (WS17 ICC’21 Workshop - CCN-

CPS), Montreal, Canada, Jun. 2021.
[7] R. Glebke, M. Henze, K. Wehrle, P. Niemietz, D. Trauth, P. Mat-

tfeld MBA, and T. Bergs, “A case for integrated data processing in
large-scale cyber-physical systems,” in Proceedings of the 52nd Hawaii

International Conference on System Sciences, 2019.
[8] R. Glebke, J. Krude, I. Kunze, J. Rüth, F. Senger, and K. Wehrle,

“Towards executing computer vision functionality on programmable
network devices,” in Proceedings of the 1st ACM CoNEXT Workshop

on Emerging in-Network Computing Paradigms, 2019, pp. 15–20.
[9] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer,

and O. Koufopavlou, “Software-defined networking (sdn): Layers and
architecture terminology,” RFC 7426, 2015.

[10] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE

Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.
[11] J. Halpern, C. Pignataro et al., “Service function chaining (sfc) archi-

tecture,” in RFC 7665, 2015.
[12] I. Kunze, K. Wehrle, D. Trossen, and M.-J. Montpetit,

“Use Cases for In-Network Computing,” Internet Engi-
neering Task Force, Internet-Draft draft-irtf-coinrg-use-cases-
00, Feb. 2021, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-irtf-coinrg-use-cases-00

[13] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings

of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[14] H. Wu, J. He, M. Tömösközi, and F. H. P. Fitzek, “Y-net: A dual
path model for high accuracy blind source separation,” in 2020 IEEE

Globecom Workshops (GC Wkshps), 2020, pp. 1–6.
[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.
[16] H. Purohit, R. Tanabe, T. Ichige, T. Endo, Y. Nikaido, K. Suefusa,

and Y. Kawaguchi, “MIMII Dataset: Sound dataset for malfunctioning
industrial machine investigation and inspection,” in Proceedings of

the Detection and Classification of Acoustic Scenes and Events 2019

Workshop (DCASE2019), November 2019, pp. 209–213.
[17] Z. Xiang, S. Pandi, J. Cabrera, F. Granelli, P. Seeling, and F. H.-P. Fitzek,

“An open source testbed for virtualized communication networks,” IEEE

Communications Magazine, pp. 1–7, (Accepted, 2020).
[18] M. Tömösközi, D. E. Lucani Rötter, F. H. P. Fitzek, and P. Ekler,

“Unidirectional robust header compression for reliable low latency mesh
networks,” in 2019 IEEE International Conference on Communications

(ICC): Mobile and Wireless Networks Symposium (IEEE ICC’19 –MWN

Symposium), 2019.

https://doi.org/10.1145/1541880.1541882
https://datatracker.ietf.org/doc/html/draft-irtf-coinrg-use-cases-00

	I Introduction
	II Background
	II-A Information Abstraction
	II-B In-Network (Pre-)Processing

	III Our Solution: IA-Net-Lite
	III-A A Lightweight nn Model for Networks
	III-A1 Encoder
	III-A2 Abstraction
	III-A3 Decoder

	III-B Deployment in the Network

	IV Experimental Design
	IV-A Emulation Setups
	IV-B Metrics
	IV-B1 Service Latency
	IV-B2 Computation Load
	IV-B3 Transmission Latency

	V Results and Discussions
	V-A Service Latency
	V-B Processing Latency and Lightweight Design
	V-C Transmission Latency and Traffic Filter

	VI Conclusion
	References

